TII subcells for the PSO(13,3) x Spin(9,7) block of PSO16 # cell#0 , |C| = 35 special orbit = [7, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[], [4, 1, 1, 1, 1]] , dim = 35 cell rep = phi[[],[4, 1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 35*X TII subcells: tii[38,1] := {0} tii[38,2] := {8} tii[38,3] := {1} tii[38,4] := {15} tii[38,5] := {7} tii[38,6] := {2} tii[38,7] := {23} tii[38,8] := {14} tii[38,9] := {6} tii[38,10] := {3} tii[38,11] := {30} tii[38,12] := {22} tii[38,13] := {13} tii[38,14] := {5} tii[38,15] := {4} tii[38,16] := {9} tii[38,17] := {18} tii[38,18] := {10} tii[38,19] := {19} tii[38,20] := {27} tii[38,21] := {17} tii[38,22] := {25} tii[38,23] := {11} tii[38,24] := {20} tii[38,25] := {28} tii[38,26] := {33} tii[38,27] := {26} tii[38,28] := {32} tii[38,29] := {16} tii[38,30] := {24} tii[38,31] := {31} tii[38,32] := {12} tii[38,33] := {21} tii[38,34] := {29} tii[38,35] := {34} cell#1 , |C| = 184 special orbit = [5, 3, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[1], [3, 1, 1, 1, 1]] , dim = 120 cell rep = phi[[],[3, 2, 1, 1, 1]]+phi[[1],[3, 1, 1, 1, 1]] TII depth = 3 TII multiplicity polynomial = 64*X^2+56*X TII subcells: tii[24,1] := {16, 36} tii[24,2] := {10, 47} tii[24,3] := {32, 60} tii[24,4] := {24, 71} tii[24,5] := {42, 85} tii[24,6] := {44, 93} tii[24,7] := {55, 86} tii[24,8] := {45, 98} tii[24,9] := {67, 108} tii[24,10] := {96, 127} tii[24,11] := {69, 113} tii[24,12] := {95, 131} tii[24,13] := {81, 109} tii[24,14] := {70, 117} tii[24,15] := {94, 128} tii[24,16] := {97, 132} tii[24,17] := {116, 144} tii[24,18] := {134, 157} tii[24,19] := {115, 148} tii[24,20] := {133, 161} tii[24,21] := {0} tii[24,22] := {7, 19} tii[24,23] := {1} tii[24,24] := {4} tii[24,25] := {5} tii[24,26] := {23, 59} tii[24,27] := {3} tii[24,28] := {12} tii[24,29] := {13} tii[24,30] := {27} tii[24,31] := {29} tii[24,32] := {54} tii[24,33] := {9} tii[24,34] := {68, 107} tii[24,35] := {26} tii[24,36] := {28} tii[24,37] := {49} tii[24,38] := {51} tii[24,39] := {33, 110} tii[24,40] := {79} tii[24,41] := {73} tii[24,42] := {76} tii[24,43] := {20, 123} tii[24,44] := {104} tii[24,45] := {118} tii[24,46] := {114, 143} tii[24,47] := {22} tii[24,48] := {48} tii[24,49] := {50} tii[24,50] := {74} tii[24,51] := {77} tii[24,52] := {56, 130} tii[24,53] := {105} tii[24,54] := {99} tii[24,55] := {101} tii[24,56] := {40, 139} tii[24,57] := {64, 146} tii[24,58] := {124} tii[24,59] := {57, 158} tii[24,60] := {135} tii[24,61] := {119} tii[24,62] := {121} tii[24,63] := {65, 154} tii[24,64] := {140} tii[24,65] := {37, 163} tii[24,66] := {149} tii[24,67] := {162} tii[24,68] := {43} tii[24,69] := {72} tii[24,70] := {75} tii[24,71] := {100} tii[24,72] := {102} tii[24,73] := {82, 147} tii[24,74] := {125} tii[24,75] := {120} tii[24,76] := {122} tii[24,77] := {66, 155} tii[24,78] := {90, 160} tii[24,79] := {141} tii[24,80] := {83, 169} tii[24,81] := {150} tii[24,82] := {137} tii[24,83] := {138} tii[24,84] := {112, 170} tii[24,85] := {92, 166} tii[24,86] := {156} tii[24,87] := {63, 173} tii[24,88] := {88, 177} tii[24,89] := {164} tii[24,90] := {84, 181} tii[24,91] := {171} tii[24,92] := {152} tii[24,93] := {153} tii[24,94] := {111, 175} tii[24,95] := {167} tii[24,96] := {89, 180} tii[24,97] := {174} tii[24,98] := {61, 183} tii[24,99] := {178} tii[24,100] := {182} tii[24,101] := {2, 15} tii[24,102] := {17, 87} tii[24,103] := {6, 31} tii[24,104] := {8, 80} tii[24,105] := {39, 129} tii[24,106] := {14, 53} tii[24,107] := {34, 145} tii[24,108] := {11, 106} tii[24,109] := {18, 136} tii[24,110] := {91, 159} tii[24,111] := {30, 78} tii[24,112] := {62, 168} tii[24,113] := {25, 126} tii[24,114] := {58, 176} tii[24,115] := {21, 151} tii[24,116] := {35, 172} tii[24,117] := {52, 103} tii[24,118] := {46, 142} tii[24,119] := {41, 165} tii[24,120] := {38, 179} cell#2 , |C| = 21 special orbit = [5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[], [3, 1, 1, 1, 1, 1]] , dim = 21 cell rep = phi[[],[3, 1, 1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 21*X TII subcells: tii[23,1] := {16} tii[23,2] := {10} tii[23,3] := {6} tii[23,4] := {3} tii[23,5] := {1} tii[23,6] := {0} tii[23,7] := {19} tii[23,8] := {13} tii[23,9] := {18} tii[23,10] := {8} tii[23,11] := {12} tii[23,12] := {17} tii[23,13] := {4} tii[23,14] := {7} tii[23,15] := {11} tii[23,16] := {15} tii[23,17] := {2} tii[23,18] := {5} tii[23,19] := {9} tii[23,20] := {14} tii[23,21] := {20} cell#3 , |C| = 112 special orbit = [3, 3, 3, 1, 1, 1, 1, 1, 1, 1] special rep = [[1], [2, 2, 1, 1, 1]] , dim = 112 cell rep = phi[[1],[2, 2, 1, 1, 1]] TII depth = 4 TII multiplicity polynomial = 112*X TII subcells: tii[11,1] := {18} tii[11,2] := {27} tii[11,3] := {28} tii[11,4] := {41} tii[11,5] := {42} tii[11,6] := {43} tii[11,7] := {54} tii[11,8] := {55} tii[11,9] := {70} tii[11,10] := {56} tii[11,11] := {57} tii[11,12] := {71} tii[11,13] := {72} tii[11,14] := {84} tii[11,15] := {85} tii[11,16] := {95} tii[11,17] := {1} tii[11,18] := {17} tii[11,19] := {4} tii[11,20] := {7} tii[11,21] := {8} tii[11,22] := {40} tii[11,23] := {9} tii[11,24] := {12} tii[11,25] := {14} tii[11,26] := {22} tii[11,27] := {24} tii[11,28] := {39} tii[11,29] := {59} tii[11,30] := {69} tii[11,31] := {16} tii[11,32] := {21} tii[11,33] := {23} tii[11,34] := {35} tii[11,35] := {38} tii[11,36] := {53} tii[11,37] := {48} tii[11,38] := {50} tii[11,39] := {75} tii[11,40] := {76} tii[11,41] := {67} tii[11,42] := {79} tii[11,43] := {89} tii[11,44] := {97} tii[11,45] := {26} tii[11,46] := {33} tii[11,47] := {36} tii[11,48] := {49} tii[11,49] := {51} tii[11,50] := {68} tii[11,51] := {64} tii[11,52] := {66} tii[11,53] := {90} tii[11,54] := {91} tii[11,55] := {83} tii[11,56] := {93} tii[11,57] := {80} tii[11,58] := {81} tii[11,59] := {100} tii[11,60] := {101} tii[11,61] := {94} tii[11,62] := {105} tii[11,63] := {106} tii[11,64] := {103} tii[11,65] := {108} tii[11,66] := {107} tii[11,67] := {110} tii[11,68] := {111} tii[11,69] := {2} tii[11,70] := {3} tii[11,71] := {6} tii[11,72] := {13} tii[11,73] := {15} tii[11,74] := {11} tii[11,75] := {10} tii[11,76] := {25} tii[11,77] := {32} tii[11,78] := {34} tii[11,79] := {37} tii[11,80] := {58} tii[11,81] := {19} tii[11,82] := {20} tii[11,83] := {52} tii[11,84] := {47} tii[11,85] := {62} tii[11,86] := {46} tii[11,87] := {74} tii[11,88] := {63} tii[11,89] := {65} tii[11,90] := {88} tii[11,91] := {29} tii[11,92] := {30} tii[11,93] := {82} tii[11,94] := {96} tii[11,95] := {60} tii[11,96] := {92} tii[11,97] := {61} tii[11,98] := {102} tii[11,99] := {87} tii[11,100] := {86} tii[11,101] := {104} tii[11,102] := {44} tii[11,103] := {45} tii[11,104] := {77} tii[11,105] := {78} tii[11,106] := {98} tii[11,107] := {99} tii[11,108] := {109} tii[11,109] := {0} tii[11,110] := {5} tii[11,111] := {31} tii[11,112] := {73} cell#4 , |C| = 21 special orbit = [5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[], [3, 1, 1, 1, 1, 1]] , dim = 21 cell rep = phi[[],[3, 1, 1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 21*X TII subcells: tii[23,1] := {3} tii[23,2] := {12} tii[23,3] := {16} tii[23,4] := {19} tii[23,5] := {20} tii[23,6] := {18} tii[23,7] := {4} tii[23,8] := {11} tii[23,9] := {5} tii[23,10] := {15} tii[23,11] := {9} tii[23,12] := {6} tii[23,13] := {17} tii[23,14] := {13} tii[23,15] := {8} tii[23,16] := {7} tii[23,17] := {14} tii[23,18] := {10} tii[23,19] := {2} tii[23,20] := {1} tii[23,21] := {0} cell#5 , |C| = 21 special orbit = [5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[], [3, 1, 1, 1, 1, 1]] , dim = 21 cell rep = phi[[],[3, 1, 1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 21*X TII subcells: tii[23,1] := {0} tii[23,2] := {1} tii[23,3] := {2} tii[23,4] := {5} tii[23,5] := {7} tii[23,6] := {4} tii[23,7] := {3} tii[23,8] := {6} tii[23,9] := {8} tii[23,10] := {10} tii[23,11] := {12} tii[23,12] := {15} tii[23,13] := {13} tii[23,14] := {16} tii[23,15] := {19} tii[23,16] := {20} tii[23,17] := {9} tii[23,18] := {11} tii[23,19] := {14} tii[23,20] := {18} tii[23,21] := {17} cell#6 , |C| = 68 special orbit = [3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[1], [2, 1, 1, 1, 1, 1]] , dim = 48 cell rep = phi[[],[2, 2, 1, 1, 1, 1]]+phi[[1],[2, 1, 1, 1, 1, 1]] TII depth = 3 TII multiplicity polynomial = 20*X^2+28*X TII subcells: tii[8,1] := {10, 23} tii[8,2] := {16, 28} tii[8,3] := {22, 34} tii[8,4] := {29, 41} tii[8,5] := {35, 48} tii[8,6] := {3} tii[8,7] := {11} tii[8,8] := {12} tii[8,9] := {17} tii[8,10] := {18} tii[8,11] := {26} tii[8,12] := {24} tii[8,13] := {25} tii[8,14] := {9, 39} tii[8,15] := {32} tii[8,16] := {36} tii[8,17] := {30} tii[8,18] := {31} tii[8,19] := {15, 46} tii[8,20] := {40} tii[8,21] := {8, 50} tii[8,22] := {42} tii[8,23] := {49} tii[8,24] := {37} tii[8,25] := {38} tii[8,26] := {21, 52} tii[8,27] := {47} tii[8,28] := {14, 56} tii[8,29] := {51} tii[8,30] := {7, 60} tii[8,31] := {54} tii[8,32] := {59} tii[8,33] := {44} tii[8,34] := {45} tii[8,35] := {27, 58} tii[8,36] := {53} tii[8,37] := {20, 62} tii[8,38] := {57} tii[8,39] := {13, 65} tii[8,40] := {61} tii[8,41] := {6, 67} tii[8,42] := {63} tii[8,43] := {66} tii[8,44] := {5, 19} tii[8,45] := {4, 33} tii[8,46] := {2, 43} tii[8,47] := {1, 55} tii[8,48] := {0, 64} cell#7 , |C| = 7 special orbit = [3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[], [2, 1, 1, 1, 1, 1, 1]] , dim = 7 cell rep = phi[[],[2, 1, 1, 1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 7*X TII subcells: tii[7,1] := {6} tii[7,2] := {5} tii[7,3] := {4} tii[7,4] := {3} tii[7,5] := {2} tii[7,6] := {1} tii[7,7] := {0} cell#8 , |C| = 68 special orbit = [3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[1], [2, 1, 1, 1, 1, 1]] , dim = 48 cell rep = phi[[],[2, 2, 1, 1, 1, 1]]+phi[[1],[2, 1, 1, 1, 1, 1]] TII depth = 3 TII multiplicity polynomial = 20*X^2+28*X TII subcells: tii[8,1] := {7, 8} tii[8,2] := {12, 13} tii[8,3] := {22, 23} tii[8,4] := {31, 32} tii[8,5] := {21, 42} tii[8,6] := {0} tii[8,7] := {1} tii[8,8] := {2} tii[8,9] := {5} tii[8,10] := {6} tii[8,11] := {11} tii[8,12] := {9} tii[8,13] := {10} tii[8,14] := {24, 25} tii[8,15] := {20} tii[8,16] := {26} tii[8,17] := {17} tii[8,18] := {19} tii[8,19] := {37, 38} tii[8,20] := {30} tii[8,21] := {45, 46} tii[8,22] := {40} tii[8,23] := {50} tii[8,24] := {27} tii[8,25] := {28} tii[8,26] := {47, 48} tii[8,27] := {41} tii[8,28] := {55, 56} tii[8,29] := {51} tii[8,30] := {61, 62} tii[8,31] := {59} tii[8,32] := {64} tii[8,33] := {16} tii[8,34] := {18} tii[8,35] := {36, 57} tii[8,36] := {29} tii[8,37] := {44, 63} tii[8,38] := {39} tii[8,39] := {52, 66} tii[8,40] := {49} tii[8,41] := {43, 67} tii[8,42] := {58} tii[8,43] := {60} tii[8,44] := {3, 4} tii[8,45] := {14, 15} tii[8,46] := {34, 35} tii[8,47] := {53, 54} tii[8,48] := {33, 65} cell#9 , |C| = 7 special orbit = [3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[], [2, 1, 1, 1, 1, 1, 1]] , dim = 7 cell rep = phi[[],[2, 1, 1, 1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 7*X TII subcells: tii[7,1] := {0} tii[7,2] := {1} tii[7,3] := {3} tii[7,4] := {5} tii[7,5] := {6} tii[7,6] := {4} tii[7,7] := {2} cell#10 , |C| = 8 special orbit = [2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[1], [1, 1, 1, 1, 1, 1, 1]] , dim = 8 cell rep = phi[[1],[1, 1, 1, 1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 8*X TII subcells: tii[2,1] := {0} tii[2,2] := {1} tii[2,3] := {2} tii[2,4] := {3} tii[2,5] := {4} tii[2,6] := {5} tii[2,7] := {6} tii[2,8] := {7} cell#11 , |C| = 7 special orbit = [3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[], [2, 1, 1, 1, 1, 1, 1]] , dim = 7 cell rep = phi[[],[2, 1, 1, 1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 7*X TII subcells: tii[7,1] := {0} tii[7,2] := {1} tii[7,3] := {2} tii[7,4] := {3} tii[7,5] := {4} tii[7,6] := {6} tii[7,7] := {5} cell#12 , |C| = 1 special orbit = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[], [1, 1, 1, 1, 1, 1, 1, 1]] , dim = 1 cell rep = phi[[],[1, 1, 1, 1, 1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = X TII subcells: tii[1,1] := {0}