TII subcells for the PSO(12,4) x Spin(8,8) block of PSO16 # cell#0 , |C| = 35 special orbit = [9, 1, 1, 1, 1, 1, 1, 1] special rep = [[], [5, 1, 1, 1]] , dim = 35 cell rep = phi[[],[5, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 35*X TII subcells: tii[49,1] := {0} tii[49,2] := {15} tii[49,3] := {1} tii[49,4] := {19} tii[49,5] := {27} tii[49,6] := {13} tii[49,7] := {24} tii[49,8] := {2} tii[49,9] := {20} tii[49,10] := {29} tii[49,11] := {33} tii[49,12] := {25} tii[49,13] := {31} tii[49,14] := {10} tii[49,15] := {23} tii[49,16] := {32} tii[49,17] := {4} tii[49,18] := {21} tii[49,19] := {30} tii[49,20] := {34} tii[49,21] := {3} tii[49,22] := {14} tii[49,23] := {5} tii[49,24] := {17} tii[49,25] := {7} tii[49,26] := {26} tii[49,27] := {11} tii[49,28] := {22} tii[49,29] := {12} tii[49,30] := {6} tii[49,31] := {18} tii[49,32] := {8} tii[49,33] := {28} tii[49,34] := {16} tii[49,35] := {9} cell#1 , |C| = 250 special orbit = [7, 3, 1, 1, 1, 1, 1, 1] special rep = [[1], [4, 1, 1, 1]] , dim = 160 cell rep = phi[[],[4, 2, 1, 1]]+phi[[1],[4, 1, 1, 1]] TII depth = 2 TII multiplicity polynomial = 90*X^2+70*X TII subcells: tii[39,1] := {124, 125} tii[39,2] := {108, 109} tii[39,3] := {48, 49} tii[39,4] := {161, 162} tii[39,5] := {149, 150} tii[39,6] := {185, 186} tii[39,7] := {73, 74} tii[39,8] := {163, 164} tii[39,9] := {187, 188} tii[39,10] := {50, 51} tii[39,11] := {143, 144} tii[39,12] := {85, 86} tii[39,13] := {199, 200} tii[39,14] := {189, 190} tii[39,15] := {218, 219} tii[39,16] := {114, 115} tii[39,17] := {201, 202} tii[39,18] := {240, 241} tii[39,19] := {222, 223} tii[39,20] := {71, 72} tii[39,21] := {183, 184} tii[39,22] := {214, 215} tii[39,23] := {203, 204} tii[39,24] := {110, 111} tii[39,25] := {238, 239} tii[39,26] := {52, 53} tii[39,27] := {216, 217} tii[39,28] := {179, 180} tii[39,29] := {87, 88} tii[39,30] := {130, 131} tii[39,31] := {2} tii[39,32] := {8} tii[39,33] := {81, 82} tii[39,34] := {46, 47} tii[39,35] := {0} tii[39,36] := {9} tii[39,37] := {13} tii[39,38] := {33} tii[39,39] := {147, 148} tii[39,40] := {75, 76} tii[39,41] := {126, 127} tii[39,42] := {7} tii[39,43] := {19} tii[39,44] := {22} tii[39,45] := {83, 84} tii[39,46] := {1} tii[39,47] := {10} tii[39,48] := {14} tii[39,49] := {34} tii[39,50] := {37} tii[39,51] := {68} tii[39,52] := {63} tii[39,53] := {220, 221} tii[39,54] := {32} tii[39,55] := {116, 117} tii[39,56] := {181, 182} tii[39,57] := {55} tii[39,58] := {59} tii[39,59] := {165, 166} tii[39,60] := {112, 113} tii[39,61] := {6} tii[39,62] := {18} tii[39,63] := {21} tii[39,64] := {57} tii[39,65] := {61} tii[39,66] := {209, 210} tii[39,67] := {96} tii[39,68] := {128, 129} tii[39,69] := {3} tii[39,70] := {11} tii[39,71] := {15} tii[39,72] := {35} tii[39,73] := {38} tii[39,74] := {193, 194} tii[39,75] := {69} tii[39,76] := {64} tii[39,77] := {66} tii[39,78] := {134, 135} tii[39,79] := {106} tii[39,80] := {140} tii[39,81] := {103} tii[39,82] := {62} tii[39,83] := {153, 154} tii[39,84] := {89} tii[39,85] := {92} tii[39,86] := {151, 152} tii[39,87] := {31} tii[39,88] := {54} tii[39,89] := {58} tii[39,90] := {91} tii[39,91] := {94} tii[39,92] := {234, 235} tii[39,93] := {139} tii[39,94] := {145, 146} tii[39,95] := {5} tii[39,96] := {17} tii[39,97] := {20} tii[39,98] := {56} tii[39,99] := {60} tii[39,100] := {230, 231} tii[39,101] := {244, 245} tii[39,102] := {95} tii[39,103] := {90} tii[39,104] := {93} tii[39,105] := {155, 156} tii[39,106] := {236, 237} tii[39,107] := {138} tii[39,108] := {248, 249} tii[39,109] := {167} tii[39,110] := {4} tii[39,111] := {12} tii[39,112] := {16} tii[39,113] := {36} tii[39,114] := {39} tii[39,115] := {246, 247} tii[39,116] := {70} tii[39,117] := {65} tii[39,118] := {67} tii[39,119] := {136, 137} tii[39,120] := {226, 227} tii[39,121] := {107} tii[39,122] := {242, 243} tii[39,123] := {141} tii[39,124] := {104} tii[39,125] := {105} tii[39,126] := {176, 177} tii[39,127] := {142} tii[39,128] := {207, 208} tii[39,129] := {178} tii[39,130] := {213} tii[39,131] := {23, 24} tii[39,132] := {172, 173} tii[39,133] := {44, 45} tii[39,134] := {132, 133} tii[39,135] := {25, 26} tii[39,136] := {97, 98} tii[39,137] := {228, 229} tii[39,138] := {79, 80} tii[39,139] := {211, 212} tii[39,140] := {157, 158} tii[39,141] := {42, 43} tii[39,142] := {232, 233} tii[39,143] := {122, 123} tii[39,144] := {174, 175} tii[39,145] := {27, 28} tii[39,146] := {205, 206} tii[39,147] := {99, 100} tii[39,148] := {168, 169} tii[39,149] := {118, 119} tii[39,150] := {197, 198} tii[39,151] := {77, 78} tii[39,152] := {159, 160} tii[39,153] := {195, 196} tii[39,154] := {40, 41} tii[39,155] := {224, 225} tii[39,156] := {120, 121} tii[39,157] := {191, 192} tii[39,158] := {29, 30} tii[39,159] := {101, 102} tii[39,160] := {170, 171} cell#2 , |C| = 336 special orbit = [5, 5, 1, 1, 1, 1, 1, 1] special rep = [[2], [3, 1, 1, 1]] , dim = 280 cell rep = phi[[],[3, 3, 1, 1]]+phi[[2],[3, 1, 1, 1]] TII depth = 5 TII multiplicity polynomial = 56*X^2+224*X TII subcells: tii[29,1] := {32, 213} tii[29,2] := {144} tii[29,3] := {57, 249} tii[29,4] := {80, 232} tii[29,5] := {186} tii[29,6] := {93, 276} tii[29,7] := {227} tii[29,8] := {59, 286} tii[29,9] := {258} tii[29,10] := {92, 279} tii[29,11] := {228} tii[29,12] := {122, 265} tii[29,13] := {135, 300} tii[29,14] := {137, 291} tii[29,15] := {262} tii[29,16] := {94, 305} tii[29,17] := {123, 308} tii[29,18] := {287} tii[29,19] := {180, 315} tii[29,20] := {290} tii[29,21] := {136, 319} tii[29,22] := {95, 327} tii[29,23] := {307} tii[29,24] := {320} tii[29,25] := {8} tii[29,26] := {35} tii[29,27] := {36} tii[29,28] := {10, 124} tii[29,29] := {68} tii[29,30] := {74} tii[29,31] := {21} tii[29,32] := {15, 168} tii[29,33] := {63} tii[29,34] := {64} tii[29,35] := {46} tii[29,36] := {47, 189} tii[29,37] := {82} tii[29,38] := {108} tii[29,39] := {85} tii[29,40] := {117} tii[29,41] := {99} tii[29,42] := {101} tii[29,43] := {25, 224} tii[29,44] := {66} tii[29,45] := {153} tii[29,46] := {71} tii[29,47] := {161} tii[29,48] := {198} tii[29,49] := {206} tii[29,50] := {248} tii[29,51] := {43} tii[29,52] := {98} tii[29,53] := {100} tii[29,54] := {33, 216} tii[29,55] := {96, 266} tii[29,56] := {79} tii[29,57] := {152} tii[29,58] := {126} tii[29,59] := {160} tii[29,60] := {129} tii[29,61] := {34, 259} tii[29,62] := {81, 289} tii[29,63] := {97} tii[29,64] := {141} tii[29,65] := {143} tii[29,66] := {151} tii[29,67] := {103} tii[29,68] := {197} tii[29,69] := {159} tii[29,70] := {111} tii[29,71] := {205} tii[29,72] := {127} tii[29,73] := {237} tii[29,74] := {130} tii[29,75] := {242} tii[29,76] := {178} tii[29,77] := {275} tii[29,78] := {48, 306} tii[29,79] := {182} tii[29,80] := {184} tii[29,81] := {235} tii[29,82] := {146} tii[29,83] := {240} tii[29,84] := {154} tii[29,85] := {104} tii[29,86] := {268} tii[29,87] := {112} tii[29,88] := {271} tii[29,89] := {29, 277} tii[29,90] := {163} tii[29,91] := {298} tii[29,92] := {292} tii[29,93] := {295} tii[29,94] := {222} tii[29,95] := {313} tii[29,96] := {322} tii[29,97] := {76} tii[29,98] := {140} tii[29,99] := {142} tii[29,100] := {58, 252} tii[29,101] := {121} tii[29,102] := {196} tii[29,103] := {171} tii[29,104] := {204} tii[29,105] := {174} tii[29,106] := {183} tii[29,107] := {185} tii[29,108] := {61, 288} tii[29,109] := {138} tii[29,110] := {147} tii[29,111] := {194} tii[29,112] := {236} tii[29,113] := {155} tii[29,114] := {202} tii[29,115] := {241} tii[29,116] := {172} tii[29,117] := {269} tii[29,118] := {175} tii[29,119] := {272} tii[29,120] := {220} tii[29,121] := {299} tii[29,122] := {60, 321} tii[29,123] := {181} tii[29,124] := {225} tii[29,125] := {226} tii[29,126] := {234} tii[29,127] := {267} tii[29,128] := {191} tii[29,129] := {239} tii[29,130] := {270} tii[29,131] := {199} tii[29,132] := {148} tii[29,133] := {193} tii[29,134] := {294} tii[29,135] := {156} tii[29,136] := {201} tii[29,137] := {297} tii[29,138] := {54, 301} tii[29,139] := {209} tii[29,140] := {245} tii[29,141] := {314} tii[29,142] := {173} tii[29,143] := {309} tii[29,144] := {176} tii[29,145] := {311} tii[29,146] := {78, 285} tii[29,147] := {255} tii[29,148] := {221} tii[29,149] := {325} tii[29,150] := {254} tii[29,151] := {328} tii[29,152] := {260} tii[29,153] := {261} tii[29,154] := {293} tii[29,155] := {233} tii[29,156] := {296} tii[29,157] := {238} tii[29,158] := {310} tii[29,159] := {192} tii[29,160] := {312} tii[29,161] := {200} tii[29,162] := {90, 316} tii[29,163] := {244} tii[29,164] := {326} tii[29,165] := {149} tii[29,166] := {323} tii[29,167] := {157} tii[29,168] := {324} tii[29,169] := {284} tii[29,170] := {55, 318} tii[29,171] := {210} tii[29,172] := {331} tii[29,173] := {28, 317} tii[29,174] := {230} tii[29,175] := {332} tii[29,176] := {329} tii[29,177] := {330} tii[29,178] := {303} tii[29,179] := {333} tii[29,180] := {282} tii[29,181] := {334} tii[29,182] := {335} tii[29,183] := {0} tii[29,184] := {11} tii[29,185] := {12} tii[29,186] := {24} tii[29,187] := {16} tii[29,188] := {49} tii[29,189] := {17} tii[29,190] := {51} tii[29,191] := {26} tii[29,192] := {27} tii[29,193] := {53} tii[29,194] := {62} tii[29,195] := {37} tii[29,196] := {106} tii[29,197] := {39} tii[29,198] := {114} tii[29,199] := {38} tii[29,200] := {83} tii[29,201] := {40} tii[29,202] := {86} tii[29,203] := {6, 132} tii[29,204] := {75} tii[29,205] := {133} tii[29,206] := {50} tii[29,207] := {52} tii[29,208] := {9, 214} tii[29,209] := {118} tii[29,210] := {89} tii[29,211] := {125} tii[29,212] := {139} tii[29,213] := {65} tii[29,214] := {195} tii[29,215] := {70} tii[29,216] := {203} tii[29,217] := {150} tii[29,218] := {69} tii[29,219] := {158} tii[29,220] := {73} tii[29,221] := {19, 177} tii[29,222] := {211} tii[29,223] := {120} tii[29,224] := {128} tii[29,225] := {67} tii[29,226] := {131} tii[29,227] := {72} tii[29,228] := {14, 250} tii[29,229] := {45, 257} tii[29,230] := {44, 212} tii[29,231] := {162} tii[29,232] := {119} tii[29,233] := {179} tii[29,234] := {5, 217} tii[29,235] := {218} tii[29,236] := {145} tii[29,237] := {84} tii[29,238] := {87} tii[29,239] := {23, 283} tii[29,240] := {207} tii[29,241] := {134} tii[29,242] := {7, 278} tii[29,243] := {170} tii[29,244] := {187} tii[29,245] := {215} tii[29,246] := {102} tii[29,247] := {110} tii[29,248] := {109} tii[29,249] := {116} tii[29,250] := {41, 219} tii[29,251] := {167} tii[29,252] := {107} tii[29,253] := {115} tii[29,254] := {30, 280} tii[29,255] := {208} tii[29,256] := {77, 246} tii[29,257] := {166} tii[29,258] := {18, 253} tii[29,259] := {190} tii[29,260] := {105} tii[29,261] := {113} tii[29,262] := {31, 304} tii[29,263] := {91, 274} tii[29,264] := {243} tii[29,265] := {164} tii[29,266] := {13, 302} tii[29,267] := {42, 264} tii[29,268] := {188} tii[29,269] := {229} tii[29,270] := {4, 281} tii[29,271] := {223} tii[29,272] := {273} tii[29,273] := {263} tii[29,274] := {256} tii[29,275] := {1, 88} tii[29,276] := {22, 165} tii[29,277] := {2, 169} tii[29,278] := {56, 247} tii[29,279] := {20, 231} tii[29,280] := {3, 251} cell#3 , |C| = 280 special orbit = [5, 3, 3, 1, 1, 1, 1, 1] special rep = [[1], [3, 2, 1, 1]] , dim = 280 cell rep = phi[[1],[3, 2, 1, 1]] TII depth = 4 TII multiplicity polynomial = 280*X TII subcells: tii[27,1] := {117} tii[27,2] := {92} tii[27,3] := {113} tii[27,4] := {158} tii[27,5] := {88} tii[27,6] := {169} tii[27,7] := {130} tii[27,8] := {194} tii[27,9] := {87} tii[27,10] := {168} tii[27,11] := {221} tii[27,12] := {197} tii[27,13] := {155} tii[27,14] := {195} tii[27,15] := {170} tii[27,16] := {127} tii[27,17] := {203} tii[27,18] := {191} tii[27,19] := {223} tii[27,20] := {126} tii[27,21] := {167} tii[27,22] := {228} tii[27,23] := {198} tii[27,24] := {202} tii[27,25] := {243} tii[27,26] := {200} tii[27,27] := {248} tii[27,28] := {225} tii[27,29] := {244} tii[27,30] := {166} tii[27,31] := {227} tii[27,32] := {259} tii[27,33] := {199} tii[27,34] := {269} tii[27,35] := {247} tii[27,36] := {262} tii[27,37] := {5} tii[27,38] := {3} tii[27,39] := {51} tii[27,40] := {76} tii[27,41] := {13} tii[27,42] := {81} tii[27,43] := {8} tii[27,44] := {56} tii[27,45] := {48} tii[27,46] := {15} tii[27,47] := {131} tii[27,48] := {37} tii[27,49] := {40} tii[27,50] := {34} tii[27,51] := {16} tii[27,52] := {157} tii[27,53] := {36} tii[27,54] := {39} tii[27,55] := {153} tii[27,56] := {26} tii[27,57] := {162} tii[27,58] := {78} tii[27,59] := {118} tii[27,60] := {125} tii[27,61] := {201} tii[27,62] := {17} tii[27,63] := {30} tii[27,64] := {62} tii[27,65] := {67} tii[27,66] := {57} tii[27,67] := {163} tii[27,68] := {193} tii[27,69] := {124} tii[27,70] := {226} tii[27,71] := {54} tii[27,72] := {32} tii[27,73] := {94} tii[27,74] := {61} tii[27,75] := {100} tii[27,76] := {66} tii[27,77] := {136} tii[27,78] := {142} tii[27,79] := {187} tii[27,80] := {123} tii[27,81] := {242} tii[27,82] := {53} tii[27,83] := {93} tii[27,84] := {99} tii[27,85] := {135} tii[27,86] := {141} tii[27,87] := {245} tii[27,88] := {186} tii[27,89] := {234} tii[27,90] := {47} tii[27,91] := {115} tii[27,92] := {159} tii[27,93] := {33} tii[27,94] := {52} tii[27,95] := {96} tii[27,96] := {102} tii[27,97] := {165} tii[27,98] := {89} tii[27,99] := {55} tii[27,100] := {222} tii[27,101] := {85} tii[27,102] := {95} tii[27,103] := {134} tii[27,104] := {101} tii[27,105] := {140} tii[27,106] := {176} tii[27,107] := {182} tii[27,108] := {217} tii[27,109] := {164} tii[27,110] := {258} tii[27,111] := {122} tii[27,112] := {84} tii[27,113] := {172} tii[27,114] := {133} tii[27,115] := {178} tii[27,116] := {139} tii[27,117] := {175} tii[27,118] := {207} tii[27,119] := {181} tii[27,120] := {211} tii[27,121] := {192} tii[27,122] := {261} tii[27,123] := {216} tii[27,124] := {238} tii[27,125] := {231} tii[27,126] := {233} tii[27,127] := {161} tii[27,128] := {268} tii[27,129] := {252} tii[27,130] := {255} tii[27,131] := {264} tii[27,132] := {121} tii[27,133] := {171} tii[27,134] := {177} tii[27,135] := {206} tii[27,136] := {210} tii[27,137] := {272} tii[27,138] := {237} tii[27,139] := {230} tii[27,140] := {232} tii[27,141] := {160} tii[27,142] := {267} tii[27,143] := {277} tii[27,144] := {254} tii[27,145] := {279} tii[27,146] := {263} tii[27,147] := {275} tii[27,148] := {278} tii[27,149] := {2} tii[27,150] := {27} tii[27,151] := {7} tii[27,152] := {18} tii[27,153] := {20} tii[27,154] := {9} tii[27,155] := {10} tii[27,156] := {24} tii[27,157] := {86} tii[27,158] := {31} tii[27,159] := {60} tii[27,160] := {65} tii[27,161] := {19} tii[27,162] := {97} tii[27,163] := {21} tii[27,164] := {103} tii[27,165] := {74} tii[27,166] := {44} tii[27,167] := {29} tii[27,168] := {150} tii[27,169] := {64} tii[27,170] := {69} tii[27,171] := {73} tii[27,172] := {196} tii[27,173] := {23} tii[27,174] := {112} tii[27,175] := {152} tii[27,176] := {83} tii[27,177] := {132} tii[27,178] := {138} tii[27,179] := {174} tii[27,180] := {38} tii[27,181] := {180} tii[27,182] := {41} tii[27,183] := {154} tii[27,184] := {50} tii[27,185] := {110} tii[27,186] := {215} tii[27,187] := {75} tii[27,188] := {204} tii[27,189] := {98} tii[27,190] := {208} tii[27,191] := {104} tii[27,192] := {224} tii[27,193] := {119} tii[27,194] := {114} tii[27,195] := {253} tii[27,196] := {109} tii[27,197] := {43} tii[27,198] := {235} tii[27,199] := {70} tii[27,200] := {147} tii[27,201] := {151} tii[27,202] := {249} tii[27,203] := {79} tii[27,204] := {219} tii[27,205] := {189} tii[27,206] := {173} tii[27,207] := {179} tii[27,208] := {82} tii[27,209] := {71} tii[27,210] := {260} tii[27,211] := {146} tii[27,212] := {214} tii[27,213] := {270} tii[27,214] := {229} tii[27,215] := {218} tii[27,216] := {58} tii[27,217] := {251} tii[27,218] := {63} tii[27,219] := {68} tii[27,220] := {80} tii[27,221] := {149} tii[27,222] := {111} tii[27,223] := {137} tii[27,224] := {143} tii[27,225] := {156} tii[27,226] := {148} tii[27,227] := {246} tii[27,228] := {105} tii[27,229] := {185} tii[27,230] := {72} tii[27,231] := {188} tii[27,232] := {116} tii[27,233] := {241} tii[27,234] := {220} tii[27,235] := {205} tii[27,236] := {209} tii[27,237] := {120} tii[27,238] := {271} tii[27,239] := {107} tii[27,240] := {145} tii[27,241] := {213} tii[27,242] := {184} tii[27,243] := {236} tii[27,244] := {276} tii[27,245] := {128} tii[27,246] := {257} tii[27,247] := {240} tii[27,248] := {91} tii[27,249] := {250} tii[27,250] := {274} tii[27,251] := {265} tii[27,252] := {144} tii[27,253] := {212} tii[27,254] := {129} tii[27,255] := {256} tii[27,256] := {273} tii[27,257] := {0} tii[27,258] := {45} tii[27,259] := {1} tii[27,260] := {14} tii[27,261] := {6} tii[27,262] := {77} tii[27,263] := {4} tii[27,264] := {42} tii[27,265] := {108} tii[27,266] := {49} tii[27,267] := {190} tii[27,268] := {12} tii[27,269] := {28} tii[27,270] := {106} tii[27,271] := {11} tii[27,272] := {183} tii[27,273] := {90} tii[27,274] := {239} tii[27,275] := {25} tii[27,276] := {35} tii[27,277] := {266} tii[27,278] := {22} tii[27,279] := {46} tii[27,280] := {59} cell#4 , |C| = 280 special orbit = [5, 3, 3, 1, 1, 1, 1, 1] special rep = [[1], [3, 2, 1, 1]] , dim = 280 cell rep = phi[[1],[3, 2, 1, 1]] TII depth = 4 TII multiplicity polynomial = 280*X TII subcells: tii[27,1] := {117} tii[27,2] := {92} tii[27,3] := {113} tii[27,4] := {158} tii[27,5] := {88} tii[27,6] := {169} tii[27,7] := {130} tii[27,8] := {194} tii[27,9] := {87} tii[27,10] := {168} tii[27,11] := {221} tii[27,12] := {197} tii[27,13] := {155} tii[27,14] := {195} tii[27,15] := {170} tii[27,16] := {127} tii[27,17] := {203} tii[27,18] := {191} tii[27,19] := {223} tii[27,20] := {126} tii[27,21] := {167} tii[27,22] := {228} tii[27,23] := {198} tii[27,24] := {202} tii[27,25] := {243} tii[27,26] := {200} tii[27,27] := {248} tii[27,28] := {225} tii[27,29] := {244} tii[27,30] := {166} tii[27,31] := {227} tii[27,32] := {259} tii[27,33] := {199} tii[27,34] := {269} tii[27,35] := {247} tii[27,36] := {262} tii[27,37] := {5} tii[27,38] := {3} tii[27,39] := {51} tii[27,40] := {76} tii[27,41] := {13} tii[27,42] := {81} tii[27,43] := {8} tii[27,44] := {56} tii[27,45] := {48} tii[27,46] := {15} tii[27,47] := {131} tii[27,48] := {37} tii[27,49] := {40} tii[27,50] := {34} tii[27,51] := {16} tii[27,52] := {157} tii[27,53] := {36} tii[27,54] := {39} tii[27,55] := {153} tii[27,56] := {26} tii[27,57] := {162} tii[27,58] := {78} tii[27,59] := {118} tii[27,60] := {125} tii[27,61] := {201} tii[27,62] := {17} tii[27,63] := {30} tii[27,64] := {62} tii[27,65] := {67} tii[27,66] := {57} tii[27,67] := {163} tii[27,68] := {193} tii[27,69] := {124} tii[27,70] := {226} tii[27,71] := {54} tii[27,72] := {32} tii[27,73] := {94} tii[27,74] := {61} tii[27,75] := {100} tii[27,76] := {66} tii[27,77] := {136} tii[27,78] := {142} tii[27,79] := {187} tii[27,80] := {123} tii[27,81] := {242} tii[27,82] := {53} tii[27,83] := {93} tii[27,84] := {99} tii[27,85] := {135} tii[27,86] := {141} tii[27,87] := {245} tii[27,88] := {186} tii[27,89] := {234} tii[27,90] := {47} tii[27,91] := {115} tii[27,92] := {159} tii[27,93] := {33} tii[27,94] := {52} tii[27,95] := {96} tii[27,96] := {102} tii[27,97] := {165} tii[27,98] := {89} tii[27,99] := {55} tii[27,100] := {222} tii[27,101] := {85} tii[27,102] := {95} tii[27,103] := {134} tii[27,104] := {101} tii[27,105] := {140} tii[27,106] := {176} tii[27,107] := {182} tii[27,108] := {217} tii[27,109] := {164} tii[27,110] := {258} tii[27,111] := {122} tii[27,112] := {84} tii[27,113] := {172} tii[27,114] := {133} tii[27,115] := {178} tii[27,116] := {139} tii[27,117] := {175} tii[27,118] := {207} tii[27,119] := {181} tii[27,120] := {211} tii[27,121] := {192} tii[27,122] := {261} tii[27,123] := {216} tii[27,124] := {238} tii[27,125] := {231} tii[27,126] := {233} tii[27,127] := {161} tii[27,128] := {268} tii[27,129] := {252} tii[27,130] := {255} tii[27,131] := {264} tii[27,132] := {121} tii[27,133] := {171} tii[27,134] := {177} tii[27,135] := {206} tii[27,136] := {210} tii[27,137] := {272} tii[27,138] := {237} tii[27,139] := {230} tii[27,140] := {232} tii[27,141] := {160} tii[27,142] := {267} tii[27,143] := {277} tii[27,144] := {254} tii[27,145] := {279} tii[27,146] := {263} tii[27,147] := {275} tii[27,148] := {278} tii[27,149] := {2} tii[27,150] := {27} tii[27,151] := {7} tii[27,152] := {18} tii[27,153] := {20} tii[27,154] := {9} tii[27,155] := {10} tii[27,156] := {24} tii[27,157] := {86} tii[27,158] := {31} tii[27,159] := {60} tii[27,160] := {65} tii[27,161] := {19} tii[27,162] := {97} tii[27,163] := {21} tii[27,164] := {103} tii[27,165] := {74} tii[27,166] := {44} tii[27,167] := {29} tii[27,168] := {150} tii[27,169] := {64} tii[27,170] := {69} tii[27,171] := {73} tii[27,172] := {196} tii[27,173] := {23} tii[27,174] := {112} tii[27,175] := {152} tii[27,176] := {83} tii[27,177] := {132} tii[27,178] := {138} tii[27,179] := {174} tii[27,180] := {38} tii[27,181] := {180} tii[27,182] := {41} tii[27,183] := {154} tii[27,184] := {50} tii[27,185] := {110} tii[27,186] := {215} tii[27,187] := {75} tii[27,188] := {204} tii[27,189] := {98} tii[27,190] := {208} tii[27,191] := {104} tii[27,192] := {224} tii[27,193] := {119} tii[27,194] := {114} tii[27,195] := {253} tii[27,196] := {109} tii[27,197] := {43} tii[27,198] := {235} tii[27,199] := {70} tii[27,200] := {147} tii[27,201] := {151} tii[27,202] := {249} tii[27,203] := {79} tii[27,204] := {219} tii[27,205] := {189} tii[27,206] := {173} tii[27,207] := {179} tii[27,208] := {82} tii[27,209] := {71} tii[27,210] := {260} tii[27,211] := {146} tii[27,212] := {214} tii[27,213] := {270} tii[27,214] := {229} tii[27,215] := {218} tii[27,216] := {58} tii[27,217] := {251} tii[27,218] := {63} tii[27,219] := {68} tii[27,220] := {80} tii[27,221] := {149} tii[27,222] := {111} tii[27,223] := {137} tii[27,224] := {143} tii[27,225] := {156} tii[27,226] := {148} tii[27,227] := {246} tii[27,228] := {105} tii[27,229] := {185} tii[27,230] := {72} tii[27,231] := {188} tii[27,232] := {116} tii[27,233] := {241} tii[27,234] := {220} tii[27,235] := {205} tii[27,236] := {209} tii[27,237] := {120} tii[27,238] := {271} tii[27,239] := {107} tii[27,240] := {145} tii[27,241] := {213} tii[27,242] := {184} tii[27,243] := {236} tii[27,244] := {276} tii[27,245] := {128} tii[27,246] := {257} tii[27,247] := {240} tii[27,248] := {91} tii[27,249] := {250} tii[27,250] := {274} tii[27,251] := {265} tii[27,252] := {144} tii[27,253] := {212} tii[27,254] := {129} tii[27,255] := {256} tii[27,256] := {273} tii[27,257] := {0} tii[27,258] := {45} tii[27,259] := {1} tii[27,260] := {14} tii[27,261] := {6} tii[27,262] := {77} tii[27,263] := {4} tii[27,264] := {42} tii[27,265] := {108} tii[27,266] := {49} tii[27,267] := {190} tii[27,268] := {12} tii[27,269] := {28} tii[27,270] := {106} tii[27,271] := {11} tii[27,272] := {183} tii[27,273] := {90} tii[27,274] := {239} tii[27,275] := {25} tii[27,276] := {35} tii[27,277] := {266} tii[27,278] := {22} tii[27,279] := {46} tii[27,280] := {59} cell#5 , |C| = 364 special orbit = [3, 3, 3, 3, 1, 1, 1, 1] special rep = [[1, 1], [2, 2, 1, 1]] , dim = 252 cell rep = phi[[1],[2, 2, 2, 1]]+phi[[1, 1],[2, 2, 1, 1]] TII depth = 3 TII multiplicity polynomial = 112*X^2+140*X TII subcells: tii[12,1] := {232, 233} tii[12,2] := {245, 246} tii[12,3] := {284, 285} tii[12,4] := {321, 324} tii[12,5] := {295, 296} tii[12,6] := {322, 323} tii[12,7] := {345, 346} tii[12,8] := {331, 332} tii[12,9] := {351, 352} tii[12,10] := {24} tii[12,11] := {40} tii[12,12] := {182, 183} tii[12,13] := {50, 51} tii[12,14] := {144, 145} tii[12,15] := {64} tii[12,16] := {81} tii[12,17] := {86} tii[12,18] := {79, 80} tii[12,19] := {279, 282} tii[12,20] := {280, 281} tii[12,21] := {65} tii[12,22] := {193, 194} tii[12,23] := {319, 320} tii[12,24] := {231, 234} tii[12,25] := {115, 116} tii[12,26] := {97} tii[12,27] := {146, 147} tii[12,28] := {119} tii[12,29] := {152, 153} tii[12,30] := {124} tii[12,31] := {123} tii[12,32] := {128} tii[12,33] := {293, 294} tii[12,34] := {134} tii[12,35] := {166} tii[12,36] := {171} tii[12,37] := {219} tii[12,38] := {224} tii[12,39] := {276} tii[12,40] := {117, 118} tii[12,41] := {98} tii[12,42] := {283, 286} tii[12,43] := {135} tii[12,44] := {247, 248} tii[12,45] := {164, 165} tii[12,46] := {197, 198} tii[12,47] := {167} tii[12,48] := {203, 204} tii[12,49] := {172} tii[12,50] := {170} tii[12,51] := {175} tii[12,52] := {329, 330} tii[12,53] := {215, 216} tii[12,54] := {180} tii[12,55] := {249, 250} tii[12,56] := {217} tii[12,57] := {255, 256} tii[12,58] := {222} tii[12,59] := {221} tii[12,60] := {297, 298} tii[12,61] := {270} tii[12,62] := {226} tii[12,63] := {299, 300} tii[12,64] := {274} tii[12,65] := {335, 336} tii[12,66] := {318} tii[12,67] := {269} tii[12,68] := {273} tii[12,69] := {359, 360} tii[12,70] := {317} tii[12,71] := {230} tii[12,72] := {267} tii[12,73] := {271} tii[12,74] := {313} tii[12,75] := {315} tii[12,76] := {344} tii[12,77] := {341} tii[12,78] := {342} tii[12,79] := {361, 362} tii[12,80] := {358} tii[12,81] := {363} tii[12,82] := {1} tii[12,83] := {28, 29} tii[12,84] := {2} tii[12,85] := {6} tii[12,86] := {7} tii[12,87] := {32} tii[12,88] := {35} tii[12,89] := {5} tii[12,90] := {181, 184} tii[12,91] := {77, 78} tii[12,92] := {14} tii[12,93] := {103, 104} tii[12,94] := {15} tii[12,95] := {107, 108} tii[12,96] := {54} tii[12,97] := {17} tii[12,98] := {85} tii[12,99] := {71, 72} tii[12,100] := {57} tii[12,101] := {18} tii[12,102] := {90} tii[12,103] := {73, 74} tii[12,104] := {38} tii[12,105] := {39} tii[12,106] := {100, 101} tii[12,107] := {121} tii[12,108] := {126} tii[12,109] := {178} tii[12,110] := {111, 112} tii[12,111] := {162, 163} tii[12,112] := {13} tii[12,113] := {195, 196} tii[12,114] := {25} tii[12,115] := {201, 202} tii[12,116] := {26} tii[12,117] := {105, 106} tii[12,118] := {84} tii[12,119] := {169} tii[12,120] := {251, 252} tii[12,121] := {30} tii[12,122] := {109, 110} tii[12,123] := {89} tii[12,124] := {174} tii[12,125] := {257, 258} tii[12,126] := {33} tii[12,127] := {141, 142} tii[12,128] := {303, 304} tii[12,129] := {60} tii[12,130] := {62} tii[12,131] := {218} tii[12,132] := {53} tii[12,133] := {168} tii[12,134] := {199, 200} tii[12,135] := {223} tii[12,136] := {56} tii[12,137] := {173} tii[12,138] := {205, 206} tii[12,139] := {347, 348} tii[12,140] := {186, 187} tii[12,141] := {94} tii[12,142] := {96} tii[12,143] := {227} tii[12,144] := {275} tii[12,145] := {185, 188} tii[12,146] := {158, 159} tii[12,147] := {263, 264} tii[12,148] := {291, 292} tii[12,149] := {179} tii[12,150] := {268} tii[12,151] := {272} tii[12,152] := {333, 334} tii[12,153] := {207, 208} tii[12,154] := {316} tii[12,155] := {339} tii[12,156] := {307, 308} tii[12,157] := {23} tii[12,158] := {41} tii[12,159] := {42} tii[12,160] := {150, 151} tii[12,161] := {122} tii[12,162] := {52} tii[12,163] := {156, 157} tii[12,164] := {127} tii[12,165] := {55} tii[12,166] := {190, 191} tii[12,167] := {93} tii[12,168] := {95} tii[12,169] := {253, 254} tii[12,170] := {83} tii[12,171] := {220} tii[12,172] := {259, 260} tii[12,173] := {88} tii[12,174] := {225} tii[12,175] := {240, 241} tii[12,176] := {239, 242} tii[12,177] := {130} tii[12,178] := {132} tii[12,179] := {305, 306} tii[12,180] := {277} tii[12,181] := {209, 210} tii[12,182] := {327, 328} tii[12,183] := {229} tii[12,184] := {312} tii[12,185] := {120} tii[12,186] := {314} tii[12,187] := {125} tii[12,188] := {353, 354} tii[12,189] := {287, 290} tii[12,190] := {288, 289} tii[12,191] := {261, 262} tii[12,192] := {176} tii[12,193] := {177} tii[12,194] := {343} tii[12,195] := {357} tii[12,196] := {349, 350} tii[12,197] := {337, 338} tii[12,198] := {278} tii[12,199] := {340} tii[12,200] := {301, 302} tii[12,201] := {355, 356} tii[12,202] := {3} tii[12,203] := {4} tii[12,204] := {8} tii[12,205] := {9} tii[12,206] := {44, 45} tii[12,207] := {10} tii[12,208] := {46, 47} tii[12,209] := {21} tii[12,210] := {22} tii[12,211] := {16} tii[12,212] := {68, 69} tii[12,213] := {19, 20} tii[12,214] := {48, 49} tii[12,215] := {31} tii[12,216] := {148, 149} tii[12,217] := {34} tii[12,218] := {154, 155} tii[12,219] := {27} tii[12,220] := {137, 138} tii[12,221] := {36, 37} tii[12,222] := {136, 139} tii[12,223] := {61} tii[12,224] := {63} tii[12,225] := {211, 212} tii[12,226] := {243, 244} tii[12,227] := {133} tii[12,228] := {75, 76} tii[12,229] := {99, 102} tii[12,230] := {213, 214} tii[12,231] := {82} tii[12,232] := {87} tii[12,233] := {58, 59} tii[12,234] := {235, 238} tii[12,235] := {236, 237} tii[12,236] := {129} tii[12,237] := {131} tii[12,238] := {43} tii[12,239] := {325, 326} tii[12,240] := {140, 143} tii[12,241] := {228} tii[12,242] := {113, 114} tii[12,243] := {311} tii[12,244] := {265, 266} tii[12,245] := {91, 92} tii[12,246] := {66} tii[12,247] := {189, 192} tii[12,248] := {160, 161} tii[12,249] := {309, 310} tii[12,250] := {0} tii[12,251] := {11, 12} tii[12,252] := {67, 70} cell#6 , |C| = 35 special orbit = [7, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[], [4, 1, 1, 1, 1]] , dim = 35 cell rep = phi[[],[4, 1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 35*X TII subcells: tii[38,1] := {33} tii[38,2] := {26} tii[38,3] := {30} tii[38,4] := {16} tii[38,5] := {24} tii[38,6] := {32} tii[38,7] := {5} tii[38,8] := {15} tii[38,9] := {25} tii[38,10] := {31} tii[38,11] := {0} tii[38,12] := {12} tii[38,13] := {21} tii[38,14] := {29} tii[38,15] := {34} tii[38,16] := {27} tii[38,17] := {17} tii[38,18] := {22} tii[38,19] := {18} tii[38,20] := {6} tii[38,21] := {14} tii[38,22] := {7} tii[38,23] := {23} tii[38,24] := {13} tii[38,25] := {8} tii[38,26] := {1} tii[38,27] := {11} tii[38,28] := {2} tii[38,29] := {20} tii[38,30] := {10} tii[38,31] := {3} tii[38,32] := {28} tii[38,33] := {19} tii[38,34] := {9} tii[38,35] := {4} cell#7 , |C| = 35 special orbit = [7, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[], [4, 1, 1, 1, 1]] , dim = 35 cell rep = phi[[],[4, 1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 35*X TII subcells: tii[38,1] := {4} tii[38,2] := {14} tii[38,3] := {5} tii[38,4] := {23} tii[38,5] := {12} tii[38,6] := {6} tii[38,7] := {31} tii[38,8] := {21} tii[38,9] := {11} tii[38,10] := {7} tii[38,11] := {22} tii[38,12] := {13} tii[38,13] := {3} tii[38,14] := {1} tii[38,15] := {0} tii[38,16] := {18} tii[38,17] := {26} tii[38,18] := {19} tii[38,19] := {29} tii[38,20] := {33} tii[38,21] := {25} tii[38,22] := {32} tii[38,23] := {20} tii[38,24] := {30} tii[38,25] := {34} tii[38,26] := {27} tii[38,27] := {15} tii[38,28] := {24} tii[38,29] := {10} tii[38,30] := {17} tii[38,31] := {28} tii[38,32] := {2} tii[38,33] := {9} tii[38,34] := {16} tii[38,35] := {8} cell#8 , |C| = 35 special orbit = [7, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[], [4, 1, 1, 1, 1]] , dim = 35 cell rep = phi[[],[4, 1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 35*X TII subcells: tii[38,1] := {4} tii[38,2] := {14} tii[38,3] := {5} tii[38,4] := {23} tii[38,5] := {12} tii[38,6] := {6} tii[38,7] := {31} tii[38,8] := {21} tii[38,9] := {11} tii[38,10] := {7} tii[38,11] := {22} tii[38,12] := {13} tii[38,13] := {3} tii[38,14] := {1} tii[38,15] := {0} tii[38,16] := {18} tii[38,17] := {26} tii[38,18] := {19} tii[38,19] := {29} tii[38,20] := {33} tii[38,21] := {25} tii[38,22] := {32} tii[38,23] := {20} tii[38,24] := {30} tii[38,25] := {34} tii[38,26] := {27} tii[38,27] := {15} tii[38,28] := {24} tii[38,29] := {10} tii[38,30] := {17} tii[38,31] := {28} tii[38,32] := {2} tii[38,33] := {9} tii[38,34] := {16} tii[38,35] := {8} cell#9 , |C| = 184 special orbit = [5, 3, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[1], [3, 1, 1, 1, 1]] , dim = 120 cell rep = phi[[],[3, 2, 1, 1, 1]]+phi[[1],[3, 1, 1, 1, 1]] TII depth = 3 TII multiplicity polynomial = 64*X^2+56*X TII subcells: tii[24,1] := {123, 124} tii[24,2] := {73, 74} tii[24,3] := {145, 146} tii[24,4] := {44, 45} tii[24,5] := {121, 122} tii[24,6] := {71, 72} tii[24,7] := {164, 165} tii[24,8] := {23, 24} tii[24,9] := {143, 144} tii[24,10] := {119, 120} tii[24,11] := {42, 43} tii[24,12] := {69, 70} tii[24,13] := {176, 177} tii[24,14] := {13, 14} tii[24,15] := {162, 163} tii[24,16] := {27, 28} tii[24,17] := {141, 142} tii[24,18] := {117, 118} tii[24,19] := {50, 51} tii[24,20] := {81, 82} tii[24,21] := {64} tii[24,22] := {99, 100} tii[24,23] := {38} tii[24,24] := {52} tii[24,25] := {56} tii[24,26] := {97, 98} tii[24,27] := {19} tii[24,28] := {29} tii[24,29] := {32} tii[24,30] := {55} tii[24,31] := {59} tii[24,32] := {90} tii[24,33] := {8} tii[24,34] := {95, 96} tii[24,35] := {15} tii[24,36] := {17} tii[24,37] := {31} tii[24,38] := {34} tii[24,39] := {157, 158} tii[24,40] := {63} tii[24,41] := {54} tii[24,42] := {58} tii[24,43] := {105, 106} tii[24,44] := {89} tii[24,45] := {112} tii[24,46] := {93, 94} tii[24,47] := {1} tii[24,48] := {4} tii[24,49] := {5} tii[24,50] := {16} tii[24,51] := {18} tii[24,52] := {174, 175} tii[24,53] := {35} tii[24,54] := {30} tii[24,55] := {33} tii[24,56] := {77, 78} tii[24,57] := {155, 156} tii[24,58] := {62} tii[24,59] := {170, 171} tii[24,60] := {83} tii[24,61] := {53} tii[24,62] := {57} tii[24,63] := {103, 104} tii[24,64] := {88} tii[24,65] := {125, 126} tii[24,66] := {111} tii[24,67] := {135} tii[24,68] := {0} tii[24,69] := {2} tii[24,70] := {3} tii[24,71] := {9} tii[24,72] := {10} tii[24,73] := {182, 183} tii[24,74] := {22} tii[24,75] := {20} tii[24,76] := {21} tii[24,77] := {60, 61} tii[24,78] := {172, 173} tii[24,79] := {41} tii[24,80] := {180, 181} tii[24,81] := {65} tii[24,82] := {39} tii[24,83] := {40} tii[24,84] := {153, 154} tii[24,85] := {86, 87} tii[24,86] := {68} tii[24,87] := {109, 110} tii[24,88] := {168, 169} tii[24,89] := {91} tii[24,90] := {178, 179} tii[24,91] := {115} tii[24,92] := {66} tii[24,93] := {67} tii[24,94] := {113, 114} tii[24,95] := {92} tii[24,96] := {138, 139} tii[24,97] := {116} tii[24,98] := {159, 160} tii[24,99] := {140} tii[24,100] := {161} tii[24,101] := {75, 76} tii[24,102] := {133, 134} tii[24,103] := {46, 47} tii[24,104] := {107, 108} tii[24,105] := {131, 132} tii[24,106] := {25, 26} tii[24,107] := {151, 152} tii[24,108] := {79, 80} tii[24,109] := {127, 128} tii[24,110] := {129, 130} tii[24,111] := {11, 12} tii[24,112] := {149, 150} tii[24,113] := {48, 49} tii[24,114] := {166, 167} tii[24,115] := {101, 102} tii[24,116] := {147, 148} tii[24,117] := {6, 7} tii[24,118] := {36, 37} tii[24,119] := {84, 85} tii[24,120] := {136, 137} cell#10 , |C| = 184 special orbit = [5, 3, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[1], [3, 1, 1, 1, 1]] , dim = 120 cell rep = phi[[],[3, 2, 1, 1, 1]]+phi[[1],[3, 1, 1, 1, 1]] TII depth = 3 TII multiplicity polynomial = 64*X^2+56*X TII subcells: tii[24,1] := {47, 130} tii[24,2] := {53, 123} tii[24,3] := {61, 144} tii[24,4] := {65, 141} tii[24,5] := {48, 153} tii[24,6] := {54, 155} tii[24,7] := {80, 157} tii[24,8] := {82, 156} tii[24,9] := {62, 165} tii[24,10] := {49, 179} tii[24,11] := {64, 168} tii[24,12] := {55, 178} tii[24,13] := {100, 169} tii[24,14] := {66, 140} tii[24,15] := {81, 176} tii[24,16] := {51, 154} tii[24,17] := {63, 182} tii[24,18] := {50, 183} tii[24,19] := {39, 166} tii[24,20] := {24, 177} tii[24,21] := {35} tii[24,22] := {31, 115} tii[24,23] := {52} tii[24,24] := {71} tii[24,25] := {75} tii[24,26] := {34, 138} tii[24,27] := {67} tii[24,28] := {88} tii[24,29] := {92} tii[24,30] := {72} tii[24,31] := {76} tii[24,32] := {97} tii[24,33] := {84} tii[24,34] := {33, 167} tii[24,35] := {105} tii[24,36] := {108} tii[24,37] := {86} tii[24,38] := {90} tii[24,39] := {27, 145} tii[24,40] := {110} tii[24,41] := {73} tii[24,42] := {77} tii[24,43] := {37, 136} tii[24,44] := {98} tii[24,45] := {117} tii[24,46] := {32, 181} tii[24,47] := {101} tii[24,48] := {124} tii[24,49] := {125} tii[24,50] := {103} tii[24,51] := {106} tii[24,52] := {42, 158} tii[24,53] := {126} tii[24,54] := {85} tii[24,55] := {89} tii[24,56] := {44, 152} tii[24,57] := {28, 162} tii[24,58] := {109} tii[24,59] := {14, 159} tii[24,60] := {120} tii[24,61] := {74} tii[24,62] := {78} tii[24,63] := {38, 164} tii[24,64] := {99} tii[24,65] := {22, 149} tii[24,66] := {118} tii[24,67] := {133} tii[24,68] := {83} tii[24,69] := {104} tii[24,70] := {107} tii[24,71] := {87} tii[24,72] := {91} tii[24,73] := {59, 170} tii[24,74] := {111} tii[24,75] := {68} tii[24,76] := {69} tii[24,77] := {30, 137} tii[24,78] := {43, 174} tii[24,79] := {93} tii[24,80] := {25, 171} tii[24,81] := {102} tii[24,82] := {56} tii[24,83] := {57} tii[24,84] := {29, 180} tii[24,85] := {23, 151} tii[24,86] := {79} tii[24,87] := {12, 134} tii[24,88] := {15, 173} tii[24,89] := {95} tii[24,90] := {7, 172} tii[24,91] := {114} tii[24,92] := {40} tii[24,93] := {41} tii[24,94] := {13, 163} tii[24,95] := {58} tii[24,96] := {6, 148} tii[24,97] := {70} tii[24,98] := {2, 143} tii[24,99] := {94} tii[24,100] := {113} tii[24,101] := {20, 96} tii[24,102] := {17, 131} tii[24,103] := {36, 112} tii[24,104] := {10, 116} tii[24,105] := {19, 150} tii[24,106] := {45, 128} tii[24,107] := {8, 146} tii[24,108] := {21, 121} tii[24,109] := {4, 132} tii[24,110] := {18, 175} tii[24,111] := {60, 142} tii[24,112] := {9, 161} tii[24,113] := {26, 139} tii[24,114] := {3, 160} tii[24,115] := {11, 135} tii[24,116] := {1, 147} tii[24,117] := {46, 127} tii[24,118] := {16, 122} tii[24,119] := {5, 119} tii[24,120] := {0, 129} cell#11 , |C| = 140 special orbit = [4, 4, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[2], [2, 1, 1, 1, 1]] , dim = 140 cell rep = phi[[2],[2, 1, 1, 1, 1]] TII depth = 6 TII multiplicity polynomial = 140*X TII subcells: tii[15,1] := {45} tii[15,2] := {64} tii[15,3] := {79} tii[15,4] := {82} tii[15,5] := {94} tii[15,6] := {105} tii[15,7] := {95} tii[15,8] := {106} tii[15,9] := {114} tii[15,10] := {122} tii[15,11] := {10} tii[15,12] := {11} tii[15,13] := {32} tii[15,14] := {36} tii[15,15] := {24} tii[15,16] := {25} tii[15,17] := {12} tii[15,18] := {51} tii[15,19] := {16} tii[15,20] := {54} tii[15,21] := {69} tii[15,22] := {72} tii[15,23] := {89} tii[15,24] := {43} tii[15,25] := {44} tii[15,26] := {29} tii[15,27] := {68} tii[15,28] := {33} tii[15,29] := {71} tii[15,30] := {13} tii[15,31] := {85} tii[15,32] := {17} tii[15,33] := {87} tii[15,34] := {38} tii[15,35] := {102} tii[15,36] := {96} tii[15,37] := {99} tii[15,38] := {59} tii[15,39] := {111} tii[15,40] := {115} tii[15,41] := {62} tii[15,42] := {63} tii[15,43] := {49} tii[15,44] := {84} tii[15,45] := {52} tii[15,46] := {86} tii[15,47] := {30} tii[15,48] := {98} tii[15,49] := {34} tii[15,50] := {101} tii[15,51] := {56} tii[15,52] := {112} tii[15,53] := {14} tii[15,54] := {107} tii[15,55] := {18} tii[15,56] := {109} tii[15,57] := {77} tii[15,58] := {39} tii[15,59] := {120} tii[15,60] := {47} tii[15,61] := {123} tii[15,62] := {116} tii[15,63] := {118} tii[15,64] := {92} tii[15,65] := {126} tii[15,66] := {75} tii[15,67] := {128} tii[15,68] := {133} tii[15,69] := {80} tii[15,70] := {81} tii[15,71] := {67} tii[15,72] := {97} tii[15,73] := {70} tii[15,74] := {100} tii[15,75] := {50} tii[15,76] := {108} tii[15,77] := {53} tii[15,78] := {110} tii[15,79] := {74} tii[15,80] := {121} tii[15,81] := {31} tii[15,82] := {117} tii[15,83] := {35} tii[15,84] := {119} tii[15,85] := {93} tii[15,86] := {57} tii[15,87] := {127} tii[15,88] := {66} tii[15,89] := {129} tii[15,90] := {15} tii[15,91] := {124} tii[15,92] := {19} tii[15,93] := {125} tii[15,94] := {104} tii[15,95] := {40} tii[15,96] := {132} tii[15,97] := {91} tii[15,98] := {48} tii[15,99] := {134} tii[15,100] := {61} tii[15,101] := {136} tii[15,102] := {130} tii[15,103] := {131} tii[15,104] := {113} tii[15,105] := {135} tii[15,106] := {103} tii[15,107] := {137} tii[15,108] := {90} tii[15,109] := {138} tii[15,110] := {139} tii[15,111] := {0} tii[15,112] := {5} tii[15,113] := {4} tii[15,114] := {9} tii[15,115] := {23} tii[15,116] := {3} tii[15,117] := {8} tii[15,118] := {37} tii[15,119] := {22} tii[15,120] := {28} tii[15,121] := {2} tii[15,122] := {7} tii[15,123] := {55} tii[15,124] := {21} tii[15,125] := {27} tii[15,126] := {46} tii[15,127] := {42} tii[15,128] := {1} tii[15,129] := {6} tii[15,130] := {73} tii[15,131] := {20} tii[15,132] := {26} tii[15,133] := {65} tii[15,134] := {41} tii[15,135] := {60} tii[15,136] := {58} tii[15,137] := {88} tii[15,138] := {83} tii[15,139] := {78} tii[15,140] := {76} cell#12 , |C| = 21 special orbit = [5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[], [3, 1, 1, 1, 1, 1]] , dim = 21 cell rep = phi[[],[3, 1, 1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 21*X TII subcells: tii[23,1] := {16} tii[23,2] := {11} tii[23,3] := {6} tii[23,4] := {3} tii[23,5] := {1} tii[23,6] := {0} tii[23,7] := {19} tii[23,8] := {13} tii[23,9] := {18} tii[23,10] := {7} tii[23,11] := {12} tii[23,12] := {17} tii[23,13] := {5} tii[23,14] := {10} tii[23,15] := {15} tii[23,16] := {20} tii[23,17] := {2} tii[23,18] := {4} tii[23,19] := {9} tii[23,20] := {14} tii[23,21] := {8} cell#13 , |C| = 21 special orbit = [5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[], [3, 1, 1, 1, 1, 1]] , dim = 21 cell rep = phi[[],[3, 1, 1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 21*X TII subcells: tii[23,1] := {16} tii[23,2] := {11} tii[23,3] := {6} tii[23,4] := {3} tii[23,5] := {1} tii[23,6] := {0} tii[23,7] := {19} tii[23,8] := {13} tii[23,9] := {18} tii[23,10] := {7} tii[23,11] := {12} tii[23,12] := {17} tii[23,13] := {5} tii[23,14] := {10} tii[23,15] := {15} tii[23,16] := {20} tii[23,17] := {2} tii[23,18] := {4} tii[23,19] := {9} tii[23,20] := {14} tii[23,21] := {8} cell#14 , |C| = 68 special orbit = [3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[1], [2, 1, 1, 1, 1, 1]] , dim = 48 cell rep = phi[[],[2, 2, 1, 1, 1, 1]]+phi[[1],[2, 1, 1, 1, 1, 1]] TII depth = 3 TII multiplicity polynomial = 20*X^2+28*X TII subcells: tii[8,1] := {28, 56} tii[8,2] := {23, 61} tii[8,3] := {18, 64} tii[8,4] := {14, 66} tii[8,5] := {11, 67} tii[8,6] := {34} tii[8,7] := {43} tii[8,8] := {44} tii[8,9] := {36} tii[8,10] := {37} tii[8,11] := {45} tii[8,12] := {29} tii[8,13] := {30} tii[8,14] := {17, 55} tii[8,15] := {38} tii[8,16] := {42} tii[8,17] := {24} tii[8,18] := {25} tii[8,19] := {13, 60} tii[8,20] := {31} tii[8,21] := {9, 54} tii[8,22] := {35} tii[8,23] := {41} tii[8,24] := {19} tii[8,25] := {20} tii[8,26] := {10, 63} tii[8,27] := {27} tii[8,28] := {7, 59} tii[8,29] := {33} tii[8,30] := {4, 53} tii[8,31] := {40} tii[8,32] := {47} tii[8,33] := {15} tii[8,34] := {16} tii[8,35] := {8, 65} tii[8,36] := {21} tii[8,37] := {5, 62} tii[8,38] := {26} tii[8,39] := {3, 58} tii[8,40] := {32} tii[8,41] := {1, 57} tii[8,42] := {39} tii[8,43] := {46} tii[8,44] := {22, 51} tii[8,45] := {12, 50} tii[8,46] := {6, 49} tii[8,47] := {2, 48} tii[8,48] := {0, 52} cell#15 , |C| = 184 special orbit = [5, 3, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[1], [3, 1, 1, 1, 1]] , dim = 120 cell rep = phi[[],[3, 2, 1, 1, 1]]+phi[[1],[3, 1, 1, 1, 1]] TII depth = 3 TII multiplicity polynomial = 64*X^2+56*X TII subcells: tii[24,1] := {29, 59} tii[24,2] := {20, 72} tii[24,3] := {56, 86} tii[24,4] := {43, 95} tii[24,5] := {66, 108} tii[24,6] := {70, 112} tii[24,7] := {82, 109} tii[24,8] := {71, 115} tii[24,9] := {89, 127} tii[24,10] := {114, 143} tii[24,11] := {93, 131} tii[24,12] := {113, 147} tii[24,13] := {53, 128} tii[24,14] := {42, 94} tii[24,15] := {65, 144} tii[24,16] := {69, 111} tii[24,17] := {91, 157} tii[24,18] := {68, 168} tii[24,19] := {90, 130} tii[24,20] := {67, 142} tii[24,21] := {0} tii[24,22] := {13, 32} tii[24,23] := {3} tii[24,24] := {8} tii[24,25] := {9} tii[24,26] := {41, 85} tii[24,27] := {7} tii[24,28] := {23} tii[24,29] := {24} tii[24,30] := {47} tii[24,31] := {50} tii[24,32] := {81} tii[24,33] := {19} tii[24,34] := {92, 126} tii[24,35] := {46} tii[24,36] := {49} tii[24,37] := {75} tii[24,38] := {78} tii[24,39] := {57, 129} tii[24,40] := {106} tii[24,41] := {98} tii[24,42] := {102} tii[24,43] := {37, 138} tii[24,44] := {122} tii[24,45] := {134} tii[24,46] := {40, 156} tii[24,47] := {39} tii[24,48] := {73} tii[24,49] := {76} tii[24,50] := {99} tii[24,51] := {103} tii[24,52] := {83, 146} tii[24,53] := {123} tii[24,54] := {117} tii[24,55] := {119} tii[24,56] := {64, 154} tii[24,57] := {87, 160} tii[24,58] := {140} tii[24,59] := {84, 170} tii[24,60] := {150} tii[24,61] := {135} tii[24,62] := {136} tii[24,63] := {88, 167} tii[24,64] := {155} tii[24,65] := {60, 175} tii[24,66] := {165} tii[24,67] := {173} tii[24,68] := {18} tii[24,69] := {45} tii[24,70] := {48} tii[24,71] := {74} tii[24,72] := {77} tii[24,73] := {54, 161} tii[24,74] := {105} tii[24,75] := {97} tii[24,76] := {101} tii[24,77] := {36, 137} tii[24,78] := {61, 172} tii[24,79] := {121} tii[24,80] := {55, 178} tii[24,81] := {133} tii[24,82] := {116} tii[24,83] := {118} tii[24,84] := {35, 179} tii[24,85] := {62, 153} tii[24,86] := {139} tii[24,87] := {33, 164} tii[24,88] := {28, 182} tii[24,89] := {149} tii[24,90] := {12, 183} tii[24,91] := {162} tii[24,92] := {96} tii[24,93] := {100} tii[24,94] := {34, 159} tii[24,95] := {120} tii[24,96] := {15, 169} tii[24,97] := {132} tii[24,98] := {6, 176} tii[24,99] := {148} tii[24,100] := {163} tii[24,101] := {5, 27} tii[24,102] := {30, 110} tii[24,103] := {10, 52} tii[24,104] := {14, 107} tii[24,105] := {63, 145} tii[24,106] := {26, 80} tii[24,107] := {58, 158} tii[24,108] := {21, 125} tii[24,109] := {31, 152} tii[24,110] := {16, 171} tii[24,111] := {51, 104} tii[24,112] := {11, 177} tii[24,113] := {44, 141} tii[24,114] := {4, 181} tii[24,115] := {38, 166} tii[24,116] := {1, 180} tii[24,117] := {25, 79} tii[24,118] := {22, 124} tii[24,119] := {17, 151} tii[24,120] := {2, 174} cell#16 , |C| = 184 special orbit = [5, 3, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[1], [3, 1, 1, 1, 1]] , dim = 120 cell rep = phi[[],[3, 2, 1, 1, 1]]+phi[[1],[3, 1, 1, 1, 1]] TII depth = 3 TII multiplicity polynomial = 64*X^2+56*X TII subcells: tii[24,1] := {29, 59} tii[24,2] := {20, 72} tii[24,3] := {56, 86} tii[24,4] := {43, 95} tii[24,5] := {66, 108} tii[24,6] := {70, 112} tii[24,7] := {82, 109} tii[24,8] := {71, 115} tii[24,9] := {89, 127} tii[24,10] := {114, 143} tii[24,11] := {93, 131} tii[24,12] := {113, 147} tii[24,13] := {53, 128} tii[24,14] := {42, 94} tii[24,15] := {65, 144} tii[24,16] := {69, 111} tii[24,17] := {91, 157} tii[24,18] := {68, 168} tii[24,19] := {90, 130} tii[24,20] := {67, 142} tii[24,21] := {0} tii[24,22] := {13, 32} tii[24,23] := {3} tii[24,24] := {8} tii[24,25] := {9} tii[24,26] := {41, 85} tii[24,27] := {7} tii[24,28] := {23} tii[24,29] := {24} tii[24,30] := {47} tii[24,31] := {50} tii[24,32] := {81} tii[24,33] := {19} tii[24,34] := {92, 126} tii[24,35] := {46} tii[24,36] := {49} tii[24,37] := {75} tii[24,38] := {78} tii[24,39] := {57, 129} tii[24,40] := {106} tii[24,41] := {98} tii[24,42] := {102} tii[24,43] := {37, 138} tii[24,44] := {122} tii[24,45] := {134} tii[24,46] := {40, 156} tii[24,47] := {39} tii[24,48] := {73} tii[24,49] := {76} tii[24,50] := {99} tii[24,51] := {103} tii[24,52] := {83, 146} tii[24,53] := {123} tii[24,54] := {117} tii[24,55] := {119} tii[24,56] := {64, 154} tii[24,57] := {87, 160} tii[24,58] := {140} tii[24,59] := {84, 170} tii[24,60] := {150} tii[24,61] := {135} tii[24,62] := {136} tii[24,63] := {88, 167} tii[24,64] := {155} tii[24,65] := {60, 175} tii[24,66] := {165} tii[24,67] := {173} tii[24,68] := {18} tii[24,69] := {45} tii[24,70] := {48} tii[24,71] := {74} tii[24,72] := {77} tii[24,73] := {54, 161} tii[24,74] := {105} tii[24,75] := {97} tii[24,76] := {101} tii[24,77] := {36, 137} tii[24,78] := {61, 172} tii[24,79] := {121} tii[24,80] := {55, 178} tii[24,81] := {133} tii[24,82] := {116} tii[24,83] := {118} tii[24,84] := {35, 179} tii[24,85] := {62, 153} tii[24,86] := {139} tii[24,87] := {33, 164} tii[24,88] := {28, 182} tii[24,89] := {149} tii[24,90] := {12, 183} tii[24,91] := {162} tii[24,92] := {96} tii[24,93] := {100} tii[24,94] := {34, 159} tii[24,95] := {120} tii[24,96] := {15, 169} tii[24,97] := {132} tii[24,98] := {6, 176} tii[24,99] := {148} tii[24,100] := {163} tii[24,101] := {5, 27} tii[24,102] := {30, 110} tii[24,103] := {10, 52} tii[24,104] := {14, 107} tii[24,105] := {63, 145} tii[24,106] := {26, 80} tii[24,107] := {58, 158} tii[24,108] := {21, 125} tii[24,109] := {31, 152} tii[24,110] := {16, 171} tii[24,111] := {51, 104} tii[24,112] := {11, 177} tii[24,113] := {44, 141} tii[24,114] := {4, 181} tii[24,115] := {38, 166} tii[24,116] := {1, 180} tii[24,117] := {25, 79} tii[24,118] := {22, 124} tii[24,119] := {17, 151} tii[24,120] := {2, 174} cell#17 , |C| = 112 special orbit = [3, 3, 3, 1, 1, 1, 1, 1, 1, 1] special rep = [[1], [2, 2, 1, 1, 1]] , dim = 112 cell rep = phi[[1],[2, 2, 1, 1, 1]] TII depth = 4 TII multiplicity polynomial = 112*X TII subcells: tii[11,1] := {34} tii[11,2] := {19} tii[11,3] := {47} tii[11,4] := {58} tii[11,5] := {32} tii[11,6] := {61} tii[11,7] := {45} tii[11,8] := {70} tii[11,9] := {82} tii[11,10] := {46} tii[11,11] := {72} tii[11,12] := {60} tii[11,13] := {83} tii[11,14] := {71} tii[11,15] := {92} tii[11,16] := {99} tii[11,17] := {1} tii[11,18] := {10} tii[11,19] := {3} tii[11,20] := {12} tii[11,21] := {13} tii[11,22] := {31} tii[11,23] := {9} tii[11,24] := {21} tii[11,25] := {23} tii[11,26] := {36} tii[11,27] := {38} tii[11,28] := {55} tii[11,29] := {78} tii[11,30] := {59} tii[11,31] := {18} tii[11,32] := {35} tii[11,33] := {37} tii[11,34] := {50} tii[11,35] := {53} tii[11,36] := {68} tii[11,37] := {62} tii[11,38] := {64} tii[11,39] := {28} tii[11,40] := {88} tii[11,41] := {79} tii[11,42] := {84} tii[11,43] := {96} tii[11,44] := {101} tii[11,45] := {30} tii[11,46] := {48} tii[11,47] := {51} tii[11,48] := {63} tii[11,49] := {65} tii[11,50] := {80} tii[11,51] := {75} tii[11,52] := {77} tii[11,53] := {44} tii[11,54] := {97} tii[11,55] := {90} tii[11,56] := {94} tii[11,57] := {86} tii[11,58] := {87} tii[11,59] := {57} tii[11,60] := {104} tii[11,61] := {98} tii[11,62] := {42} tii[11,63] := {107} tii[11,64] := {102} tii[11,65] := {105} tii[11,66] := {108} tii[11,67] := {110} tii[11,68] := {111} tii[11,69] := {5} tii[11,70] := {6} tii[11,71] := {15} tii[11,72] := {22} tii[11,73] := {24} tii[11,74] := {26} tii[11,75] := {7} tii[11,76] := {41} tii[11,77] := {56} tii[11,78] := {49} tii[11,79] := {52} tii[11,80] := {16} tii[11,81] := {14} tii[11,82] := {40} tii[11,83] := {67} tii[11,84] := {69} tii[11,85] := {73} tii[11,86] := {11} tii[11,87] := {85} tii[11,88] := {74} tii[11,89] := {76} tii[11,90] := {43} tii[11,91] := {25} tii[11,92] := {54} tii[11,93] := {89} tii[11,94] := {27} tii[11,95] := {20} tii[11,96] := {93} tii[11,97] := {81} tii[11,98] := {100} tii[11,99] := {95} tii[11,100] := {17} tii[11,101] := {106} tii[11,102] := {39} tii[11,103] := {66} tii[11,104] := {33} tii[11,105] := {91} tii[11,106] := {29} tii[11,107] := {103} tii[11,108] := {109} tii[11,109] := {0} tii[11,110] := {2} tii[11,111] := {4} tii[11,112] := {8} cell#18 , |C| = 112 special orbit = [3, 3, 3, 1, 1, 1, 1, 1, 1, 1] special rep = [[1], [2, 2, 1, 1, 1]] , dim = 112 cell rep = phi[[1],[2, 2, 1, 1, 1]] TII depth = 4 TII multiplicity polynomial = 112*X TII subcells: tii[11,1] := {34} tii[11,2] := {19} tii[11,3] := {47} tii[11,4] := {58} tii[11,5] := {32} tii[11,6] := {61} tii[11,7] := {45} tii[11,8] := {70} tii[11,9] := {82} tii[11,10] := {46} tii[11,11] := {72} tii[11,12] := {60} tii[11,13] := {83} tii[11,14] := {71} tii[11,15] := {92} tii[11,16] := {99} tii[11,17] := {1} tii[11,18] := {10} tii[11,19] := {3} tii[11,20] := {12} tii[11,21] := {13} tii[11,22] := {31} tii[11,23] := {9} tii[11,24] := {21} tii[11,25] := {23} tii[11,26] := {36} tii[11,27] := {38} tii[11,28] := {55} tii[11,29] := {78} tii[11,30] := {59} tii[11,31] := {18} tii[11,32] := {35} tii[11,33] := {37} tii[11,34] := {50} tii[11,35] := {53} tii[11,36] := {68} tii[11,37] := {62} tii[11,38] := {64} tii[11,39] := {28} tii[11,40] := {88} tii[11,41] := {79} tii[11,42] := {84} tii[11,43] := {96} tii[11,44] := {101} tii[11,45] := {30} tii[11,46] := {48} tii[11,47] := {51} tii[11,48] := {63} tii[11,49] := {65} tii[11,50] := {80} tii[11,51] := {75} tii[11,52] := {77} tii[11,53] := {44} tii[11,54] := {97} tii[11,55] := {90} tii[11,56] := {94} tii[11,57] := {86} tii[11,58] := {87} tii[11,59] := {57} tii[11,60] := {104} tii[11,61] := {98} tii[11,62] := {42} tii[11,63] := {107} tii[11,64] := {102} tii[11,65] := {105} tii[11,66] := {108} tii[11,67] := {110} tii[11,68] := {111} tii[11,69] := {5} tii[11,70] := {6} tii[11,71] := {15} tii[11,72] := {22} tii[11,73] := {24} tii[11,74] := {26} tii[11,75] := {7} tii[11,76] := {41} tii[11,77] := {56} tii[11,78] := {49} tii[11,79] := {52} tii[11,80] := {16} tii[11,81] := {14} tii[11,82] := {40} tii[11,83] := {67} tii[11,84] := {69} tii[11,85] := {73} tii[11,86] := {11} tii[11,87] := {85} tii[11,88] := {74} tii[11,89] := {76} tii[11,90] := {43} tii[11,91] := {25} tii[11,92] := {54} tii[11,93] := {89} tii[11,94] := {27} tii[11,95] := {20} tii[11,96] := {93} tii[11,97] := {81} tii[11,98] := {100} tii[11,99] := {95} tii[11,100] := {17} tii[11,101] := {106} tii[11,102] := {39} tii[11,103] := {66} tii[11,104] := {33} tii[11,105] := {91} tii[11,106] := {29} tii[11,107] := {103} tii[11,108] := {109} tii[11,109] := {0} tii[11,110] := {2} tii[11,111] := {4} tii[11,112] := {8} cell#19 , |C| = 112 special orbit = [3, 3, 3, 1, 1, 1, 1, 1, 1, 1] special rep = [[1], [2, 2, 1, 1, 1]] , dim = 112 cell rep = phi[[1],[2, 2, 1, 1, 1]] TII depth = 4 TII multiplicity polynomial = 112*X TII subcells: tii[11,1] := {25} tii[11,2] := {47} tii[11,3] := {46} tii[11,4] := {67} tii[11,5] := {70} tii[11,6] := {69} tii[11,7] := {87} tii[11,8] := {86} tii[11,9] := {100} tii[11,10] := {45} tii[11,11] := {44} tii[11,12] := {66} tii[11,13] := {65} tii[11,14] := {43} tii[11,15] := {85} tii[11,16] := {77} tii[11,17] := {1} tii[11,18] := {26} tii[11,19] := {4} tii[11,20] := {8} tii[11,21] := {9} tii[11,22] := {68} tii[11,23] := {11} tii[11,24] := {16} tii[11,25] := {20} tii[11,26] := {36} tii[11,27] := {40} tii[11,28] := {64} tii[11,29] := {91} tii[11,30] := {24} tii[11,31] := {23} tii[11,32] := {33} tii[11,33] := {37} tii[11,34] := {58} tii[11,35] := {61} tii[11,36] := {84} tii[11,37] := {80} tii[11,38] := {81} tii[11,39] := {105} tii[11,40] := {104} tii[11,41] := {99} tii[11,42] := {107} tii[11,43] := {110} tii[11,44] := {111} tii[11,45] := {10} tii[11,46] := {15} tii[11,47] := {19} tii[11,48] := {35} tii[11,49] := {39} tii[11,50] := {63} tii[11,51] := {56} tii[11,52] := {59} tii[11,53] := {90} tii[11,54] := {89} tii[11,55] := {82} tii[11,56] := {95} tii[11,57] := {34} tii[11,58] := {38} tii[11,59] := {72} tii[11,60] := {103} tii[11,61] := {62} tii[11,62] := {51} tii[11,63] := {108} tii[11,64] := {78} tii[11,65] := {88} tii[11,66] := {98} tii[11,67] := {106} tii[11,68] := {97} tii[11,69] := {2} tii[11,70] := {3} tii[11,71] := {5} tii[11,72] := {18} tii[11,73] := {22} tii[11,74] := {12} tii[11,75] := {13} tii[11,76] := {42} tii[11,77] := {52} tii[11,78] := {57} tii[11,79] := {60} tii[11,80] := {92} tii[11,81] := {30} tii[11,82] := {29} tii[11,83] := {83} tii[11,84] := {75} tii[11,85] := {96} tii[11,86] := {76} tii[11,87] := {102} tii[11,88] := {17} tii[11,89] := {21} tii[11,90] := {50} tii[11,91] := {49} tii[11,92] := {48} tii[11,93] := {41} tii[11,94] := {31} tii[11,95] := {94} tii[11,96] := {54} tii[11,97] := {93} tii[11,98] := {71} tii[11,99] := {109} tii[11,100] := {14} tii[11,101] := {55} tii[11,102] := {28} tii[11,103] := {27} tii[11,104] := {74} tii[11,105] := {73} tii[11,106] := {32} tii[11,107] := {101} tii[11,108] := {79} tii[11,109] := {0} tii[11,110] := {6} tii[11,111] := {53} tii[11,112] := {7} cell#20 , |C| = 112 special orbit = [3, 3, 3, 1, 1, 1, 1, 1, 1, 1] special rep = [[1], [2, 2, 1, 1, 1]] , dim = 112 cell rep = phi[[1],[2, 2, 1, 1, 1]] TII depth = 4 TII multiplicity polynomial = 112*X TII subcells: tii[11,1] := {26} tii[11,2] := {46} tii[11,3] := {47} tii[11,4] := {68} tii[11,5] := {69} tii[11,6] := {70} tii[11,7] := {86} tii[11,8] := {87} tii[11,9] := {100} tii[11,10] := {44} tii[11,11] := {45} tii[11,12] := {65} tii[11,13] := {66} tii[11,14] := {43} tii[11,15] := {85} tii[11,16] := {77} tii[11,17] := {1} tii[11,18] := {25} tii[11,19] := {4} tii[11,20] := {8} tii[11,21] := {9} tii[11,22] := {67} tii[11,23] := {11} tii[11,24] := {16} tii[11,25] := {20} tii[11,26] := {36} tii[11,27] := {40} tii[11,28] := {64} tii[11,29] := {92} tii[11,30] := {24} tii[11,31] := {23} tii[11,32] := {33} tii[11,33] := {37} tii[11,34] := {58} tii[11,35] := {61} tii[11,36] := {84} tii[11,37] := {80} tii[11,38] := {81} tii[11,39] := {104} tii[11,40] := {105} tii[11,41] := {99} tii[11,42] := {107} tii[11,43] := {110} tii[11,44] := {111} tii[11,45] := {10} tii[11,46] := {15} tii[11,47] := {19} tii[11,48] := {35} tii[11,49] := {39} tii[11,50] := {63} tii[11,51] := {56} tii[11,52] := {59} tii[11,53] := {89} tii[11,54] := {90} tii[11,55] := {82} tii[11,56] := {95} tii[11,57] := {34} tii[11,58] := {38} tii[11,59] := {72} tii[11,60] := {103} tii[11,61] := {62} tii[11,62] := {51} tii[11,63] := {108} tii[11,64] := {78} tii[11,65] := {88} tii[11,66] := {98} tii[11,67] := {106} tii[11,68] := {97} tii[11,69] := {2} tii[11,70] := {3} tii[11,71] := {6} tii[11,72] := {18} tii[11,73] := {22} tii[11,74] := {13} tii[11,75] := {12} tii[11,76] := {42} tii[11,77] := {53} tii[11,78] := {57} tii[11,79] := {60} tii[11,80] := {91} tii[11,81] := {29} tii[11,82] := {30} tii[11,83] := {83} tii[11,84] := {76} tii[11,85] := {96} tii[11,86] := {75} tii[11,87] := {102} tii[11,88] := {17} tii[11,89] := {21} tii[11,90] := {50} tii[11,91] := {48} tii[11,92] := {49} tii[11,93] := {41} tii[11,94] := {31} tii[11,95] := {93} tii[11,96] := {54} tii[11,97] := {94} tii[11,98] := {71} tii[11,99] := {109} tii[11,100] := {14} tii[11,101] := {55} tii[11,102] := {27} tii[11,103] := {28} tii[11,104] := {73} tii[11,105] := {74} tii[11,106] := {32} tii[11,107] := {101} tii[11,108] := {79} tii[11,109] := {0} tii[11,110] := {5} tii[11,111] := {52} tii[11,112] := {7} cell#21 , |C| = 168 special orbit = [3, 3, 2, 2, 1, 1, 1, 1, 1, 1] special rep = [[1, 1], [2, 1, 1, 1, 1]] , dim = 140 cell rep = phi[[],[2, 2, 2, 1, 1]]+phi[[1, 1],[2, 1, 1, 1, 1]] TII depth = 3 TII multiplicity polynomial = 28*X^2+112*X TII subcells: tii[9,1] := {65, 66} tii[9,2] := {87, 88} tii[9,3] := {107, 108} tii[9,4] := {109, 110} tii[9,5] := {128, 129} tii[9,6] := {144, 145} tii[9,7] := {10} tii[9,8] := {47, 48} tii[9,9] := {19} tii[9,10] := {22} tii[9,11] := {25} tii[9,12] := {24} tii[9,13] := {27} tii[9,14] := {85, 86} tii[9,15] := {32} tii[9,16] := {35} tii[9,17] := {39} tii[9,18] := {38} tii[9,19] := {54} tii[9,20] := {42} tii[9,21] := {59} tii[9,22] := {83} tii[9,23] := {53} tii[9,24] := {58} tii[9,25] := {82} tii[9,26] := {126, 127} tii[9,27] := {46} tii[9,28] := {51} tii[9,29] := {56} tii[9,30] := {55} tii[9,31] := {75} tii[9,32] := {60} tii[9,33] := {80} tii[9,34] := {106} tii[9,35] := {97} tii[9,36] := {74} tii[9,37] := {101} tii[9,38] := {79} tii[9,39] := {132, 133} tii[9,40] := {105} tii[9,41] := {124} tii[9,42] := {139} tii[9,43] := {96} tii[9,44] := {100} tii[9,45] := {123} tii[9,46] := {138} tii[9,47] := {64} tii[9,48] := {71} tii[9,49] := {76} tii[9,50] := {37} tii[9,51] := {98} tii[9,52] := {41} tii[9,53] := {102} tii[9,54] := {125} tii[9,55] := {52} tii[9,56] := {119} tii[9,57] := {57} tii[9,58] := {121} tii[9,59] := {150, 151} tii[9,60] := {81} tii[9,61] := {143} tii[9,62] := {155} tii[9,63] := {140} tii[9,64] := {72} tii[9,65] := {141} tii[9,66] := {77} tii[9,67] := {161, 162} tii[9,68] := {156} tii[9,69] := {103} tii[9,70] := {165, 166} tii[9,71] := {115} tii[9,72] := {164} tii[9,73] := {167} tii[9,74] := {95} tii[9,75] := {99} tii[9,76] := {122} tii[9,77] := {137} tii[9,78] := {152} tii[9,79] := {0} tii[9,80] := {1} tii[9,81] := {2} tii[9,82] := {13} tii[9,83] := {3} tii[9,84] := {16} tii[9,85] := {4} tii[9,86] := {8} tii[9,87] := {9} tii[9,88] := {6} tii[9,89] := {36} tii[9,90] := {7} tii[9,91] := {40} tii[9,92] := {17} tii[9,93] := {18} tii[9,94] := {33, 34} tii[9,95] := {61} tii[9,96] := {45} tii[9,97] := {12} tii[9,98] := {73} tii[9,99] := {15} tii[9,100] := {78} tii[9,101] := {111, 112} tii[9,102] := {49, 50} tii[9,103] := {29} tii[9,104] := {31} tii[9,105] := {104} tii[9,106] := {116} tii[9,107] := {91, 92} tii[9,108] := {63} tii[9,109] := {94} tii[9,110] := {23} tii[9,111] := {118} tii[9,112] := {26} tii[9,113] := {120} tii[9,114] := {148, 149} tii[9,115] := {67, 68} tii[9,116] := {43} tii[9,117] := {44} tii[9,118] := {142} tii[9,119] := {157, 158} tii[9,120] := {113, 114} tii[9,121] := {154} tii[9,122] := {84} tii[9,123] := {163} tii[9,124] := {117} tii[9,125] := {146, 147} tii[9,126] := {153} tii[9,127] := {11} tii[9,128] := {14} tii[9,129] := {89, 90} tii[9,130] := {28} tii[9,131] := {30} tii[9,132] := {134, 135} tii[9,133] := {62} tii[9,134] := {159, 160} tii[9,135] := {93} tii[9,136] := {136} tii[9,137] := {5} tii[9,138] := {20, 21} tii[9,139] := {69, 70} tii[9,140] := {130, 131} cell#22 , |C| = 21 special orbit = [5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[], [3, 1, 1, 1, 1, 1]] , dim = 21 cell rep = phi[[],[3, 1, 1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 21*X TII subcells: tii[23,1] := {8} tii[23,2] := {15} tii[23,3] := {19} tii[23,4] := {20} tii[23,5] := {18} tii[23,6] := {16} tii[23,7] := {9} tii[23,8] := {13} tii[23,9] := {10} tii[23,10] := {17} tii[23,11] := {12} tii[23,12] := {11} tii[23,13] := {14} tii[23,14] := {6} tii[23,15] := {5} tii[23,16] := {3} tii[23,17] := {7} tii[23,18] := {4} tii[23,19] := {2} tii[23,20] := {1} tii[23,21] := {0} cell#23 , |C| = 21 special orbit = [5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[], [3, 1, 1, 1, 1, 1]] , dim = 21 cell rep = phi[[],[3, 1, 1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 21*X TII subcells: tii[23,1] := {8} tii[23,2] := {15} tii[23,3] := {19} tii[23,4] := {20} tii[23,5] := {18} tii[23,6] := {16} tii[23,7] := {9} tii[23,8] := {13} tii[23,9] := {10} tii[23,10] := {17} tii[23,11] := {12} tii[23,12] := {11} tii[23,13] := {14} tii[23,14] := {6} tii[23,15] := {5} tii[23,16] := {3} tii[23,17] := {7} tii[23,18] := {4} tii[23,19] := {2} tii[23,20] := {1} tii[23,21] := {0} cell#24 , |C| = 68 special orbit = [3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[1], [2, 1, 1, 1, 1, 1]] , dim = 48 cell rep = phi[[],[2, 2, 1, 1, 1, 1]]+phi[[1],[2, 1, 1, 1, 1, 1]] TII depth = 3 TII multiplicity polynomial = 20*X^2+28*X TII subcells: tii[8,1] := {12, 25} tii[8,2] := {18, 29} tii[8,3] := {24, 37} tii[8,4] := {30, 44} tii[8,5] := {23, 50} tii[8,6] := {5} tii[8,7] := {13} tii[8,8] := {14} tii[8,9] := {19} tii[8,10] := {20} tii[8,11] := {28} tii[8,12] := {26} tii[8,13] := {27} tii[8,14] := {11, 41} tii[8,15] := {35} tii[8,16] := {38} tii[8,17] := {32} tii[8,18] := {34} tii[8,19] := {17, 48} tii[8,20] := {43} tii[8,21] := {10, 53} tii[8,22] := {46} tii[8,23] := {52} tii[8,24] := {39} tii[8,25] := {40} tii[8,26] := {22, 55} tii[8,27] := {49} tii[8,28] := {15, 60} tii[8,29] := {54} tii[8,30] := {8, 64} tii[8,31] := {58} tii[8,32] := {62} tii[8,33] := {31} tii[8,34] := {33} tii[8,35] := {16, 56} tii[8,36] := {42} tii[8,37] := {9, 61} tii[8,38] := {45} tii[8,39] := {2, 65} tii[8,40] := {51} tii[8,41] := {1, 67} tii[8,42] := {57} tii[8,43] := {63} tii[8,44] := {7, 21} tii[8,45] := {6, 36} tii[8,46] := {4, 47} tii[8,47] := {3, 59} tii[8,48] := {0, 66} cell#25 , |C| = 68 special orbit = [3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[1], [2, 1, 1, 1, 1, 1]] , dim = 48 cell rep = phi[[],[2, 2, 1, 1, 1, 1]]+phi[[1],[2, 1, 1, 1, 1, 1]] TII depth = 3 TII multiplicity polynomial = 20*X^2+28*X TII subcells: tii[8,1] := {12, 25} tii[8,2] := {18, 29} tii[8,3] := {24, 37} tii[8,4] := {30, 44} tii[8,5] := {23, 50} tii[8,6] := {5} tii[8,7] := {13} tii[8,8] := {14} tii[8,9] := {19} tii[8,10] := {20} tii[8,11] := {28} tii[8,12] := {26} tii[8,13] := {27} tii[8,14] := {11, 41} tii[8,15] := {35} tii[8,16] := {38} tii[8,17] := {32} tii[8,18] := {34} tii[8,19] := {17, 48} tii[8,20] := {43} tii[8,21] := {10, 53} tii[8,22] := {46} tii[8,23] := {52} tii[8,24] := {39} tii[8,25] := {40} tii[8,26] := {22, 55} tii[8,27] := {49} tii[8,28] := {15, 60} tii[8,29] := {54} tii[8,30] := {8, 64} tii[8,31] := {58} tii[8,32] := {62} tii[8,33] := {31} tii[8,34] := {33} tii[8,35] := {16, 56} tii[8,36] := {42} tii[8,37] := {9, 61} tii[8,38] := {45} tii[8,39] := {2, 65} tii[8,40] := {51} tii[8,41] := {1, 67} tii[8,42] := {57} tii[8,43] := {63} tii[8,44] := {7, 21} tii[8,45] := {6, 36} tii[8,46] := {4, 47} tii[8,47] := {3, 59} tii[8,48] := {0, 66} cell#26 , |C| = 7 special orbit = [3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[], [2, 1, 1, 1, 1, 1, 1]] , dim = 7 cell rep = phi[[],[2, 1, 1, 1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 7*X TII subcells: tii[7,1] := {6} tii[7,2] := {5} tii[7,3] := {4} tii[7,4] := {3} tii[7,5] := {2} tii[7,6] := {1} tii[7,7] := {0} cell#27 , |C| = 7 special orbit = [3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[], [2, 1, 1, 1, 1, 1, 1]] , dim = 7 cell rep = phi[[],[2, 1, 1, 1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 7*X TII subcells: tii[7,1] := {6} tii[7,2] := {5} tii[7,3] := {4} tii[7,4] := {3} tii[7,5] := {2} tii[7,6] := {1} tii[7,7] := {0} cell#28 , |C| = 68 special orbit = [3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[1], [2, 1, 1, 1, 1, 1]] , dim = 48 cell rep = phi[[],[2, 2, 1, 1, 1, 1]]+phi[[1],[2, 1, 1, 1, 1, 1]] TII depth = 3 TII multiplicity polynomial = 20*X^2+28*X TII subcells: tii[8,1] := {11, 12} tii[8,2] := {21, 22} tii[8,3] := {33, 34} tii[8,4] := {20, 46} tii[8,5] := {10, 40} tii[8,6] := {0} tii[8,7] := {1} tii[8,8] := {2} tii[8,9] := {7} tii[8,10] := {9} tii[8,11] := {19} tii[8,12] := {15} tii[8,13] := {17} tii[8,14] := {38, 39} tii[8,15] := {32} tii[8,16] := {44} tii[8,17] := {29} tii[8,18] := {30} tii[8,19] := {51, 52} tii[8,20] := {45} tii[8,21] := {58, 59} tii[8,22] := {55} tii[8,23] := {61} tii[8,24] := {14} tii[8,25] := {16} tii[8,26] := {37, 60} tii[8,27] := {31} tii[8,28] := {48, 65} tii[8,29] := {43} tii[8,30] := {36, 67} tii[8,31] := {53} tii[8,32] := {57} tii[8,33] := {6} tii[8,34] := {8} tii[8,35] := {25, 56} tii[8,36] := {18} tii[8,37] := {35, 63} tii[8,38] := {28} tii[8,39] := {23, 66} tii[8,40] := {41} tii[8,41] := {13, 62} tii[8,42] := {47} tii[8,43] := {42} tii[8,44] := {4, 5} tii[8,45] := {26, 27} tii[8,46] := {49, 50} tii[8,47] := {24, 64} tii[8,48] := {3, 54} cell#29 , |C| = 68 special orbit = [3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[1], [2, 1, 1, 1, 1, 1]] , dim = 48 cell rep = phi[[],[2, 2, 1, 1, 1, 1]]+phi[[1],[2, 1, 1, 1, 1, 1]] TII depth = 3 TII multiplicity polynomial = 20*X^2+28*X TII subcells: tii[8,1] := {11, 12} tii[8,2] := {21, 22} tii[8,3] := {33, 34} tii[8,4] := {20, 46} tii[8,5] := {10, 40} tii[8,6] := {0} tii[8,7] := {1} tii[8,8] := {2} tii[8,9] := {7} tii[8,10] := {9} tii[8,11] := {19} tii[8,12] := {15} tii[8,13] := {17} tii[8,14] := {38, 39} tii[8,15] := {32} tii[8,16] := {44} tii[8,17] := {29} tii[8,18] := {30} tii[8,19] := {51, 52} tii[8,20] := {45} tii[8,21] := {58, 59} tii[8,22] := {55} tii[8,23] := {61} tii[8,24] := {14} tii[8,25] := {16} tii[8,26] := {37, 60} tii[8,27] := {31} tii[8,28] := {48, 65} tii[8,29] := {43} tii[8,30] := {36, 67} tii[8,31] := {53} tii[8,32] := {57} tii[8,33] := {6} tii[8,34] := {8} tii[8,35] := {25, 56} tii[8,36] := {18} tii[8,37] := {35, 63} tii[8,38] := {28} tii[8,39] := {23, 66} tii[8,40] := {41} tii[8,41] := {13, 62} tii[8,42] := {47} tii[8,43] := {42} tii[8,44] := {4, 5} tii[8,45] := {26, 27} tii[8,46] := {49, 50} tii[8,47] := {24, 64} tii[8,48] := {3, 54} cell#30 , |C| = 28 special orbit = [2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[1, 1], [1, 1, 1, 1, 1, 1]] , dim = 28 cell rep = phi[[1, 1],[1, 1, 1, 1, 1, 1]] TII depth = 2 TII multiplicity polynomial = 28*X TII subcells: tii[3,1] := {4} tii[3,2] := {5} tii[3,3] := {6} tii[3,4] := {7} tii[3,5] := {11} tii[3,6] := {9} tii[3,7] := {10} tii[3,8] := {15} tii[3,9] := {16} tii[3,10] := {13} tii[3,11] := {14} tii[3,12] := {19} tii[3,13] := {21} tii[3,14] := {23} tii[3,15] := {17} tii[3,16] := {18} tii[3,17] := {22} tii[3,18] := {24} tii[3,19] := {26} tii[3,20] := {27} tii[3,21] := {0} tii[3,22] := {1} tii[3,23] := {2} tii[3,24] := {3} tii[3,25] := {8} tii[3,26] := {12} tii[3,27] := {20} tii[3,28] := {25} cell#31 , |C| = 7 special orbit = [3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[], [2, 1, 1, 1, 1, 1, 1]] , dim = 7 cell rep = phi[[],[2, 1, 1, 1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 7*X TII subcells: tii[7,1] := {0} tii[7,2] := {3} tii[7,3] := {5} tii[7,4] := {6} tii[7,5] := {4} tii[7,6] := {2} tii[7,7] := {1} cell#32 , |C| = 8 special orbit = [2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[1], [1, 1, 1, 1, 1, 1, 1]] , dim = 8 cell rep = phi[[1],[1, 1, 1, 1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 8*X TII subcells: tii[2,1] := {0} tii[2,2] := {1} tii[2,3] := {2} tii[2,4] := {3} tii[2,5] := {4} tii[2,6] := {5} tii[2,7] := {7} tii[2,8] := {6} cell#33 , |C| = 7 special orbit = [3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[], [2, 1, 1, 1, 1, 1, 1]] , dim = 7 cell rep = phi[[],[2, 1, 1, 1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 7*X TII subcells: tii[7,1] := {0} tii[7,2] := {3} tii[7,3] := {5} tii[7,4] := {6} tii[7,5] := {4} tii[7,6] := {2} tii[7,7] := {1} cell#34 , |C| = 8 special orbit = [2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[1], [1, 1, 1, 1, 1, 1, 1]] , dim = 8 cell rep = phi[[1],[1, 1, 1, 1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 8*X TII subcells: tii[2,1] := {0} tii[2,2] := {1} tii[2,3] := {2} tii[2,4] := {3} tii[2,5] := {4} tii[2,6] := {5} tii[2,7] := {7} tii[2,8] := {6} cell#35 , |C| = 1 special orbit = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[], [1, 1, 1, 1, 1, 1, 1, 1]] , dim = 1 cell rep = phi[[],[1, 1, 1, 1, 1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = X TII subcells: tii[1,1] := {0} cell#36 , |C| = 1 special orbit = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[], [1, 1, 1, 1, 1, 1, 1, 1]] , dim = 1 cell rep = phi[[],[1, 1, 1, 1, 1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = X TII subcells: tii[1,1] := {0}