TII subcells for the PSO(11,5) x Spin(11,5) block of PSO16 # cell#0 , |C| = 21 special orbit = [11, 1, 1, 1, 1, 1] special rep = [[], [6, 1, 1]] , dim = 21 cell rep = phi[[],[6, 1, 1]] TII depth = 1 TII multiplicity polynomial = 21*X TII subcells: tii[55,1] := {0} tii[55,2] := {4} tii[55,3] := {1} tii[55,4] := {5} tii[55,5] := {9} tii[55,6] := {8} tii[55,7] := {3} tii[55,8] := {7} tii[55,9] := {12} tii[55,10] := {2} tii[55,11] := {6} tii[55,12] := {10} tii[55,13] := {11} tii[55,14] := {13} tii[55,15] := {17} tii[55,16] := {14} tii[55,17] := {16} tii[55,18] := {15} tii[55,19] := {18} tii[55,20] := {19} tii[55,21] := {20} cell#1 , |C| = 184 special orbit = [9, 3, 1, 1, 1, 1] special rep = [[1], [5, 1, 1]] , dim = 120 cell rep = phi[[],[5, 2, 1]]+phi[[1],[5, 1, 1]] TII depth = 3 TII multiplicity polynomial = 64*X^2+56*X TII subcells: tii[50,1] := {17, 108} tii[50,2] := {11, 122} tii[50,3] := {37, 118} tii[50,4] := {77, 112} tii[50,5] := {34, 126} tii[50,6] := {28, 139} tii[50,7] := {45, 143} tii[50,8] := {55, 135} tii[50,9] := {35, 158} tii[50,10] := {93, 129} tii[50,11] := {52, 170} tii[50,12] := {46, 154} tii[50,13] := {74, 150} tii[50,14] := {26, 165} tii[50,15] := {110, 145} tii[50,16] := {41, 174} tii[50,17] := {91, 164} tii[50,18] := {128, 159} tii[50,19] := {73, 173} tii[50,20] := {144, 172} tii[50,21] := {0} tii[50,22] := {1} tii[50,23] := {7, 90} tii[50,24] := {3} tii[50,25] := {2, 89} tii[50,26] := {6, 70} tii[50,27] := {9} tii[50,28] := {24} tii[50,29] := {25} tii[50,30] := {27, 125} tii[50,31] := {5} tii[50,32] := {18, 142} tii[50,33] := {13} tii[50,34] := {4, 107} tii[50,35] := {33, 157} tii[50,36] := {10, 88} tii[50,37] := {20} tii[50,38] := {43} tii[50,39] := {44} tii[50,40] := {8, 136} tii[50,41] := {29} tii[50,42] := {16, 147} tii[50,43] := {21, 105} tii[50,44] := {39} tii[50,45] := {60} tii[50,46] := {62} tii[50,47] := {32, 130} tii[50,48] := {57} tii[50,49] := {79} tii[50,50] := {81} tii[50,51] := {97} tii[50,52] := {100} tii[50,53] := {121} tii[50,54] := {15} tii[50,55] := {30} tii[50,56] := {14, 124} tii[50,57] := {40} tii[50,58] := {23, 106} tii[50,59] := {61} tii[50,60] := {63} tii[50,61] := {12, 151} tii[50,62] := {47} tii[50,63] := {42, 123} tii[50,64] := {22, 161} tii[50,65] := {58} tii[50,66] := {80} tii[50,67] := {82} tii[50,68] := {38, 146} tii[50,69] := {75} tii[50,70] := {95} tii[50,71] := {98} tii[50,72] := {114} tii[50,73] := {116} tii[50,74] := {72, 179} tii[50,75] := {138} tii[50,76] := {64} tii[50,77] := {76} tii[50,78] := {59, 140} tii[50,79] := {96} tii[50,80] := {99} tii[50,81] := {56, 160} tii[50,82] := {92} tii[50,83] := {113} tii[50,84] := {115} tii[50,85] := {132} tii[50,86] := {134} tii[50,87] := {68, 183} tii[50,88] := {153} tii[50,89] := {109} tii[50,90] := {131} tii[50,91] := {133} tii[50,92] := {148} tii[50,93] := {149} tii[50,94] := {101, 182} tii[50,95] := {166} tii[50,96] := {162} tii[50,97] := {163} tii[50,98] := {127, 181} tii[50,99] := {175} tii[50,100] := {180} tii[50,101] := {19, 48} tii[50,102] := {54, 171} tii[50,103] := {31, 67} tii[50,104] := {36, 169} tii[50,105] := {49, 85} tii[50,106] := {53, 156} tii[50,107] := {65, 103} tii[50,108] := {71, 141} tii[50,109] := {51, 86} tii[50,110] := {50, 178} tii[50,111] := {69, 104} tii[50,112] := {66, 168} tii[50,113] := {83, 119} tii[50,114] := {78, 155} tii[50,115] := {87, 120} tii[50,116] := {84, 177} tii[50,117] := {102, 137} tii[50,118] := {94, 167} tii[50,119] := {117, 152} tii[50,120] := {111, 176} cell#2 , |C| = 35 special orbit = [9, 1, 1, 1, 1, 1, 1, 1] special rep = [[], [5, 1, 1, 1]] , dim = 35 cell rep = phi[[],[5, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 35*X TII subcells: tii[49,1] := {10} tii[49,2] := {4} tii[49,3] := {9} tii[49,4] := {15} tii[49,5] := {1} tii[49,6] := {3} tii[49,7] := {7} tii[49,8] := {8} tii[49,9] := {14} tii[49,10] := {20} tii[49,11] := {0} tii[49,12] := {2} tii[49,13] := {5} tii[49,14] := {6} tii[49,15] := {11} tii[49,16] := {17} tii[49,17] := {12} tii[49,18] := {18} tii[49,19] := {23} tii[49,20] := {27} tii[49,21] := {22} tii[49,22] := {16} tii[49,23] := {21} tii[49,24] := {26} tii[49,25] := {30} tii[49,26] := {13} tii[49,27] := {19} tii[49,28] := {24} tii[49,29] := {28} tii[49,30] := {25} tii[49,31] := {29} tii[49,32] := {31} tii[49,33] := {32} tii[49,34] := {33} tii[49,35] := {34} cell#3 , |C| = 280 special orbit = [7, 3, 3, 1, 1, 1] special rep = [[1], [4, 2, 1]] , dim = 280 cell rep = phi[[1],[4, 2, 1]] TII depth = 4 TII multiplicity polynomial = 280*X TII subcells: tii[41,1] := {45} tii[41,2] := {154} tii[41,3] := {230} tii[41,4] := {206} tii[41,5] := {77} tii[41,6] := {221} tii[41,7] := {59} tii[41,8] := {194} tii[41,9] := {209} tii[41,10] := {134} tii[41,11] := {252} tii[41,12] := {114} tii[41,13] := {254} tii[41,14] := {226} tii[41,15] := {130} tii[41,16] := {258} tii[41,17] := {208} tii[41,18] := {266} tii[41,19] := {115} tii[41,20] := {248} tii[41,21] := {273} tii[41,22] := {274} tii[41,23] := {257} tii[41,24] := {277} tii[41,25] := {2} tii[41,26] := {11} tii[41,27] := {10} tii[41,28] := {52} tii[41,29] := {51} tii[41,30] := {166} tii[41,31] := {6} tii[41,32] := {24} tii[41,33] := {188} tii[41,34] := {26} tii[41,35] := {129} tii[41,36] := {9} tii[41,37] := {33} tii[41,38] := {174} tii[41,39] := {97} tii[41,40] := {82} tii[41,41] := {113} tii[41,42] := {12} tii[41,43] := {80} tii[41,44] := {18} tii[41,45] := {39} tii[41,46] := {41} tii[41,47] := {201} tii[41,48] := {47} tii[41,49] := {58} tii[41,50] := {117} tii[41,51] := {210} tii[41,52] := {119} tii[41,53] := {164} tii[41,54] := {133} tii[41,55] := {46} tii[41,56] := {60} tii[41,57] := {99} tii[41,58] := {104} tii[41,59] := {229} tii[41,60] := {172} tii[41,61] := {156} tii[41,62] := {175} tii[41,63] := {181} tii[41,64] := {14} tii[41,65] := {170} tii[41,66] := {22} tii[41,67] := {48} tii[41,68] := {50} tii[41,69] := {153} tii[41,70] := {122} tii[41,71] := {120} tii[41,72] := {27} tii[41,73] := {36} tii[41,74] := {66} tii[41,75] := {70} tii[41,76] := {232} tii[41,77] := {93} tii[41,78] := {42} tii[41,79] := {79} tii[41,80] := {157} tii[41,81] := {78} tii[41,82] := {159} tii[41,83] := {204} tii[41,84] := {193} tii[41,85] := {37} tii[41,86] := {238} tii[41,87] := {173} tii[41,88] := {63} tii[41,89] := {94} tii[41,90] := {137} tii[41,91] := {101} tii[41,92] := {143} tii[41,93] := {106} tii[41,94] := {251} tii[41,95] := {49} tii[41,96] := {96} tii[41,97] := {207} tii[41,98] := {196} tii[41,99] := {136} tii[41,100] := {211} tii[41,101] := {142} tii[41,102] := {216} tii[41,103] := {179} tii[41,104] := {185} tii[41,105] := {225} tii[41,106] := {116} tii[41,107] := {235} tii[41,108] := {197} tii[41,109] := {199} tii[41,110] := {131} tii[41,111] := {177} tii[41,112] := {183} tii[41,113] := {265} tii[41,114] := {237} tii[41,115] := {171} tii[41,116] := {228} tii[41,117] := {212} tii[41,118] := {239} tii[41,119] := {217} tii[41,120] := {242} tii[41,121] := {241} tii[41,122] := {244} tii[41,123] := {161} tii[41,124] := {263} tii[41,125] := {250} tii[41,126] := {259} tii[41,127] := {261} tii[41,128] := {270} tii[41,129] := {271} tii[41,130] := {249} tii[41,131] := {276} tii[41,132] := {279} tii[41,133] := {0} tii[41,134] := {1} tii[41,135] := {92} tii[41,136] := {3} tii[41,137] := {76} tii[41,138] := {4} tii[41,139] := {5} tii[41,140] := {8} tii[41,141] := {20} tii[41,142] := {21} tii[41,143] := {90} tii[41,144] := {17} tii[41,145] := {38} tii[41,146] := {40} tii[41,147] := {67} tii[41,148] := {71} tii[41,149] := {91} tii[41,150] := {23} tii[41,151] := {152} tii[41,152] := {13} tii[41,153] := {35} tii[41,154] := {19} tii[41,155] := {65} tii[41,156] := {69} tii[41,157] := {127} tii[41,158] := {25} tii[41,159] := {61} tii[41,160] := {34} tii[41,161] := {98} tii[41,162] := {64} tii[41,163] := {103} tii[41,164] := {68} tii[41,165] := {138} tii[41,166] := {102} tii[41,167] := {144} tii[41,168] := {107} tii[41,169] := {73} tii[41,170] := {31} tii[41,171] := {192} tii[41,172] := {128} tii[41,173] := {95} tii[41,174] := {135} tii[41,175] := {141} tii[41,176] := {178} tii[41,177] := {139} tii[41,178] := {184} tii[41,179] := {145} tii[41,180] := {84} tii[41,181] := {149} tii[41,182] := {165} tii[41,183] := {224} tii[41,184] := {83} tii[41,185] := {213} tii[41,186] := {218} tii[41,187] := {155} tii[41,188] := {202} tii[41,189] := {200} tii[41,190] := {247} tii[41,191] := {256} tii[41,192] := {28} tii[41,193] := {168} tii[41,194] := {62} tii[41,195] := {100} tii[41,196] := {105} tii[41,197] := {140} tii[41,198] := {146} tii[41,199] := {111} tii[41,200] := {56} tii[41,201] := {169} tii[41,202] := {132} tii[41,203] := {176} tii[41,204] := {182} tii[41,205] := {180} tii[41,206] := {214} tii[41,207] := {186} tii[41,208] := {219} tii[41,209] := {124} tii[41,210] := {191} tii[41,211] := {150} tii[41,212] := {75} tii[41,213] := {205} tii[41,214] := {123} tii[41,215] := {246} tii[41,216] := {240} tii[41,217] := {243} tii[41,218] := {87} tii[41,219] := {195} tii[41,220] := {233} tii[41,221] := {231} tii[41,222] := {264} tii[41,223] := {190} tii[41,224] := {109} tii[41,225] := {121} tii[41,226] := {269} tii[41,227] := {215} tii[41,228] := {220} tii[41,229] := {223} tii[41,230] := {236} tii[41,231] := {160} tii[41,232] := {260} tii[41,233] := {262} tii[41,234] := {227} tii[41,235] := {255} tii[41,236] := {253} tii[41,237] := {245} tii[41,238] := {187} tii[41,239] := {272} tii[41,240] := {198} tii[41,241] := {275} tii[41,242] := {267} tii[41,243] := {268} tii[41,244] := {278} tii[41,245] := {7} tii[41,246] := {43} tii[41,247] := {15} tii[41,248] := {16} tii[41,249] := {74} tii[41,250] := {29} tii[41,251] := {30} tii[41,252] := {89} tii[41,253] := {32} tii[41,254] := {110} tii[41,255] := {44} tii[41,256] := {54} tii[41,257] := {148} tii[41,258] := {72} tii[41,259] := {55} tii[41,260] := {112} tii[41,261] := {53} tii[41,262] := {81} tii[41,263] := {126} tii[41,264] := {189} tii[41,265] := {108} tii[41,266] := {85} tii[41,267] := {118} tii[41,268] := {163} tii[41,269] := {57} tii[41,270] := {151} tii[41,271] := {86} tii[41,272] := {88} tii[41,273] := {167} tii[41,274] := {222} tii[41,275] := {125} tii[41,276] := {147} tii[41,277] := {158} tii[41,278] := {203} tii[41,279] := {162} tii[41,280] := {234} cell#4 , |C| = 35 special orbit = [9, 1, 1, 1, 1, 1, 1, 1] special rep = [[], [5, 1, 1, 1]] , dim = 35 cell rep = phi[[],[5, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 35*X TII subcells: tii[49,1] := {6} tii[49,2] := {12} tii[49,3] := {7} tii[49,4] := {16} tii[49,5] := {21} tii[49,6] := {11} tii[49,7] := {20} tii[49,8] := {8} tii[49,9] := {17} tii[49,10] := {23} tii[49,11] := {13} tii[49,12] := {3} tii[49,13] := {10} tii[49,14] := {2} tii[49,15] := {5} tii[49,16] := {15} tii[49,17] := {0} tii[49,18] := {1} tii[49,19] := {4} tii[49,20] := {14} tii[49,21] := {27} tii[49,22] := {29} tii[49,23] := {28} tii[49,24] := {32} tii[49,25] := {34} tii[49,26] := {22} tii[49,27] := {19} tii[49,28] := {26} tii[49,29] := {31} tii[49,30] := {9} tii[49,31] := {18} tii[49,32] := {24} tii[49,33] := {25} tii[49,34] := {30} tii[49,35] := {33} cell#5 , |C| = 35 special orbit = [9, 1, 1, 1, 1, 1, 1, 1] special rep = [[], [5, 1, 1, 1]] , dim = 35 cell rep = phi[[],[5, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 35*X TII subcells: tii[49,1] := {0} tii[49,2] := {2} tii[49,3] := {4} tii[49,4] := {8} tii[49,5] := {5} tii[49,6] := {10} tii[49,7] := {14} tii[49,8] := {15} tii[49,9] := {23} tii[49,10] := {28} tii[49,11] := {1} tii[49,12] := {3} tii[49,13] := {7} tii[49,14] := {9} tii[49,15] := {13} tii[49,16] := {22} tii[49,17] := {6} tii[49,18] := {12} tii[49,19] := {18} tii[49,20] := {11} tii[49,21] := {17} tii[49,22] := {25} tii[49,23] := {30} tii[49,24] := {33} tii[49,25] := {34} tii[49,26] := {16} tii[49,27] := {24} tii[49,28] := {29} tii[49,29] := {32} tii[49,30] := {21} tii[49,31] := {27} tii[49,32] := {31} tii[49,33] := {20} tii[49,34] := {26} tii[49,35] := {19} cell#6 , |C| = 250 special orbit = [7, 3, 1, 1, 1, 1, 1, 1] special rep = [[1], [4, 1, 1, 1]] , dim = 160 cell rep = phi[[],[4, 2, 1, 1]]+phi[[1],[4, 1, 1, 1]] TII depth = 2 TII multiplicity polynomial = 90*X^2+70*X TII subcells: tii[39,1] := {9, 123} tii[39,2] := {24, 119} tii[39,3] := {64, 110} tii[39,4] := {18, 145} tii[39,5] := {41, 140} tii[39,6] := {8, 163} tii[39,7] := {84, 131} tii[39,8] := {15, 176} tii[39,9] := {60, 162} tii[39,10] := {106, 152} tii[39,11] := {39, 174} tii[39,12] := {128, 172} tii[39,13] := {32, 168} tii[39,14] := {61, 164} tii[39,15] := {17, 184} tii[39,16] := {107, 153} tii[39,17] := {28, 199} tii[39,18] := {7, 203} tii[39,19] := {80, 182} tii[39,20] := {129, 175} tii[39,21] := {59, 195} tii[39,22] := {14, 215} tii[39,23] := {25, 229} tii[39,24] := {150, 192} tii[39,25] := {102, 202} tii[39,26] := {151, 197} tii[39,27] := {79, 214} tii[39,28] := {58, 228} tii[39,29] := {173, 211} tii[39,30] := {194, 227} tii[39,31] := {3} tii[39,32] := {10} tii[39,33] := {2, 101} tii[39,34] := {6, 78} tii[39,35] := {13} tii[39,36] := {30} tii[39,37] := {31} tii[39,38] := {19} tii[39,39] := {1, 141} tii[39,40] := {16, 100} tii[39,41] := {5, 155} tii[39,42] := {27} tii[39,43] := {48} tii[39,44] := {49} tii[39,45] := {12, 132} tii[39,46] := {43} tii[39,47] := {68} tii[39,48] := {70} tii[39,49] := {90} tii[39,50] := {93} tii[39,51] := {122} tii[39,52] := {33} tii[39,53] := {0, 183} tii[39,54] := {44} tii[39,55] := {29, 124} tii[39,56] := {4, 196} tii[39,57] := {69} tii[39,58] := {71} tii[39,59] := {11, 213} tii[39,60] := {26, 154} tii[39,61] := {62} tii[39,62] := {88} tii[39,63] := {91} tii[39,64] := {113} tii[39,65] := {116} tii[39,66] := {37, 209} tii[39,67] := {144} tii[39,68] := {23, 193} tii[39,69] := {82} tii[39,70] := {111} tii[39,71] := {114} tii[39,72] := {134} tii[39,73] := {137} tii[39,74] := {72, 207} tii[39,75] := {166} tii[39,76] := {157} tii[39,77] := {160} tii[39,78] := {103, 204} tii[39,79] := {186} tii[39,80] := {198} tii[39,81] := {51} tii[39,82] := {63} tii[39,83] := {45, 146} tii[39,84] := {89} tii[39,85] := {92} tii[39,86] := {42, 177} tii[39,87] := {83} tii[39,88] := {112} tii[39,89] := {115} tii[39,90] := {135} tii[39,91] := {138} tii[39,92] := {56, 226} tii[39,93] := {167} tii[39,94] := {40, 212} tii[39,95] := {105} tii[39,96] := {133} tii[39,97] := {136} tii[39,98] := {158} tii[39,99] := {161} tii[39,100] := {95, 223} tii[39,101] := {36, 238} tii[39,102] := {187} tii[39,103] := {178} tii[39,104] := {180} tii[39,105] := {125, 220} tii[39,106] := {53, 245} tii[39,107] := {205} tii[39,108] := {66, 249} tii[39,109] := {216} tii[39,110] := {127} tii[39,111] := {156} tii[39,112] := {159} tii[39,113] := {179} tii[39,114] := {181} tii[39,115] := {117, 237} tii[39,116] := {206} tii[39,117] := {200} tii[39,118] := {201} tii[39,119] := {149, 233} tii[39,120] := {94, 244} tii[39,121] := {222} tii[39,122] := {108, 248} tii[39,123] := {230} tii[39,124] := {218} tii[39,125] := {219} tii[39,126] := {171, 243} tii[39,127] := {236} tii[39,128] := {148, 247} tii[39,129] := {239} tii[39,130] := {246} tii[39,131] := {22, 55} tii[39,132] := {21, 191} tii[39,133] := {38, 76} tii[39,134] := {35, 170} tii[39,135] := {52, 98} tii[39,136] := {47, 147} tii[39,137] := {20, 224} tii[39,138] := {57, 99} tii[39,139] := {34, 235} tii[39,140] := {54, 190} tii[39,141] := {74, 120} tii[39,142] := {46, 242} tii[39,143] := {67, 169} tii[39,144] := {50, 221} tii[39,145] := {96, 142} tii[39,146] := {65, 232} tii[39,147] := {85, 188} tii[39,148] := {81, 217} tii[39,149] := {77, 121} tii[39,150] := {75, 210} tii[39,151] := {97, 143} tii[39,152] := {87, 189} tii[39,153] := {73, 234} tii[39,154] := {118, 165} tii[39,155] := {86, 241} tii[39,156] := {109, 208} tii[39,157] := {104, 231} tii[39,158] := {139, 185} tii[39,159] := {130, 225} tii[39,160] := {126, 240} cell#7 , |C| = 35 special orbit = [7, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[], [4, 1, 1, 1, 1]] , dim = 35 cell rep = phi[[],[4, 1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 35*X TII subcells: tii[38,1] := {15} tii[38,2] := {8} tii[38,3] := {14} tii[38,4] := {3} tii[38,5] := {7} tii[38,6] := {13} tii[38,7] := {2} tii[38,8] := {5} tii[38,9] := {10} tii[38,10] := {18} tii[38,11] := {0} tii[38,12] := {1} tii[38,13] := {4} tii[38,14] := {9} tii[38,15] := {17} tii[38,16] := {23} tii[38,17] := {16} tii[38,18] := {22} tii[38,19] := {28} tii[38,20] := {12} tii[38,21] := {21} tii[38,22] := {25} tii[38,23] := {27} tii[38,24] := {31} tii[38,25] := {33} tii[38,26] := {6} tii[38,27] := {11} tii[38,28] := {19} tii[38,29] := {20} tii[38,30] := {24} tii[38,31] := {29} tii[38,32] := {26} tii[38,33] := {30} tii[38,34] := {32} tii[38,35] := {34} cell#8 , |C| = 250 special orbit = [7, 3, 1, 1, 1, 1, 1, 1] special rep = [[1], [4, 1, 1, 1]] , dim = 160 cell rep = phi[[],[4, 2, 1, 1]]+phi[[1],[4, 1, 1, 1]] TII depth = 2 TII multiplicity polynomial = 90*X^2+70*X TII subcells: tii[39,1] := {27, 129} tii[39,2] := {15, 149} tii[39,3] := {66, 137} tii[39,4] := {51, 164} tii[39,5] := {36, 182} tii[39,6] := {60, 195} tii[39,7] := {99, 172} tii[39,8] := {52, 219} tii[39,9] := {62, 209} tii[39,10] := {135, 203} tii[39,11] := {33, 226} tii[39,12] := {170, 224} tii[39,13] := {82, 128} tii[39,14] := {14, 148} tii[39,15] := {93, 162} tii[39,16] := {65, 136} tii[39,17] := {83, 192} tii[39,18] := {127, 130} tii[39,19] := {34, 181} tii[39,20] := {98, 171} tii[39,21] := {13, 201} tii[39,22] := {92, 161} tii[39,23] := {84, 138} tii[39,24] := {133, 199} tii[39,25] := {61, 194} tii[39,26] := {134, 202} tii[39,27] := {32, 218} tii[39,28] := {26, 191} tii[39,29] := {169, 225} tii[39,30] := {200, 237} tii[39,31] := {0} tii[39,32] := {1} tii[39,33] := {10, 91} tii[39,34] := {2, 81} tii[39,35] := {4} tii[39,36] := {20} tii[39,37] := {21} tii[39,38] := {8} tii[39,39] := {35, 163} tii[39,40] := {5, 118} tii[39,41] := {28, 193} tii[39,42] := {18} tii[39,43] := {42} tii[39,44] := {44} tii[39,45] := {11, 174} tii[39,46] := {38} tii[39,47] := {70} tii[39,48] := {73} tii[39,49] := {106} tii[39,50] := {110} tii[39,51] := {153} tii[39,52] := {22} tii[39,53] := {90, 94} tii[39,54] := {39} tii[39,55] := {19, 154} tii[39,56] := {59, 126} tii[39,57] := {71} tii[39,58] := {74} tii[39,59] := {53, 102} tii[39,60] := {16, 204} tii[39,61] := {64} tii[39,62] := {104} tii[39,63] := {108} tii[39,64] := {142} tii[39,65] := {146} tii[39,66] := {88, 240} tii[39,67] := {186} tii[39,68] := {29, 125} tii[39,69] := {97} tii[39,70] := {140} tii[39,71] := {144} tii[39,72] := {177} tii[39,73] := {180} tii[39,74] := {76, 246} tii[39,75] := {212} tii[39,76] := {206} tii[39,77] := {208} tii[39,78] := {132, 243} tii[39,79] := {232} tii[39,80] := {242} tii[39,81] := {7} tii[39,82] := {17} tii[39,83] := {6, 117} tii[39,84] := {41} tii[39,85] := {43} tii[39,86] := {3, 173} tii[39,87] := {37} tii[39,88] := {69} tii[39,89] := {72} tii[39,90] := {105} tii[39,91] := {109} tii[39,92] := {123, 222} tii[39,93] := {152} tii[39,94] := {9, 160} tii[39,95] := {63} tii[39,96] := {103} tii[39,97] := {107} tii[39,98] := {141} tii[39,99] := {145} tii[39,100] := {45, 233} tii[39,101] := {147, 198} tii[39,102] := {185} tii[39,103] := {175} tii[39,104] := {178} tii[39,105] := {95, 230} tii[39,106] := {124, 190} tii[39,107] := {210} tii[39,108] := {155, 159} tii[39,109] := {227} tii[39,110] := {96} tii[39,111] := {139} tii[39,112] := {143} tii[39,113] := {176} tii[39,114] := {179} tii[39,115] := {75, 239} tii[39,116] := {211} tii[39,117] := {205} tii[39,118] := {207} tii[39,119] := {131, 244} tii[39,120] := {56, 221} tii[39,121] := {231} tii[39,122] := {86, 214} tii[39,123] := {241} tii[39,124] := {228} tii[39,125] := {229} tii[39,126] := {168, 247} tii[39,127] := {245} tii[39,128] := {158, 238} tii[39,129] := {248} tii[39,130] := {249} tii[39,131] := {12, 49} tii[39,132] := {57, 223} tii[39,133] := {24, 80} tii[39,134] := {31, 217} tii[39,135] := {47, 115} tii[39,136] := {55, 188} tii[39,137] := {111, 167} tii[39,138] := {50, 116} tii[39,139] := {89, 157} tii[39,140] := {48, 236} tii[39,141] := {78, 151} tii[39,142] := {119, 122} tii[39,143] := {68, 215} tii[39,144] := {58, 166} tii[39,145] := {113, 184} tii[39,146] := {87, 156} tii[39,147] := {101, 235} tii[39,148] := {121, 165} tii[39,149] := {25, 79} tii[39,150] := {23, 216} tii[39,151] := {46, 114} tii[39,152] := {40, 187} tii[39,153] := {30, 197} tii[39,154] := {77, 150} tii[39,155] := {54, 189} tii[39,156] := {67, 213} tii[39,157] := {85, 196} tii[39,158] := {112, 183} tii[39,159] := {100, 234} tii[39,160] := {120, 220} cell#9 , |C| = 280 special orbit = [5, 3, 3, 1, 1, 1, 1, 1] special rep = [[1], [3, 2, 1, 1]] , dim = 280 cell rep = phi[[1],[3, 2, 1, 1]] TII depth = 4 TII multiplicity polynomial = 280*X TII subcells: tii[27,1] := {43} tii[27,2] := {119} tii[27,3] := {121} tii[27,4] := {73} tii[27,5] := {132} tii[27,6] := {57} tii[27,7] := {156} tii[27,8] := {109} tii[27,9] := {191} tii[27,10] := {193} tii[27,11] := {128} tii[27,12] := {223} tii[27,13] := {161} tii[27,14] := {113} tii[27,15] := {196} tii[27,16] := {171} tii[27,17] := {90} tii[27,18] := {198} tii[27,19] := {150} tii[27,20] := {224} tii[27,21] := {207} tii[27,22] := {131} tii[27,23] := {225} tii[27,24] := {226} tii[27,25] := {167} tii[27,26] := {235} tii[27,27] := {169} tii[27,28] := {248} tii[27,29] := {187} tii[27,30] := {249} tii[27,31] := {250} tii[27,32] := {205} tii[27,33] := {263} tii[27,34] := {236} tii[27,35] := {264} tii[27,36] := {272} tii[27,37] := {1} tii[27,38] := {12} tii[27,39] := {11} tii[27,40] := {81} tii[27,41] := {4} tii[27,42] := {24} tii[27,43] := {26} tii[27,44] := {92} tii[27,45] := {52} tii[27,46] := {7} tii[27,47] := {34} tii[27,48] := {17} tii[27,49] := {19} tii[27,50] := {117} tii[27,51] := {45} tii[27,52] := {56} tii[27,53] := {59} tii[27,54] := {64} tii[27,55] := {158} tii[27,56] := {10} tii[27,57] := {192} tii[27,58] := {84} tii[27,59] := {46} tii[27,60] := {170} tii[27,61] := {89} tii[27,62] := {48} tii[27,63] := {15} tii[27,64] := {36} tii[27,65] := {39} tii[27,66] := {154} tii[27,67] := {204} tii[27,68] := {88} tii[27,69] := {155} tii[27,70] := {129} tii[27,71] := {33} tii[27,72] := {75} tii[27,73] := {60} tii[27,74] := {93} tii[27,75] := {65} tii[27,76] := {99} tii[27,77] := {97} tii[27,78] := {103} tii[27,79] := {147} tii[27,80] := {222} tii[27,81] := {168} tii[27,82] := {111} tii[27,83] := {133} tii[27,84] := {139} tii[27,85] := {174} tii[27,86] := {179} tii[27,87] := {110} tii[27,88] := {217} tii[27,89] := {252} tii[27,90] := {23} tii[27,91] := {124} tii[27,92] := {77} tii[27,93] := {79} tii[27,94] := {32} tii[27,95] := {61} tii[27,96] := {66} tii[27,97] := {195} tii[27,98] := {194} tii[27,99] := {115} tii[27,100] := {130} tii[27,101] := {55} tii[27,102] := {134} tii[27,103] := {95} tii[27,104] := {140} tii[27,105] := {101} tii[27,106] := {138} tii[27,107] := {144} tii[27,108] := {184} tii[27,109] := {247} tii[27,110] := {206} tii[27,111] := {87} tii[27,112] := {152} tii[27,113] := {135} tii[27,114] := {172} tii[27,115] := {141} tii[27,116] := {177} tii[27,117] := {211} tii[27,118] := {176} tii[27,119] := {215} tii[27,120] := {181} tii[27,121] := {254} tii[27,122] := {151} tii[27,123] := {245} tii[27,124] := {218} tii[27,125] := {210} tii[27,126] := {214} tii[27,127] := {260} tii[27,128] := {127} tii[27,129] := {267} tii[27,130] := {244} tii[27,131] := {256} tii[27,132] := {189} tii[27,133] := {208} tii[27,134] := {212} tii[27,135] := {239} tii[27,136] := {241} tii[27,137] := {188} tii[27,138] := {262} tii[27,139] := {258} tii[27,140] := {259} tii[27,141] := {274} tii[27,142] := {275} tii[27,143] := {203} tii[27,144] := {271} tii[27,145] := {190} tii[27,146] := {276} tii[27,147] := {278} tii[27,148] := {279} tii[27,149] := {0} tii[27,150] := {30} tii[27,151] := {3} tii[27,152] := {8} tii[27,153] := {9} tii[27,154] := {18} tii[27,155] := {20} tii[27,156] := {31} tii[27,157] := {118} tii[27,158] := {16} tii[27,159] := {35} tii[27,160] := {38} tii[27,161] := {37} tii[27,162] := {62} tii[27,163] := {40} tii[27,164] := {67} tii[27,165] := {13} tii[27,166] := {53} tii[27,167] := {42} tii[27,168] := {108} tii[27,169] := {96} tii[27,170] := {102} tii[27,171] := {82} tii[27,172] := {44} tii[27,173] := {80} tii[27,174] := {148} tii[27,175] := {165} tii[27,176] := {54} tii[27,177] := {94} tii[27,178] := {100} tii[27,179] := {137} tii[27,180] := {63} tii[27,181] := {143} tii[27,182] := {68} tii[27,183] := {230} tii[27,184] := {72} tii[27,185] := {27} tii[27,186] := {183} tii[27,187] := {85} tii[27,188] := {173} tii[27,189] := {136} tii[27,190] := {178} tii[27,191] := {142} tii[27,192] := {74} tii[27,193] := {242} tii[27,194] := {201} tii[27,195] := {86} tii[27,196] := {122} tii[27,197] := {120} tii[27,198] := {216} tii[27,199] := {106} tii[27,200] := {41} tii[27,201] := {185} tii[27,202] := {237} tii[27,203] := {186} tii[27,204] := {47} tii[27,205] := {202} tii[27,206] := {209} tii[27,207] := {213} tii[27,208] := {251} tii[27,209] := {157} tii[27,210] := {126} tii[27,211] := {159} tii[27,212] := {243} tii[27,213] := {112} tii[27,214] := {257} tii[27,215] := {231} tii[27,216] := {229} tii[27,217] := {265} tii[27,218] := {98} tii[27,219] := {104} tii[27,220] := {107} tii[27,221] := {49} tii[27,222] := {125} tii[27,223] := {175} tii[27,224] := {180} tii[27,225] := {233} tii[27,226] := {162} tii[27,227] := {114} tii[27,228] := {146} tii[27,229] := {69} tii[27,230] := {160} tii[27,231] := {219} tii[27,232] := {221} tii[27,233] := {78} tii[27,234] := {234} tii[27,235] := {238} tii[27,236] := {240} tii[27,237] := {266} tii[27,238] := {166} tii[27,239] := {197} tii[27,240] := {182} tii[27,241] := {105} tii[27,242] := {199} tii[27,243] := {261} tii[27,244] := {153} tii[27,245] := {246} tii[27,246] := {91} tii[27,247] := {255} tii[27,248] := {253} tii[27,249] := {270} tii[27,250] := {116} tii[27,251] := {273} tii[27,252] := {227} tii[27,253] := {228} tii[27,254] := {268} tii[27,255] := {269} tii[27,256] := {277} tii[27,257] := {2} tii[27,258] := {5} tii[27,259] := {6} tii[27,260] := {22} tii[27,261] := {29} tii[27,262] := {164} tii[27,263] := {14} tii[27,264] := {71} tii[27,265] := {21} tii[27,266] := {149} tii[27,267] := {25} tii[27,268] := {51} tii[27,269] := {163} tii[27,270] := {145} tii[27,271] := {28} tii[27,272] := {70} tii[27,273] := {220} tii[27,274] := {58} tii[27,275] := {83} tii[27,276] := {200} tii[27,277] := {76} tii[27,278] := {50} tii[27,279] := {123} tii[27,280] := {232} cell#10 , |C| = 35 special orbit = [7, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[], [4, 1, 1, 1, 1]] , dim = 35 cell rep = phi[[],[4, 1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 35*X TII subcells: tii[38,1] := {1} tii[38,2] := {4} tii[38,3] := {9} tii[38,4] := {10} tii[38,5] := {16} tii[38,6] := {25} tii[38,7] := {3} tii[38,8] := {8} tii[38,9] := {15} tii[38,10] := {12} tii[38,11] := {0} tii[38,12] := {2} tii[38,13] := {7} tii[38,14] := {5} tii[38,15] := {6} tii[38,16] := {20} tii[38,17] := {30} tii[38,18] := {33} tii[38,19] := {34} tii[38,20] := {19} tii[38,21] := {29} tii[38,22] := {32} tii[38,23] := {24} tii[38,24] := {31} tii[38,25] := {21} tii[38,26] := {11} tii[38,27] := {18} tii[38,28] := {28} tii[38,29] := {14} tii[38,30] := {23} tii[38,31] := {13} tii[38,32] := {17} tii[38,33] := {27} tii[38,34] := {22} tii[38,35] := {26} cell#11 , |C| = 184 special orbit = [5, 3, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[1], [3, 1, 1, 1, 1]] , dim = 120 cell rep = phi[[],[3, 2, 1, 1, 1]]+phi[[1],[3, 1, 1, 1, 1]] TII depth = 3 TII multiplicity polynomial = 64*X^2+56*X TII subcells: tii[24,1] := {7, 72} tii[24,2] := {31, 66} tii[24,3] := {16, 89} tii[24,4] := {46, 81} tii[24,5] := {6, 99} tii[24,6] := {63, 96} tii[24,7] := {28, 105} tii[24,8] := {64, 100} tii[24,9] := {15, 117} tii[24,10] := {5, 133} tii[24,11] := {79, 114} tii[24,12] := {97, 132} tii[24,13] := {42, 112} tii[24,14] := {80, 118} tii[24,15] := {27, 130} tii[24,16] := {98, 134} tii[24,17] := {14, 147} tii[24,18] := {12, 129} tii[24,19] := {116, 152} tii[24,20] := {135, 164} tii[24,21] := {3} tii[24,22] := {2, 56} tii[24,23] := {8} tii[24,24] := {20} tii[24,25] := {21} tii[24,26] := {1, 82} tii[24,27] := {17} tii[24,28] := {34} tii[24,29] := {35} tii[24,30] := {50} tii[24,31] := {52} tii[24,32] := {74} tii[24,33] := {30} tii[24,34] := {0, 115} tii[24,35] := {49} tii[24,36] := {51} tii[24,37] := {68} tii[24,38] := {70} tii[24,39] := {23, 127} tii[24,40] := {91} tii[24,41] := {84} tii[24,42] := {87} tii[24,43] := {43, 124} tii[24,44] := {107} tii[24,45] := {119} tii[24,46] := {4, 111} tii[24,47] := {45} tii[24,48] := {67} tii[24,49] := {69} tii[24,50] := {85} tii[24,51] := {88} tii[24,52] := {37, 145} tii[24,53] := {108} tii[24,54] := {101} tii[24,55] := {103} tii[24,56] := {60, 141} tii[24,57] := {22, 161} tii[24,58] := {125} tii[24,59] := {32, 171} tii[24,60] := {136} tii[24,61] := {120} tii[24,62] := {122} tii[24,63] := {77, 160} tii[24,64] := {143} tii[24,65] := {59, 169} tii[24,66] := {153} tii[24,67] := {168} tii[24,68] := {62} tii[24,69] := {83} tii[24,70] := {86} tii[24,71] := {102} tii[24,72] := {104} tii[24,73] := {53, 151} tii[24,74] := {126} tii[24,75] := {121} tii[24,76] := {123} tii[24,77] := {78, 162} tii[24,78] := {36, 167} tii[24,79] := {144} tii[24,80] := {47, 176} tii[24,81] := {154} tii[24,82] := {139} tii[24,83] := {140} tii[24,84] := {26, 150} tii[24,85] := {95, 173} tii[24,86] := {163} tii[24,87] := {76, 179} tii[24,88] := {41, 166} tii[24,89] := {170} tii[24,90] := {58, 156} tii[24,91] := {178} tii[24,92] := {158} tii[24,93] := {159} tii[24,94] := {113, 177} tii[24,95] := {174} tii[24,96] := {94, 181} tii[24,97] := {180} tii[24,98] := {93, 175} tii[24,99] := {182} tii[24,100] := {183} tii[24,101] := {11, 39} tii[24,102] := {10, 110} tii[24,103] := {24, 55} tii[24,104] := {19, 92} tii[24,105] := {9, 142} tii[24,106] := {38, 73} tii[24,107] := {18, 157} tii[24,108] := {33, 109} tii[24,109] := {29, 137} tii[24,110] := {13, 131} tii[24,111] := {54, 90} tii[24,112] := {25, 149} tii[24,113] := {48, 128} tii[24,114] := {40, 138} tii[24,115] := {44, 155} tii[24,116] := {57, 148} tii[24,117] := {71, 106} tii[24,118] := {65, 146} tii[24,119] := {61, 172} tii[24,120] := {75, 165} cell#12 , |C| = 35 special orbit = [7, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[], [4, 1, 1, 1, 1]] , dim = 35 cell rep = phi[[],[4, 1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 35*X TII subcells: tii[38,1] := {0} tii[38,2] := {1} tii[38,3] := {2} tii[38,4] := {3} tii[38,5] := {5} tii[38,6] := {9} tii[38,7] := {6} tii[38,8] := {10} tii[38,9] := {15} tii[38,10] := {21} tii[38,11] := {4} tii[38,12] := {8} tii[38,13] := {13} tii[38,14] := {18} tii[38,15] := {12} tii[38,16] := {7} tii[38,17] := {11} tii[38,18] := {16} tii[38,19] := {22} tii[38,20] := {17} tii[38,21] := {23} tii[38,22] := {28} tii[38,23] := {29} tii[38,24] := {32} tii[38,25] := {34} tii[38,26] := {14} tii[38,27] := {20} tii[38,28] := {26} tii[38,29] := {27} tii[38,30] := {31} tii[38,31] := {33} tii[38,32] := {19} tii[38,33] := {25} tii[38,34] := {30} tii[38,35] := {24} cell#13 , |C| = 21 special orbit = [5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[], [3, 1, 1, 1, 1, 1]] , dim = 21 cell rep = phi[[],[3, 1, 1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 21*X TII subcells: tii[23,1] := {0} tii[23,2] := {1} tii[23,3] := {2} tii[23,4] := {6} tii[23,5] := {4} tii[23,6] := {5} tii[23,7] := {3} tii[23,8] := {7} tii[23,9] := {9} tii[23,10] := {11} tii[23,11] := {15} tii[23,12] := {20} tii[23,13] := {8} tii[23,14] := {13} tii[23,15] := {17} tii[23,16] := {12} tii[23,17] := {10} tii[23,18] := {14} tii[23,19] := {19} tii[23,20] := {16} tii[23,21] := {18}