TII subcells for the SO(11,5) x SO(9,7) block of SO16 # cell#0 , |C| = 21 special orbit = [11, 1, 1, 1, 1, 1] special rep = [[], [6, 1, 1]] , dim = 21 cell rep = phi[[],[6, 1, 1]] TII depth = 1 TII multiplicity polynomial = 21*X TII subcells: tii[55,1] := {0} tii[55,2] := {8} tii[55,3] := {1} tii[55,4] := {10} tii[55,5] := {3} tii[55,6] := {16} tii[55,7] := {6} tii[55,8] := {15} tii[55,9] := {7} tii[55,10] := {2} tii[55,11] := {11} tii[55,12] := {4} tii[55,13] := {17} tii[55,14] := {9} tii[55,15] := {5} tii[55,16] := {12} tii[55,17] := {18} tii[55,18] := {13} tii[55,19] := {19} tii[55,20] := {14} tii[55,21] := {20} cell#1 , |C| = 184 special orbit = [9, 3, 1, 1, 1, 1] special rep = [[1], [5, 1, 1]] , dim = 120 cell rep = phi[[],[5, 2, 1]]+phi[[1],[5, 1, 1]] TII depth = 3 TII multiplicity polynomial = 64*X^2+56*X TII subcells: tii[50,1] := {118, 153} tii[50,2] := {104, 147} tii[50,3] := {59, 100} tii[50,4] := {43, 111} tii[50,5] := {143, 170} tii[50,6] := {135, 167} tii[50,7] := {158, 177} tii[50,8] := {74, 121} tii[50,9] := {144, 171} tii[50,10] := {63, 125} tii[50,11] := {161, 180} tii[50,12] := {159, 178} tii[50,13] := {60, 101} tii[50,14] := {132, 165} tii[50,15] := {44, 112} tii[50,16] := {150, 176} tii[50,17] := {91, 130} tii[50,18] := {79, 137} tii[50,19] := {109, 152} tii[50,20] := {110, 160} tii[50,21] := {2} tii[50,22] := {6} tii[50,23] := {89, 128} tii[50,24] := {0} tii[50,25] := {58, 99} tii[50,26] := {29, 70} tii[50,27] := {7} tii[50,28] := {19} tii[50,29] := {22} tii[50,30] := {134, 166} tii[50,31] := {16} tii[50,32] := {119, 154} tii[50,33] := {5} tii[50,34] := {76, 122} tii[50,35] := {136, 169} tii[50,36] := {47, 95} tii[50,37] := {14} tii[50,38] := {37} tii[50,39] := {39} tii[50,40] := {90, 129} tii[50,41] := {1} tii[50,42] := {108, 151} tii[50,43] := {30, 71} tii[50,44] := {8} tii[50,45] := {20} tii[50,46] := {23} tii[50,47] := {77, 126} tii[50,48] := {17} tii[50,49] := {49} tii[50,50] := {51} tii[50,51] := {82} tii[50,52] := {85} tii[50,53] := {116} tii[50,54] := {41} tii[50,55] := {15} tii[50,56] := {107, 149} tii[50,57] := {34} tii[50,58] := {80, 123} tii[50,59] := {65} tii[50,60] := {67} tii[50,61] := {105, 148} tii[50,62] := {4} tii[50,63] := {45, 94} tii[50,64] := {124, 164} tii[50,65] := {13} tii[50,66] := {36} tii[50,67] := {38} tii[50,68] := {96, 146} tii[50,69] := {35} tii[50,70] := {64} tii[50,71] := {66} tii[50,72] := {97} tii[50,73] := {98} tii[50,74] := {145, 183} tii[50,75] := {131} tii[50,76] := {3} tii[50,77] := {9} tii[50,78] := {31, 72} tii[50,79] := {21} tii[50,80] := {24} tii[50,81] := {78, 127} tii[50,82] := {18} tii[50,83] := {50} tii[50,84] := {52} tii[50,85] := {83} tii[50,86] := {86} tii[50,87] := {133, 182} tii[50,88] := {117} tii[50,89] := {42} tii[50,90] := {81} tii[50,91] := {84} tii[50,92] := {113} tii[50,93] := {114} tii[50,94] := {93, 173} tii[50,95] := {140} tii[50,96] := {138} tii[50,97] := {139} tii[50,98] := {73, 175} tii[50,99] := {162} tii[50,100] := {174} tii[50,101] := {10, 55} tii[50,102] := {120, 181} tii[50,103] := {26, 69} tii[50,104] := {92, 172} tii[50,105] := {11, 56} tii[50,106] := {61, 156} tii[50,107] := {27, 87} tii[50,108] := {32, 141} tii[50,109] := {53, 103} tii[50,110] := {106, 179} tii[50,111] := {25, 68} tii[50,112] := {75, 168} tii[50,113] := {40, 102} tii[50,114] := {46, 155} tii[50,115] := {12, 57} tii[50,116] := {62, 157} tii[50,117] := {28, 88} tii[50,118] := {33, 142} tii[50,119] := {54, 115} tii[50,120] := {48, 163} cell#2 , |C| = 350 special orbit = [7, 5, 1, 1, 1, 1] special rep = [[2], [4, 1, 1]] , dim = 280 cell rep = phi[[],[4, 3, 1]]+phi[[2],[4, 1, 1]] TII depth = 4 TII multiplicity polynomial = 70*X^2+210*X TII subcells: tii[43,1] := {28, 287} tii[43,2] := {132, 225} tii[43,3] := {270} tii[43,4] := {52, 312} tii[43,5] := {73, 296} tii[43,6] := {181, 263} tii[43,7] := {165, 257} tii[43,8] := {299} tii[43,9] := {87, 329} tii[43,10] := {224, 295} tii[43,11] := {53, 332} tii[43,12] := {140, 233} tii[43,13] := {320} tii[43,14] := {27, 330} tii[43,15] := {262, 316} tii[43,16] := {334} tii[43,17] := {227, 293} tii[43,18] := {341} tii[43,19] := {5} tii[43,20] := {31} tii[43,21] := {7, 213} tii[43,22] := {44, 120} tii[43,23] := {95} tii[43,24] := {96} tii[43,25] := {147} tii[43,26] := {156} tii[43,27] := {15} tii[43,28] := {12, 254} tii[43,29] := {55} tii[43,30] := {40} tii[43,31] := {41, 265} tii[43,32] := {119, 216} tii[43,33] := {4, 215} tii[43,34] := {60, 141} tii[43,35] := {137} tii[43,36] := {138} tii[43,37] := {75} tii[43,38] := {121} tii[43,39] := {196} tii[43,40] := {124} tii[43,41] := {204} tii[43,42] := {90} tii[43,43] := {18, 294} tii[43,44] := {97, 188} tii[43,45] := {77, 167} tii[43,46] := {6, 288} tii[43,47] := {183} tii[43,48] := {185} tii[43,49] := {57} tii[43,50] := {102} tii[43,51] := {238} tii[43,52] := {108} tii[43,53] := {244} tii[43,54] := {118, 214} tii[43,55] := {229} tii[43,56] := {231} tii[43,57] := {192} tii[43,58] := {277} tii[43,59] := {200} tii[43,60] := {281} tii[43,61] := {304} tii[43,62] := {308} tii[43,63] := {328} tii[43,64] := {38} tii[43,65] := {89} tii[43,66] := {72} tii[43,67] := {29, 289} tii[43,68] := {184} tii[43,69] := {186} tii[43,70] := {99, 190} tii[43,71] := {14, 256} tii[43,72] := {116} tii[43,73] := {239} tii[43,74] := {168} tii[43,75] := {245} tii[43,76] := {172} tii[43,77] := {30, 317} tii[43,78] := {88} tii[43,79] := {131} tii[43,80] := {139, 232} tii[43,81] := {11, 313} tii[43,82] := {39, 272} tii[43,83] := {98, 189} tii[43,84] := {228} tii[43,85] := {230} tii[43,86] := {135} tii[43,87] := {92} tii[43,88] := {144} tii[43,89] := {194} tii[43,90] := {276} tii[43,91] := {153} tii[43,92] := {202} tii[43,93] := {280} tii[43,94] := {3, 290} tii[43,95] := {117} tii[43,96] := {136, 226} tii[43,97] := {267} tii[43,98] := {269} tii[43,99] := {169} tii[43,100] := {236} tii[43,101] := {303} tii[43,102] := {173} tii[43,103] := {242} tii[43,104] := {307} tii[43,105] := {217} tii[43,106] := {323} tii[43,107] := {218} tii[43,108] := {325} tii[43,109] := {260} tii[43,110] := {339} tii[43,111] := {180} tii[43,112] := {266} tii[43,113] := {268} tii[43,114] := {187, 271} tii[43,115] := {134} tii[43,116] := {302} tii[43,117] := {193} tii[43,118] := {306} tii[43,119] := {201} tii[43,120] := {182, 264} tii[43,121] := {93} tii[43,122] := {297} tii[43,123] := {298} tii[43,124] := {145} tii[43,125] := {274} tii[43,126] := {322} tii[43,127] := {154} tii[43,128] := {278} tii[43,129] := {324} tii[43,130] := {198} tii[43,131] := {336} tii[43,132] := {206} tii[43,133] := {338} tii[43,134] := {68, 340} tii[43,135] := {252} tii[43,136] := {344} tii[43,137] := {318} tii[43,138] := {319} tii[43,139] := {335} tii[43,140] := {301} tii[43,141] := {337} tii[43,142] := {305} tii[43,143] := {275} tii[43,144] := {342} tii[43,145] := {279} tii[43,146] := {343} tii[43,147] := {179, 326} tii[43,148] := {311} tii[43,149] := {347} tii[43,150] := {345} tii[43,151] := {346} tii[43,152] := {333} tii[43,153] := {348} tii[43,154] := {349} tii[43,155] := {0} tii[43,156] := {8} tii[43,157] := {20} tii[43,158] := {21} tii[43,159] := {17} tii[43,160] := {1, 166} tii[43,161] := {13} tii[43,162] := {42} tii[43,163] := {34} tii[43,164] := {78} tii[43,165] := {35} tii[43,166] := {81} tii[43,167] := {19} tii[43,168] := {62} tii[43,169] := {47} tii[43,170] := {65} tii[43,171] := {48} tii[43,172] := {80} tii[43,173] := {83} tii[43,174] := {130} tii[43,175] := {54} tii[43,176] := {32} tii[43,177] := {94} tii[43,178] := {16, 234} tii[43,179] := {146} tii[43,180] := {64} tii[43,181] := {155} tii[43,182] := {67} tii[43,183] := {2, 255} tii[43,184] := {76} tii[43,185] := {33} tii[43,186] := {101} tii[43,187] := {122} tii[43,188] := {63} tii[43,189] := {107} tii[43,190] := {125} tii[43,191] := {66} tii[43,192] := {171} tii[43,193] := {106} tii[43,194] := {175} tii[43,195] := {112} tii[43,196] := {23, 176} tii[43,197] := {222} tii[43,198] := {164} tii[43,199] := {43} tii[43,200] := {142} tii[43,201] := {79} tii[43,202] := {151} tii[43,203] := {82} tii[43,204] := {148} tii[43,205] := {123} tii[43,206] := {157} tii[43,207] := {126} tii[43,208] := {24, 314} tii[43,209] := {69, 161} tii[43,210] := {178} tii[43,211] := {210} tii[43,212] := {170} tii[43,213] := {174} tii[43,214] := {74, 259} tii[43,215] := {221} tii[43,216] := {247} tii[43,217] := {258} tii[43,218] := {56} tii[43,219] := {105} tii[43,220] := {111} tii[43,221] := {59} tii[43,222] := {143} tii[43,223] := {104} tii[43,224] := {152} tii[43,225] := {110} tii[43,226] := {150} tii[43,227] := {159} tii[43,228] := {49, 219} tii[43,229] := {212} tii[43,230] := {58} tii[43,231] := {191} tii[43,232] := {103} tii[43,233] := {199} tii[43,234] := {109} tii[43,235] := {197} tii[43,236] := {149} tii[43,237] := {205} tii[43,238] := {158} tii[43,239] := {36, 331} tii[43,240] := {84, 249} tii[43,241] := {113, 207} tii[43,242] := {211} tii[43,243] := {251} tii[43,244] := {195} tii[43,245] := {203} tii[43,246] := {22, 315} tii[43,247] := {91, 283} tii[43,248] := {127, 220} tii[43,249] := {282} tii[43,250] := {250} tii[43,251] := {45, 292} tii[43,252] := {273} tii[43,253] := {235} tii[43,254] := {241} tii[43,255] := {240} tii[43,256] := {246} tii[43,257] := {160, 248} tii[43,258] := {285} tii[43,259] := {237} tii[43,260] := {243} tii[43,261] := {133, 310} tii[43,262] := {114, 208} tii[43,263] := {309} tii[43,264] := {284} tii[43,265] := {100, 286} tii[43,266] := {300} tii[43,267] := {327} tii[43,268] := {321} tii[43,269] := {9, 128} tii[43,270] := {25, 86} tii[43,271] := {50, 209} tii[43,272] := {10, 291} tii[43,273] := {85, 177} tii[43,274] := {37, 115} tii[43,275] := {26, 261} tii[43,276] := {51, 129} tii[43,277] := {46, 223} tii[43,278] := {70, 163} tii[43,279] := {71, 162} tii[43,280] := {61, 253} cell#3 , |C| = 35 special orbit = [9, 1, 1, 1, 1, 1, 1, 1] special rep = [[], [5, 1, 1, 1]] , dim = 35 cell rep = phi[[],[5, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 35*X TII subcells: tii[49,1] := {28} tii[49,2] := {15} tii[49,3] := {25} tii[49,4] := {16} tii[49,5] := {4} tii[49,6] := {14} tii[49,7] := {5} tii[49,8] := {26} tii[49,9] := {13} tii[49,10] := {6} tii[49,11] := {0} tii[49,12] := {9} tii[49,13] := {1} tii[49,14] := {18} tii[49,15] := {8} tii[49,16] := {2} tii[49,17] := {29} tii[49,18] := {17} tii[49,19] := {7} tii[49,20] := {3} tii[49,21] := {32} tii[49,22] := {19} tii[49,23] := {27} tii[49,24] := {20} tii[49,25] := {30} tii[49,26] := {10} tii[49,27] := {22} tii[49,28] := {11} tii[49,29] := {23} tii[49,30] := {33} tii[49,31] := {21} tii[49,32] := {31} tii[49,33] := {12} tii[49,34] := {24} tii[49,35] := {34} cell#4 , |C| = 280 special orbit = [7, 3, 3, 1, 1, 1] special rep = [[1], [4, 2, 1]] , dim = 280 cell rep = phi[[1],[4, 2, 1]] TII depth = 4 TII multiplicity polynomial = 280*X TII subcells: tii[41,1] := {253} tii[41,2] := {216} tii[41,3] := {96} tii[41,4] := {267} tii[41,5] := {268} tii[41,6] := {264} tii[41,7] := {265} tii[41,8] := {244} tii[41,9] := {234} tii[41,10] := {235} tii[41,11] := {133} tii[41,12] := {275} tii[41,13] := {262} tii[41,14] := {263} tii[41,15] := {278} tii[41,16] := {218} tii[41,17] := {219} tii[41,18] := {98} tii[41,19] := {276} tii[41,20] := {272} tii[41,21] := {146} tii[41,22] := {147} tii[41,23] := {260} tii[41,24] := {192} tii[41,25] := {50} tii[41,26] := {36} tii[41,27] := {190} tii[41,28] := {7} tii[41,29] := {94} tii[41,30] := {252} tii[41,31] := {86} tii[41,32] := {230} tii[41,33] := {241} tii[41,34] := {71} tii[41,35] := {229} tii[41,36] := {116} tii[41,37] := {242} tii[41,38] := {195} tii[41,39] := {196} tii[41,40] := {12} tii[41,41] := {193} tii[41,42] := {194} tii[41,43] := {135} tii[41,44] := {84} tii[41,45] := {119} tii[41,46] := {123} tii[41,47] := {215} tii[41,48] := {117} tii[41,49] := {261} tii[41,50] := {177} tii[41,51] := {144} tii[41,52] := {8} tii[41,53] := {176} tii[41,54] := {145} tii[41,55] := {254} tii[41,56] := {68} tii[41,57] := {99} tii[41,58] := {103} tii[41,59] := {95} tii[41,60] := {191} tii[41,61] := {23} tii[41,62] := {42} tii[41,63] := {45} tii[41,64] := {131} tii[41,65] := {255} tii[41,66] := {165} tii[41,67] := {256} tii[41,68] := {118} tii[41,69] := {232} tii[41,70] := {39} tii[41,71] := {181} tii[41,72] := {233} tii[41,73] := {129} tii[41,74] := {168} tii[41,75] := {171} tii[41,76] := {243} tii[41,77] := {273} tii[41,78] := {211} tii[41,79] := {167} tii[41,80] := {223} tii[41,81] := {269} tii[41,82] := {11} tii[41,83] := {222} tii[41,84] := {246} tii[41,85] := {247} tii[41,86] := {178} tii[41,87] := {179} tii[41,88] := {163} tii[41,89] := {115} tii[41,90] := {150} tii[41,91] := {197} tii[41,92] := {154} tii[41,93] := {200} tii[41,94] := {132} tii[41,95] := {257} tii[41,96] := {130} tii[41,97] := {217} tii[41,98] := {37} tii[41,99] := {169} tii[41,100] := {56} tii[41,101] := {172} tii[41,102] := {59} tii[41,103] := {212} tii[41,104] := {213} tii[41,105] := {240} tii[41,106] := {210} tii[41,107] := {248} tii[41,108] := {249} tii[41,109] := {10} tii[41,110] := {164} tii[41,111] := {198} tii[41,112] := {201} tii[41,113] := {97} tii[41,114] := {245} tii[41,115] := {113} tii[41,116] := {25} tii[41,117] := {148} tii[41,118] := {43} tii[41,119] := {152} tii[41,120] := {46} tii[41,121] := {199} tii[41,122] := {202} tii[41,123] := {279} tii[41,124] := {238} tii[41,125] := {51} tii[41,126] := {76} tii[41,127] := {81} tii[41,128] := {122} tii[41,129] := {126} tii[41,130] := {274} tii[41,131] := {175} tii[41,132] := {237} tii[41,133] := {24} tii[41,134] := {9} tii[41,135] := {189} tii[41,136] := {70} tii[41,137] := {142} tii[41,138] := {143} tii[41,139] := {13} tii[41,140] := {48} tii[41,141] := {74} tii[41,142] := {79} tii[41,143] := {93} tii[41,144] := {22} tii[41,145] := {41} tii[41,146] := {44} tii[41,147] := {14} tii[41,148] := {17} tii[41,149] := {31} tii[41,150] := {166} tii[41,151] := {220} tii[41,152] := {40} tii[41,153] := {114} tii[41,154] := {221} tii[41,155] := {149} tii[41,156] := {153} tii[41,157] := {134} tii[41,158] := {231} tii[41,159] := {85} tii[41,160] := {38} tii[41,161] := {120} tii[41,162] := {57} tii[41,163] := {124} tii[41,164] := {60} tii[41,165] := {170} tii[41,166] := {27} tii[41,167] := {173} tii[41,168] := {29} tii[41,169] := {156} tii[41,170] := {157} tii[41,171] := {214} tii[41,172] := {55} tii[41,173] := {49} tii[41,174] := {75} tii[41,175] := {80} tii[41,176] := {121} tii[41,177] := {15} tii[41,178] := {125} tii[41,179] := {18} tii[41,180] := {270} tii[41,181] := {136} tii[41,182] := {33} tii[41,183] := {174} tii[41,184] := {137} tii[41,185] := {77} tii[41,186] := {82} tii[41,187] := {236} tii[41,188] := {65} tii[41,189] := {64} tii[41,190] := {127} tii[41,191] := {161} tii[41,192] := {73} tii[41,193] := {180} tii[41,194] := {72} tii[41,195] := {101} tii[41,196] := {105} tii[41,197] := {58} tii[41,198] := {61} tii[41,199] := {203} tii[41,200] := {204} tii[41,201] := {92} tii[41,202] := {69} tii[41,203] := {100} tii[41,204] := {104} tii[41,205] := {26} tii[41,206] := {151} tii[41,207] := {28} tii[41,208] := {155} tii[41,209] := {277} tii[41,210] := {186} tii[41,211] := {224} tii[41,212] := {225} tii[41,213] := {53} tii[41,214] := {187} tii[41,215] := {207} tii[41,216] := {102} tii[41,217] := {106} tii[41,218] := {271} tii[41,219] := {250} tii[41,220] := {88} tii[41,221] := {87} tii[41,222] := {160} tii[41,223] := {205} tii[41,224] := {206} tii[41,225] := {259} tii[41,226] := {188} tii[41,227] := {16} tii[41,228] := {19} tii[41,229] := {226} tii[41,230] := {35} tii[41,231] := {227} tii[41,232] := {78} tii[41,233] := {83} tii[41,234] := {266} tii[41,235] := {67} tii[41,236] := {66} tii[41,237] := {182} tii[41,238] := {183} tii[41,239] := {128} tii[41,240] := {251} tii[41,241] := {162} tii[41,242] := {111} tii[41,243] := {112} tii[41,244] := {209} tii[41,245] := {2} tii[41,246] := {107} tii[41,247] := {108} tii[41,248] := {6} tii[41,249] := {62} tii[41,250] := {63} tii[41,251] := {0} tii[41,252] := {30} tii[41,253] := {21} tii[41,254] := {184} tii[41,255] := {185} tii[41,256] := {258} tii[41,257] := {158} tii[41,258] := {159} tii[41,259] := {5} tii[41,260] := {89} tii[41,261] := {90} tii[41,262] := {239} tii[41,263] := {54} tii[41,264] := {109} tii[41,265] := {110} tii[41,266] := {1} tii[41,267] := {208} tii[41,268] := {32} tii[41,269] := {47} tii[41,270] := {140} tii[41,271] := {141} tii[41,272] := {20} tii[41,273] := {91} tii[41,274] := {138} tii[41,275] := {4} tii[41,276] := {139} tii[41,277] := {228} tii[41,278] := {52} tii[41,279] := {3} tii[41,280] := {34} cell#5 , |C| = 616 special orbit = [5, 5, 3, 1, 1, 1] special rep = [[2], [3, 2, 1]] , dim = 448 cell rep = phi[[1],[3, 3, 1]]+phi[[2],[3, 2, 1]] TII depth = 3 TII multiplicity polynomial = 168*X^2+280*X TII subcells: tii[31,1] := {426, 565} tii[31,2] := {495} tii[31,3] := {242, 530} tii[31,4] := {482, 588} tii[31,5] := {407, 569} tii[31,6] := {467} tii[31,7] := {537} tii[31,8] := {241, 585} tii[31,9] := {528, 601} tii[31,10] := {284, 567} tii[31,11] := {466} tii[31,12] := {520, 604} tii[31,13] := {568} tii[31,14] := {563, 609} tii[31,15] := {534} tii[31,16] := {590} tii[31,17] := {586, 613} tii[31,18] := {603} tii[31,19] := {15, 165} tii[31,20] := {97} tii[31,21] := {209, 435} tii[31,22] := {75} tii[31,23] := {38, 243} tii[31,24] := {163, 484} tii[31,25] := {43, 229} tii[31,26] := {404} tii[31,27] := {80, 361} tii[31,28] := {286, 488} tii[31,29] := {171} tii[31,30] := {174} tii[31,31] := {335, 536} tii[31,32] := {156} tii[31,33] := {261} tii[31,34] := {274} tii[31,35] := {76, 323} tii[31,36] := {101, 517} tii[31,37] := {359, 531} tii[31,38] := {136, 492} tii[31,39] := {228} tii[31,40] := {170} tii[31,41] := {173} tii[31,42] := {334} tii[31,43] := {406, 570} tii[31,44] := {57, 468} tii[31,45] := {135, 374} tii[31,46] := {210, 444} tii[31,47] := {260} tii[31,48] := {216, 451} tii[31,49] := {273} tii[31,50] := {380} tii[31,51] := {465, 587} tii[31,52] := {303} tii[31,53] := {381} tii[31,54] := {386} tii[31,55] := {130} tii[31,56] := {78, 324} tii[31,57] := {134, 431} tii[31,58] := {84, 307} tii[31,59] := {247} tii[31,60] := {251} tii[31,61] := {362, 532} tii[31,62] := {230} tii[31,63] := {343} tii[31,64] := {349} tii[31,65] := {164, 558} tii[31,66] := {204} tii[31,67] := {132, 399} tii[31,68] := {166, 487} tii[31,69] := {207, 535} tii[31,70] := {429, 566} tii[31,71] := {109, 379} tii[31,72] := {306} tii[31,73] := {103, 519} tii[31,74] := {246} tii[31,75] := {250} tii[31,76] := {327} tii[31,77] := {331} tii[31,78] := {285} tii[31,79] := {405} tii[31,80] := {469, 591} tii[31,81] := {206, 436} tii[31,82] := {366} tii[31,83] := {341} tii[31,84] := {290, 499} tii[31,85] := {411} tii[31,86] := {369} tii[31,87] := {348} tii[31,88] := {294, 505} tii[31,89] := {417} tii[31,90] := {139, 494} tii[31,91] := {518, 600} tii[31,92] := {401} tii[31,93] := {403} tii[31,94] := {441} tii[31,95] := {169, 439} tii[31,96] := {376} tii[31,97] := {338} tii[31,98] := {259, 498} tii[31,99] := {443} tii[31,100] := {472} tii[31,101] := {345} tii[31,102] := {270, 504} tii[31,103] := {450} tii[31,104] := {476} tii[31,105] := {522} tii[31,106] := {524} tii[31,107] := {562} tii[31,108] := {202, 464} tii[31,109] := {167, 560} tii[31,110] := {326} tii[31,111] := {330} tii[31,112] := {485, 589} tii[31,113] := {378} tii[31,114] := {283, 489} tii[31,115] := {410} tii[31,116] := {364, 540} tii[31,117] := {416} tii[31,118] := {367, 546} tii[31,119] := {493} tii[31,120] := {559, 608} tii[31,121] := {400} tii[31,122] := {402} tii[31,123] := {325, 533} tii[31,124] := {438} tii[31,125] := {337} tii[31,126] := {497} tii[31,127] := {409, 571} tii[31,128] := {471} tii[31,129] := {344} tii[31,130] := {503} tii[31,131] := {415, 574} tii[31,132] := {475} tii[31,133] := {365, 592} tii[31,134] := {521} tii[31,135] := {368, 593} tii[31,136] := {523} tii[31,137] := {433, 605} tii[31,138] := {561} tii[31,139] := {490} tii[31,140] := {538} tii[31,141] := {544} tii[31,142] := {572} tii[31,143] := {575} tii[31,144] := {564, 615} tii[31,145] := {595} tii[31,146] := {611} tii[31,147] := {2, 62} tii[31,148] := {37} tii[31,149] := {5, 110} tii[31,150] := {18, 155} tii[31,151] := {105} tii[31,152] := {107} tii[31,153] := {41, 288} tii[31,154] := {26} tii[31,155] := {182} tii[31,156] := {46} tii[31,157] := {194} tii[31,158] := {49} tii[31,159] := {59} tii[31,160] := {60} tii[31,161] := {17, 336} tii[31,162] := {42, 227} tii[31,163] := {30} tii[31,164] := {114} tii[31,165] := {86, 308} tii[31,166] := {32} tii[31,167] := {123} tii[31,168] := {90, 312} tii[31,169] := {157} tii[31,170] := {158} tii[31,171] := {238} tii[31,172] := {131} tii[31,173] := {102, 428} tii[31,174] := {20, 176} tii[31,175] := {53} tii[31,176] := {61, 305} tii[31,177] := {245} tii[31,178] := {249} tii[31,179] := {205} tii[31,180] := {85} tii[31,181] := {289} tii[31,182] := {340} tii[31,183] := {89} tii[31,184] := {293} tii[31,185] := {347} tii[31,186] := {83, 440} tii[31,187] := {29, 408} tii[31,188] := {106} tii[31,189] := {108} tii[31,190] := {328} tii[31,191] := {332} tii[31,192] := {82, 304} tii[31,193] := {137} tii[31,194] := {104, 375} tii[31,195] := {111} tii[31,196] := {142, 382} tii[31,197] := {256} tii[31,198] := {412} tii[31,199] := {183} tii[31,200] := {212} tii[31,201] := {181, 442} tii[31,202] := {64} tii[31,203] := {118} tii[31,204] := {148, 387} tii[31,205] := {267} tii[31,206] := {418} tii[31,207] := {195} tii[31,208] := {218} tii[31,209] := {191, 449} tii[31,210] := {68} tii[31,211] := {88, 310} tii[31,212] := {473} tii[31,213] := {144} tii[31,214] := {232} tii[31,215] := {92, 314} tii[31,216] := {477} tii[31,217] := {150} tii[31,218] := {234} tii[31,219] := {154, 394} tii[31,220] := {526} tii[31,221] := {320} tii[31,222] := {225} tii[31,223] := {248} tii[31,224] := {252} tii[31,225] := {168, 437} tii[31,226] := {112} tii[31,227] := {342} tii[31,228] := {180} tii[31,229] := {258, 496} tii[31,230] := {119} tii[31,231] := {350} tii[31,232] := {190} tii[31,233] := {269, 502} tii[31,234] := {115} tii[31,235] := {414} tii[31,236] := {309} tii[31,237] := {211, 541} tii[31,238] := {121} tii[31,239] := {420} tii[31,240] := {313} tii[31,241] := {217, 547} tii[31,242] := {297, 512} tii[31,243] := {298, 580} tii[31,244] := {393} tii[31,245] := {481} tii[31,246] := {36, 421} tii[31,247] := {198} tii[31,248] := {448} tii[31,249] := {455} tii[31,250] := {427, 602} tii[31,251] := {459} tii[31,252] := {515} tii[31,253] := {318} tii[31,254] := {557} tii[31,255] := {44, 253} tii[31,256] := {95} tii[31,257] := {140} tii[31,258] := {146} tii[31,259] := {172} tii[31,260] := {175} tii[31,261] := {58, 470} tii[31,262] := {208} tii[31,263] := {138, 377} tii[31,264] := {177} tii[31,265] := {292} tii[31,266] := {213, 445} tii[31,267] := {262} tii[31,268] := {113} tii[31,269] := {187} tii[31,270] := {296} tii[31,271] := {219, 452} tii[31,272] := {275} tii[31,273] := {120} tii[31,274] := {215} tii[31,275] := {145, 385} tii[31,276] := {311} tii[31,277] := {221} tii[31,278] := {151, 390} tii[31,279] := {315} tii[31,280] := {226, 462} tii[31,281] := {395} tii[31,282] := {302} tii[31,283] := {329} tii[31,284] := {333} tii[31,285] := {244, 491} tii[31,286] := {255} tii[31,287] := {179} tii[31,288] := {339, 539} tii[31,289] := {413} tii[31,290] := {257} tii[31,291] := {266} tii[31,292] := {189} tii[31,293] := {346, 545} tii[31,294] := {419} tii[31,295] := {268} tii[31,296] := {291, 573} tii[31,297] := {263} tii[31,298] := {186, 447} tii[31,299] := {384} tii[31,300] := {474} tii[31,301] := {185} tii[31,302] := {295, 576} tii[31,303] := {271} tii[31,304] := {196, 454} tii[31,305] := {389} tii[31,306] := {478} tii[31,307] := {193} tii[31,308] := {128, 434} tii[31,309] := {372, 596} tii[31,310] := {371, 554} tii[31,311] := {74, 479} tii[31,312] := {281, 514} tii[31,313] := {461} tii[31,314] := {356} tii[31,315] := {527} tii[31,316] := {280} tii[31,317] := {214, 543} tii[31,318] := {501} tii[31,319] := {220, 549} tii[31,320] := {507} tii[31,321] := {483, 610} tii[31,322] := {355, 553} tii[31,323] := {79, 458} tii[31,324] := {423} tii[31,325] := {511} tii[31,326] := {301, 582} tii[31,327] := {556} tii[31,328] := {392} tii[31,329] := {363, 598} tii[31,330] := {584} tii[31,331] := {254} tii[31,332] := {265} tii[31,333] := {264} tii[31,334] := {446} tii[31,335] := {272} tii[31,336] := {453} tii[31,337] := {129, 525} tii[31,338] := {432, 579} tii[31,339] := {513} tii[31,340] := {357} tii[31,341] := {542} tii[31,342] := {548} tii[31,343] := {529, 614} tii[31,344] := {422} tii[31,345] := {552} tii[31,346] := {203, 550} tii[31,347] := {480, 594} tii[31,348] := {457} tii[31,349] := {581} tii[31,350] := {486, 612} tii[31,351] := {597} tii[31,352] := {508} tii[31,353] := {577} tii[31,354] := {606} tii[31,355] := {10} tii[31,356] := {22} tii[31,357] := {23} tii[31,358] := {6} tii[31,359] := {7} tii[31,360] := {14} tii[31,361] := {81} tii[31,362] := {63} tii[31,363] := {141} tii[31,364] := {67} tii[31,365] := {147} tii[31,366] := {12} tii[31,367] := {87} tii[31,368] := {48, 231} tii[31,369] := {13} tii[31,370] := {91} tii[31,371] := {51, 233} tii[31,372] := {1, 71} tii[31,373] := {93, 319} tii[31,374] := {28} tii[31,375] := {153} tii[31,376] := {47} tii[31,377] := {50} tii[31,378] := {55} tii[31,379] := {152, 396} tii[31,380] := {11, 277} tii[31,381] := {94} tii[31,382] := {127} tii[31,383] := {178} tii[31,384] := {188} tii[31,385] := {184} tii[31,386] := {31} tii[31,387] := {117, 383} tii[31,388] := {192} tii[31,389] := {33} tii[31,390] := {124, 388} tii[31,391] := {73, 370} tii[31,392] := {8, 125} tii[31,393] := {199, 460} tii[31,394] := {279} tii[31,395] := {56} tii[31,396] := {65} tii[31,397] := {143, 500} tii[31,398] := {69} tii[31,399] := {149, 506} tii[31,400] := {223, 463} tii[31,401] := {351} tii[31,402] := {278, 510} tii[31,403] := {16, 353} tii[31,404] := {54, 299} tii[31,405] := {39, 391} tii[31,406] := {99} tii[31,407] := {224, 555} tii[31,408] := {25, 159} tii[31,409] := {126} tii[31,410] := {287, 583} tii[31,411] := {4, 282} tii[31,412] := {162} tii[31,413] := {276} tii[31,414] := {77, 456} tii[31,415] := {354, 551} tii[31,416] := {160} tii[31,417] := {360, 599} tii[31,418] := {239} tii[31,419] := {66} tii[31,420] := {70} tii[31,421] := {24, 197} tii[31,422] := {100} tii[31,423] := {116} tii[31,424] := {122} tii[31,425] := {96, 373} tii[31,426] := {40, 424} tii[31,427] := {300, 516} tii[31,428] := {161} tii[31,429] := {52, 235} tii[31,430] := {200} tii[31,431] := {19, 358} tii[31,432] := {240} tii[31,433] := {133, 509} tii[31,434] := {352} tii[31,435] := {425, 578} tii[31,436] := {237} tii[31,437] := {72, 317} tii[31,438] := {430, 607} tii[31,439] := {45, 397} tii[31,440] := {322} tii[31,441] := {316} tii[31,442] := {398} tii[31,443] := {0, 35} tii[31,444] := {27, 222} tii[31,445] := {9, 98} tii[31,446] := {3, 201} tii[31,447] := {34, 236} tii[31,448] := {21, 321} cell#6 , |C| = 280 special orbit = [7, 3, 3, 1, 1, 1] special rep = [[1], [4, 2, 1]] , dim = 280 cell rep = phi[[1],[4, 2, 1]] TII depth = 4 TII multiplicity polynomial = 280*X TII subcells: tii[41,1] := {217} tii[41,2] := {199} tii[41,3] := {178} tii[41,4] := {140} tii[41,5] := {242} tii[41,6] := {117} tii[41,7] := {248} tii[41,8] := {226} tii[41,9] := {189} tii[41,10] := {244} tii[41,11] := {209} tii[41,12] := {259} tii[41,13] := {116} tii[41,14] := {247} tii[41,15] := {270} tii[41,16] := {188} tii[41,17] := {243} tii[41,18] := {235} tii[41,19] := {276} tii[41,20] := {262} tii[41,21] := {208} tii[41,22] := {254} tii[41,23] := {272} tii[41,24] := {267} tii[41,25] := {11} tii[41,26] := {7} tii[41,27] := {152} tii[41,28] := {9} tii[41,29] := {101} tii[41,30] := {102} tii[41,31] := {24} tii[41,32] := {187} tii[41,33] := {80} tii[41,34] := {18} tii[41,35] := {67} tii[41,36] := {35} tii[41,37] := {227} tii[41,38] := {155} tii[41,39] := {219} tii[41,40] := {20} tii[41,41] := {42} tii[41,42] := {174} tii[41,43] := {138} tii[41,44] := {53} tii[41,45] := {89} tii[41,46] := {92} tii[41,47] := {51} tii[41,48] := {36} tii[41,49] := {241} tii[41,50] := {173} tii[41,51] := {122} tii[41,52] := {40} tii[41,53] := {31} tii[41,54] := {190} tii[41,55] := {257} tii[41,56] := {52} tii[41,57] := {88} tii[41,58] := {91} tii[41,59] := {106} tii[41,60] := {221} tii[41,61] := {68} tii[41,62] := {107} tii[41,63] := {109} tii[41,64] := {45} tii[41,65] := {103} tii[41,66] := {61} tii[41,67] := {218} tii[41,68] := {37} tii[41,69] := {70} tii[41,70] := {41} tii[41,71] := {175} tii[41,72] := {207} tii[41,73] := {85} tii[41,74] := {126} tii[41,75] := {130} tii[41,76] := {81} tii[41,77] := {258} tii[41,78] := {95} tii[41,79] := {63} tii[41,80] := {206} tii[41,81] := {269} tii[41,82] := {69} tii[41,83] := {56} tii[41,84] := {86} tii[41,85] := {233} tii[41,86] := {156} tii[41,87] := {220} tii[41,88] := {121} tii[41,89] := {84} tii[41,90] := {125} tii[41,91] := {160} tii[41,92] := {129} tii[41,93] := {165} tii[41,94] := {142} tii[41,95] := {261} tii[41,96] := {154} tii[41,97] := {245} tii[41,98] := {104} tii[41,99] := {192} tii[41,100] := {143} tii[41,101] := {196} tii[41,102] := {146} tii[41,103] := {223} tii[41,104] := {225} tii[41,105] := {250} tii[41,106] := {94} tii[41,107] := {87} tii[41,108] := {232} tii[41,109] := {105} tii[41,110] := {120} tii[41,111] := {159} tii[41,112] := {164} tii[41,113] := {177} tii[41,114] := {260} tii[41,115] := {153} tii[41,116] := {141} tii[41,117] := {191} tii[41,118] := {179} tii[41,119] := {195} tii[41,120] := {181} tii[41,121] := {222} tii[41,122] := {224} tii[41,123] := {279} tii[41,124] := {249} tii[41,125] := {176} tii[41,126] := {210} tii[41,127] := {212} tii[41,128] := {236} tii[41,129] := {237} tii[41,130] := {278} tii[41,131] := {255} tii[41,132] := {275} tii[41,133] := {5} tii[41,134] := {2} tii[41,135] := {39} tii[41,136] := {17} tii[41,137] := {21} tii[41,138] := {139} tii[41,139] := {3} tii[41,140] := {29} tii[41,141] := {57} tii[41,142] := {59} tii[41,143] := {10} tii[41,144] := {15} tii[41,145] := {33} tii[41,146] := {34} tii[41,147] := {22} tii[41,148] := {23} tii[41,149] := {47} tii[41,150] := {62} tii[41,151] := {55} tii[41,152] := {8} tii[41,153] := {83} tii[41,154] := {205} tii[41,155] := {124} tii[41,156] := {128} tii[41,157] := {16} tii[41,158] := {246} tii[41,159] := {118} tii[41,160] := {30} tii[41,161] := {157} tii[41,162] := {58} tii[41,163] := {162} tii[41,164] := {60} tii[41,165] := {193} tii[41,166] := {43} tii[41,167] := {197} tii[41,168] := {44} tii[41,169] := {78} tii[41,170] := {134} tii[41,171] := {230} tii[41,172] := {77} tii[41,173] := {82} tii[41,174] := {123} tii[41,175] := {127} tii[41,176] := {161} tii[41,177] := {71} tii[41,178] := {166} tii[41,179] := {73} tii[41,180] := {271} tii[41,181] := {65} tii[41,182] := {112} tii[41,183] := {204} tii[41,184] := {133} tii[41,185] := {145} tii[41,186] := {148} tii[41,187] := {253} tii[41,188] := {150} tii[41,189] := {76} tii[41,190] := {186} tii[41,191] := {216} tii[41,192] := {19} tii[41,193] := {32} tii[41,194] := {54} tii[41,195] := {90} tii[41,196] := {93} tii[41,197] := {72} tii[41,198] := {74} tii[41,199] := {114} tii[41,200] := {172} tii[41,201] := {113} tii[41,202] := {119} tii[41,203] := {158} tii[41,204] := {163} tii[41,205] := {108} tii[41,206] := {194} tii[41,207] := {110} tii[41,208] := {198} tii[41,209] := {277} tii[41,210] := {100} tii[41,211] := {136} tii[41,212] := {203} tii[41,213] := {151} tii[41,214] := {171} tii[41,215] := {231} tii[41,216] := {180} tii[41,217] := {182} tii[41,218] := {274} tii[41,219] := {265} tii[41,220] := {184} tii[41,221] := {111} tii[41,222] := {215} tii[41,223] := {168} tii[41,224] := {229} tii[41,225] := {264} tii[41,226] := {240} tii[41,227] := {144} tii[41,228] := {147} tii[41,229] := {137} tii[41,230] := {185} tii[41,231] := {202} tii[41,232] := {211} tii[41,233] := {213} tii[41,234] := {273} tii[41,235] := {214} tii[41,236] := {149} tii[41,237] := {167} tii[41,238] := {228} tii[41,239] := {239} tii[41,240] := {263} tii[41,241] := {256} tii[41,242] := {183} tii[41,243] := {238} tii[41,244] := {268} tii[41,245] := {0} tii[41,246] := {49} tii[41,247] := {97} tii[41,248] := {1} tii[41,249] := {28} tii[41,250] := {64} tii[41,251] := {4} tii[41,252] := {14} tii[41,253] := {6} tii[41,254] := {99} tii[41,255] := {170} tii[41,256] := {266} tii[41,257] := {131} tii[41,258] := {200} tii[41,259] := {12} tii[41,260] := {38} tii[41,261] := {98} tii[41,262] := {251} tii[41,263] := {27} tii[41,264] := {96} tii[41,265] := {169} tii[41,266] := {25} tii[41,267] := {234} tii[41,268] := {48} tii[41,269] := {13} tii[41,270] := {66} tii[41,271] := {135} tii[41,272] := {26} tii[41,273] := {50} tii[41,274] := {132} tii[41,275] := {46} tii[41,276] := {201} tii[41,277] := {252} tii[41,278] := {79} tii[41,279] := {75} tii[41,280] := {115} cell#7 , |C| = 616 special orbit = [5, 3, 3, 3, 1, 1] special rep = [[1, 1], [3, 2, 1]] , dim = 448 cell rep = phi[[1],[3, 2, 2]]+phi[[1, 1],[3, 2, 1]] TII depth = 4 TII multiplicity polynomial = 168*X^2+280*X TII subcells: tii[28,1] := {538, 597} tii[28,2] := {571, 611} tii[28,3] := {564, 604} tii[28,4] := {570, 614} tii[28,5] := {540, 606} tii[28,6] := {612, 613} tii[28,7] := {84} tii[28,8] := {131} tii[28,9] := {474, 566} tii[28,10] := {155, 156} tii[28,11] := {128} tii[28,12] := {109} tii[28,13] := {519, 596} tii[28,14] := {145, 314} tii[28,15] := {313, 445} tii[28,16] := {191} tii[28,17] := {438, 529} tii[28,18] := {188} tii[28,19] := {144, 353} tii[28,20] := {397, 541} tii[28,21] := {447, 574} tii[28,22] := {266} tii[28,23] := {352, 468} tii[28,24] := {228} tii[28,25] := {316} tii[28,26] := {328} tii[28,27] := {521, 522} tii[28,28] := {351} tii[28,29] := {403} tii[28,30] := {414} tii[28,31] := {226, 227} tii[28,32] := {189} tii[28,33] := {207, 402} tii[28,34] := {401, 517} tii[28,35] := {160} tii[28,36] := {267} tii[28,37] := {511, 579} tii[28,38] := {307, 308} tii[28,39] := {265} tii[28,40] := {478, 568} tii[28,41] := {477, 583} tii[28,42] := {284, 479} tii[28,43] := {231} tii[28,44] := {206, 441} tii[28,45] := {354} tii[28,46] := {440, 534} tii[28,47] := {362, 363} tii[28,48] := {520, 601} tii[28,49] := {309} tii[28,50] := {450, 451} tii[28,51] := {406} tii[28,52] := {456, 457} tii[28,53] := {418} tii[28,54] := {398, 542} tii[28,55] := {572, 573} tii[28,56] := {311} tii[28,57] := {365, 539} tii[28,58] := {437} tii[28,59] := {405} tii[28,60] := {449, 575} tii[28,61] := {481} tii[28,62] := {416} tii[28,63] := {455, 576} tii[28,64] := {491} tii[28,65] := {412} tii[28,66] := {423} tii[28,67] := {350} tii[28,68] := {513, 581} tii[28,69] := {283, 514} tii[28,70] := {442} tii[28,71] := {395} tii[28,72] := {484} tii[28,73] := {495} tii[28,74] := {599, 600} tii[28,75] := {364, 565} tii[28,76] := {510} tii[28,77] := {476} tii[28,78] := {448, 585} tii[28,79] := {543} tii[28,80] := {545} tii[28,81] := {454, 589} tii[28,82] := {550} tii[28,83] := {552} tii[28,84] := {549} tii[28,85] := {587} tii[28,86] := {556} tii[28,87] := {591} tii[28,88] := {609} tii[28,89] := {563} tii[28,90] := {584} tii[28,91] := {588} tii[28,92] := {607} tii[28,93] := {608} tii[28,94] := {615} tii[28,95] := {1} tii[28,96] := {8} tii[28,97] := {31} tii[28,98] := {104, 105} tii[28,99] := {3} tii[28,100] := {53} tii[28,101] := {97, 233} tii[28,102] := {16} tii[28,103] := {232, 360} tii[28,104] := {70} tii[28,105] := {68, 69} tii[28,106] := {7} tii[28,107] := {17} tii[28,108] := {19} tii[28,109] := {63, 193} tii[28,110] := {192, 305} tii[28,111] := {29} tii[28,112] := {106} tii[28,113] := {55} tii[28,114] := {162} tii[28,115] := {58} tii[28,116] := {173} tii[28,117] := {168} tii[28,118] := {175} tii[28,119] := {6} tii[28,120] := {224, 225} tii[28,121] := {399, 515} tii[28,122] := {87} tii[28,123] := {107, 108} tii[28,124] := {205, 400} tii[28,125] := {30} tii[28,126] := {15} tii[28,127] := {161} tii[28,128] := {277, 278} tii[28,129] := {32} tii[28,130] := {368, 369} tii[28,131] := {34} tii[28,132] := {377, 378} tii[28,133] := {268, 393} tii[28,134] := {98, 269} tii[28,135] := {312, 480} tii[28,136] := {157} tii[28,137] := {24} tii[28,138] := {279, 475} tii[28,139] := {203, 204} tii[28,140] := {230} tii[28,141] := {51} tii[28,142] := {234} tii[28,143] := {45} tii[28,144] := {366, 523} tii[28,145] := {315} tii[28,146] := {286, 287} tii[28,147] := {88} tii[28,148] := {245} tii[28,149] := {47} tii[28,150] := {375, 525} tii[28,151] := {325} tii[28,152] := {293, 294} tii[28,153] := {90} tii[28,154] := {322} tii[28,155] := {240} tii[28,156] := {167} tii[28,157] := {73} tii[28,158] := {211, 374} tii[28,159] := {332} tii[28,160] := {248} tii[28,161] := {174} tii[28,162] := {77} tii[28,163] := {216, 383} tii[28,164] := {123} tii[28,165] := {125} tii[28,166] := {300, 446} tii[28,167] := {85} tii[28,168] := {202, 439} tii[28,169] := {310} tii[28,170] := {132} tii[28,171] := {285, 482} tii[28,172] := {404} tii[28,173] := {134} tii[28,174] := {292, 492} tii[28,175] := {415} tii[28,176] := {320} tii[28,177] := {411} tii[28,178] := {163} tii[28,179] := {210, 409} tii[28,180] := {486} tii[28,181] := {330} tii[28,182] := {422} tii[28,183] := {169} tii[28,184] := {215, 420} tii[28,185] := {496} tii[28,186] := {299, 469} tii[28,187] := {272, 433} tii[28,188] := {253} tii[28,189] := {257} tii[28,190] := {559} tii[28,191] := {485} tii[28,192] := {494} tii[28,193] := {561} tii[28,194] := {460, 461} tii[28,195] := {14} tii[28,196] := {158, 159} tii[28,197] := {130} tii[28,198] := {52} tii[28,199] := {28} tii[28,200] := {54} tii[28,201] := {57} tii[28,202] := {146, 356} tii[28,203] := {355, 472} tii[28,204] := {281, 282} tii[28,205] := {229} tii[28,206] := {41} tii[28,207] := {86} tii[28,208] := {370, 371} tii[28,209] := {317} tii[28,210] := {71} tii[28,211] := {133} tii[28,212] := {379, 380} tii[28,213] := {329} tii[28,214] := {75} tii[28,215] := {135} tii[28,216] := {290, 453} tii[28,217] := {323} tii[28,218] := {239} tii[28,219] := {112} tii[28,220] := {297, 459} tii[28,221] := {333} tii[28,222] := {247} tii[28,223] := {117} tii[28,224] := {387, 518} tii[28,225] := {180} tii[28,226] := {183} tii[28,227] := {129} tii[28,228] := {396} tii[28,229] := {280, 512} tii[28,230] := {67} tii[28,231] := {483} tii[28,232] := {110} tii[28,233] := {194} tii[28,234] := {367, 544} tii[28,235] := {493} tii[28,236] := {115} tii[28,237] := {195} tii[28,238] := {376, 551} tii[28,239] := {410} tii[28,240] := {547} tii[28,241] := {235} tii[28,242] := {164} tii[28,243] := {373, 524} tii[28,244] := {321} tii[28,245] := {490} tii[28,246] := {289, 488} tii[28,247] := {421} tii[28,248] := {554} tii[28,249] := {242} tii[28,250] := {170} tii[28,251] := {382, 526} tii[28,252] := {331} tii[28,253] := {500} tii[28,254] := {296, 498} tii[28,255] := {425, 533} tii[28,256] := {593} tii[28,257] := {466, 569} tii[28,258] := {254} tii[28,259] := {258} tii[28,260] := {357, 506} tii[28,261] := {341} tii[28,262] := {344} tii[28,263] := {386, 535} tii[28,264] := {237} tii[28,265] := {487} tii[28,266] := {546} tii[28,267] := {244} tii[28,268] := {497} tii[28,269] := {553} tii[28,270] := {532, 598} tii[28,271] := {343} tii[28,272] := {346} tii[28,273] := {594} tii[28,274] := {560} tii[28,275] := {340, 503} tii[28,276] := {527, 528} tii[28,277] := {508} tii[28,278] := {190} tii[28,279] := {270} tii[28,280] := {271} tii[28,281] := {489} tii[28,282] := {318} tii[28,283] := {372, 548} tii[28,284] := {499} tii[28,285] := {326} tii[28,286] := {381, 555} tii[28,287] := {443, 558} tii[28,288] := {465, 582} tii[28,289] := {429} tii[28,290] := {431} tii[28,291] := {586} tii[28,292] := {407} tii[28,293] := {590} tii[28,294] := {417} tii[28,295] := {531, 605} tii[28,296] := {610} tii[28,297] := {577, 578} tii[28,298] := {504} tii[28,299] := {505} tii[28,300] := {501, 592} tii[28,301] := {595} tii[28,302] := {602, 603} tii[28,303] := {0} tii[28,304] := {43, 44} tii[28,305] := {4} tii[28,306] := {9} tii[28,307] := {10} tii[28,308] := {18} tii[28,309] := {20} tii[28,310] := {38} tii[28,311] := {12} tii[28,312] := {142, 143} tii[28,313] := {25} tii[28,314] := {208, 209} tii[28,315] := {26} tii[28,316] := {213, 214} tii[28,317] := {46} tii[28,318] := {147, 291} tii[28,319] := {33} tii[28,320] := {114} tii[28,321] := {48} tii[28,322] := {149, 298} tii[28,323] := {35} tii[28,324] := {119} tii[28,325] := {37} tii[28,326] := {81} tii[28,327] := {82} tii[28,328] := {220, 361} tii[28,329] := {61} tii[28,330] := {49, 127} tii[28,331] := {74} tii[28,332] := {99, 241} tii[28,333] := {78} tii[28,334] := {100, 249} tii[28,335] := {93} tii[28,336] := {124} tii[28,337] := {126} tii[28,338] := {154, 306} tii[28,339] := {136, 261} tii[28,340] := {39, 137} tii[28,341] := {222, 223} tii[28,342] := {42} tii[28,343] := {72} tii[28,344] := {76} tii[28,345] := {288, 452} tii[28,346] := {111} tii[28,347] := {56} tii[28,348] := {238} tii[28,349] := {295, 458} tii[28,350] := {116} tii[28,351] := {59} tii[28,352] := {246} tii[28,353] := {335, 464} tii[28,354] := {79, 185} tii[28,355] := {385, 516} tii[28,356] := {94} tii[28,357] := {60} tii[28,358] := {179} tii[28,359] := {182} tii[28,360] := {165} tii[28,361] := {113} tii[28,362] := {408} tii[28,363] := {148, 324} tii[28,364] := {171} tii[28,365] := {118} tii[28,366] := {419} tii[28,367] := {150, 334} tii[28,368] := {462, 567} tii[28,369] := {138} tii[28,370] := {196, 347} tii[28,371] := {255} tii[28,372] := {259} tii[28,373] := {80} tii[28,374] := {181} tii[28,375] := {184} tii[28,376] := {507} tii[28,377] := {221, 394} tii[28,378] := {101, 251} tii[28,379] := {250, 388} tii[28,380] := {252, 428} tii[28,381] := {65, 197} tii[28,382] := {436} tii[28,383] := {140, 264} tii[28,384] := {303, 304} tii[28,385] := {236} tii[28,386] := {243} tii[28,387] := {384, 530} tii[28,388] := {337, 502} tii[28,389] := {198} tii[28,390] := {342} tii[28,391] := {345} tii[28,392] := {102, 273} tii[28,393] := {509} tii[28,394] := {389, 390} tii[28,395] := {89} tii[28,396] := {91} tii[28,397] := {120, 262} tii[28,398] := {139} tii[28,399] := {92} tii[28,400] := {166} tii[28,401] := {212, 413} tii[28,402] := {172} tii[28,403] := {217, 424} tii[28,404] := {338, 467} tii[28,405] := {151, 339} tii[28,406] := {199} tii[28,407] := {274, 434} tii[28,408] := {121} tii[28,409] := {256} tii[28,410] := {260} tii[28,411] := {301, 473} tii[28,412] := {103, 275} tii[28,413] := {391, 392} tii[28,414] := {200, 349} tii[28,415] := {319} tii[28,416] := {327} tii[28,417] := {427, 557} tii[28,418] := {463, 580} tii[28,419] := {219, 426} tii[28,420] := {276} tii[28,421] := {430} tii[28,422] := {432} tii[28,423] := {153, 358} tii[28,424] := {178} tii[28,425] := {470, 471} tii[28,426] := {562} tii[28,427] := {263, 435} tii[28,428] := {218, 444} tii[28,429] := {359} tii[28,430] := {536, 537} tii[28,431] := {2} tii[28,432] := {22} tii[28,433] := {5} tii[28,434] := {27, 83} tii[28,435] := {13, 62} tii[28,436] := {64, 177} tii[28,437] := {11} tii[28,438] := {176, 302} tii[28,439] := {50} tii[28,440] := {95, 187} tii[28,441] := {23, 96} tii[28,442] := {152, 336} tii[28,443] := {21} tii[28,444] := {122} tii[28,445] := {186, 348} tii[28,446] := {40, 141} tii[28,447] := {36} tii[28,448] := {66, 201} cell#8 , |C| = 35 special orbit = [9, 1, 1, 1, 1, 1, 1, 1] special rep = [[], [5, 1, 1, 1]] , dim = 35 cell rep = phi[[],[5, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 35*X TII subcells: tii[49,1] := {17} tii[49,2] := {26} tii[49,3] := {18} tii[49,4] := {29} tii[49,5] := {33} tii[49,6] := {24} tii[49,7] := {32} tii[49,8] := {19} tii[49,9] := {30} tii[49,10] := {34} tii[49,11] := {27} tii[49,12] := {12} tii[49,13] := {23} tii[49,14] := {9} tii[49,15] := {15} tii[49,16] := {31} tii[49,17] := {3} tii[49,18] := {7} tii[49,19] := {16} tii[49,20] := {8} tii[49,21] := {20} tii[49,22] := {25} tii[49,23] := {21} tii[49,24] := {28} tii[49,25] := {22} tii[49,26] := {13} tii[49,27] := {10} tii[49,28] := {14} tii[49,29] := {11} tii[49,30] := {4} tii[49,31] := {6} tii[49,32] := {5} tii[49,33] := {2} tii[49,34] := {1} tii[49,35] := {0} cell#9 , |C| = 35 special orbit = [9, 1, 1, 1, 1, 1, 1, 1] special rep = [[], [5, 1, 1, 1]] , dim = 35 cell rep = phi[[],[5, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 35*X TII subcells: tii[49,1] := {7} tii[49,2] := {15} tii[49,3] := {8} tii[49,4] := {18} tii[49,5] := {24} tii[49,6] := {14} tii[49,7] := {23} tii[49,8] := {9} tii[49,9] := {19} tii[49,10] := {26} tii[49,11] := {16} tii[49,12] := {4} tii[49,13] := {13} tii[49,14] := {3} tii[49,15] := {6} tii[49,16] := {17} tii[49,17] := {0} tii[49,18] := {2} tii[49,19] := {5} tii[49,20] := {1} tii[49,21] := {29} tii[49,22] := {31} tii[49,23] := {30} tii[49,24] := {33} tii[49,25] := {34} tii[49,26] := {25} tii[49,27] := {22} tii[49,28] := {28} tii[49,29] := {32} tii[49,30] := {11} tii[49,31] := {21} tii[49,32] := {27} tii[49,33] := {10} tii[49,34] := {20} tii[49,35] := {12} cell#10 , |C| = 250 special orbit = [7, 3, 1, 1, 1, 1, 1, 1] special rep = [[1], [4, 1, 1, 1]] , dim = 160 cell rep = phi[[],[4, 2, 1, 1]]+phi[[1],[4, 1, 1, 1]] TII depth = 2 TII multiplicity polynomial = 90*X^2+70*X TII subcells: tii[39,1] := {164, 206} tii[39,2] := {89, 143} tii[39,3] := {71, 151} tii[39,4] := {193, 226} tii[39,5] := {47, 105} tii[39,6] := {162, 205} tii[39,7] := {35, 111} tii[39,8] := {184, 224} tii[39,9] := {84, 142} tii[39,10] := {70, 150} tii[39,11] := {108, 174} tii[39,12] := {109, 181} tii[39,13] := {216, 239} tii[39,14] := {29, 80} tii[39,15] := {191, 225} tii[39,16] := {20, 95} tii[39,17] := {210, 237} tii[39,18] := {159, 204} tii[39,19] := {64, 117} tii[39,20] := {53, 133} tii[39,21] := {91, 149} tii[39,22] := {183, 223} tii[39,23] := {211, 236} tii[39,24] := {92, 165} tii[39,25] := {102, 154} tii[39,26] := {93, 168} tii[39,27] := {130, 186} tii[39,28] := {167, 209} tii[39,29] := {132, 194} tii[39,30] := {166, 217} tii[39,31] := {45} tii[39,32] := {18} tii[39,33] := {129, 178} tii[39,34] := {94, 144} tii[39,35] := {32} tii[39,36] := {74} tii[39,37] := {78} tii[39,38] := {5} tii[39,39] := {125, 177} tii[39,40] := {54, 106} tii[39,41] := {147, 203} tii[39,42] := {13} tii[39,43] := {38} tii[39,44] := {40} tii[39,45] := {110, 175} tii[39,46] := {34} tii[39,47] := {73} tii[39,48] := {77} tii[39,49] := {114} tii[39,50] := {116} tii[39,51] := {156} tii[39,52] := {1} tii[39,53] := {122, 176} tii[39,54] := {4} tii[39,55] := {21, 67} tii[39,56] := {146, 202} tii[39,57] := {15} tii[39,58] := {16} tii[39,59] := {185, 222} tii[39,60] := {69, 141} tii[39,61] := {14} tii[39,62] := {37} tii[39,63] := {39} tii[39,64] := {75} tii[39,65] := {79} tii[39,66] := {163, 242} tii[39,67] := {121} tii[39,68] := {148, 201} tii[39,69] := {33} tii[39,70] := {72} tii[39,71] := {76} tii[39,72] := {113} tii[39,73] := {115} tii[39,74] := {85, 207} tii[39,75] := {155} tii[39,76] := {152} tii[39,77] := {153} tii[39,78] := {68, 213} tii[39,79] := {187} tii[39,80] := {212} tii[39,81] := {0} tii[39,82] := {2} tii[39,83] := {11, 44} tii[39,84] := {7} tii[39,85] := {8} tii[39,86] := {52, 112} tii[39,87] := {6} tii[39,88] := {24} tii[39,89] := {25} tii[39,90] := {58} tii[39,91] := {60} tii[39,92] := {192, 248} tii[39,93] := {101} tii[39,94] := {131, 182} tii[39,95] := {19} tii[39,96] := {57} tii[39,97] := {59} tii[39,98] := {97} tii[39,99] := {99} tii[39,100] := {65, 188} tii[39,101] := {160, 241} tii[39,102] := {139} tii[39,103] := {134} tii[39,104] := {136} tii[39,105] := {46, 198} tii[39,106] := {180, 247} tii[39,107] := {171} tii[39,108] := {161, 249} tii[39,109] := {195} tii[39,110] := {51} tii[39,111] := {96} tii[39,112] := {98} tii[39,113] := {135} tii[39,114] := {137} tii[39,115] := {103, 215} tii[39,116] := {172} tii[39,117] := {169} tii[39,118] := {170} tii[39,119] := {88, 220} tii[39,120] := {127, 232} tii[39,121] := {199} tii[39,122] := {104, 243} tii[39,123] := {218} tii[39,124] := {196} tii[39,125] := {197} tii[39,126] := {128, 235} tii[39,127] := {221} tii[39,128] := {83, 245} tii[39,129] := {233} tii[39,130] := {244} tii[39,131] := {61, 120} tii[39,132] := {126, 229} tii[39,133] := {26, 82} tii[39,134] := {90, 208} tii[39,135] := {41, 119} tii[39,136] := {55, 190} tii[39,137] := {123, 228} tii[39,138] := {9, 43} tii[39,139] := {145, 240} tii[39,140] := {48, 179} tii[39,141] := {17, 81} tii[39,142] := {124, 246} tii[39,143] := {22, 157} tii[39,144] := {107, 227} tii[39,145] := {42, 118} tii[39,146] := {86, 238} tii[39,147] := {36, 189} tii[39,148] := {49, 230} tii[39,149] := {3, 28} tii[39,150] := {30, 158} tii[39,151] := {10, 63} tii[39,152] := {12, 140} tii[39,153] := {87, 214} tii[39,154] := {27, 100} tii[39,155] := {66, 231} tii[39,156] := {23, 173} tii[39,157] := {31, 219} tii[39,158] := {62, 138} tii[39,159] := {56, 200} tii[39,160] := {50, 234} cell#11 , |C| = 250 special orbit = [7, 3, 1, 1, 1, 1, 1, 1] special rep = [[1], [4, 1, 1, 1]] , dim = 160 cell rep = phi[[],[4, 2, 1, 1]]+phi[[1],[4, 1, 1, 1]] TII depth = 2 TII multiplicity polynomial = 90*X^2+70*X TII subcells: tii[39,1] := {51, 202} tii[39,2] := {61, 196} tii[39,3] := {109, 164} tii[39,4] := {73, 219} tii[39,5] := {75, 216} tii[39,6] := {52, 228} tii[39,7] := {125, 176} tii[39,8] := {25, 220} tii[39,9] := {62, 230} tii[39,10] := {110, 165} tii[39,11] := {37, 213} tii[39,12] := {136, 185} tii[39,13] := {97, 233} tii[39,14] := {54, 197} tii[39,15] := {74, 241} tii[39,16] := {102, 152} tii[39,17] := {49, 234} tii[39,18] := {53, 247} tii[39,19] := {38, 215} tii[39,20] := {88, 137} tii[39,21] := {17, 194} tii[39,22] := {26, 240} tii[39,23] := {11, 235} tii[39,24] := {108, 162} tii[39,25] := {18, 229} tii[39,26] := {65, 111} tii[39,27] := {7, 212} tii[39,28] := {2, 201} tii[39,29] := {87, 135} tii[39,30] := {107, 161} tii[39,31] := {35} tii[39,32] := {60} tii[39,33] := {28, 183} tii[39,34] := {15, 163} tii[39,35] := {84} tii[39,36] := {112} tii[39,37] := {117} tii[39,38] := {76} tii[39,39] := {30, 214} tii[39,40] := {36, 177} tii[39,41] := {12, 203} tii[39,42] := {100} tii[39,43] := {127} tii[39,44] := {131} tii[39,45] := {5, 184} tii[39,46] := {85} tii[39,47] := {113} tii[39,48] := {118} tii[39,49] := {140} tii[39,50] := {144} tii[39,51] := {172} tii[39,52] := {98} tii[39,53] := {29, 242} tii[39,54] := {124} tii[39,55] := {50, 198} tii[39,56] := {13, 227} tii[39,57] := {153} tii[39,58] := {155} tii[39,59] := {4, 221} tii[39,60] := {16, 195} tii[39,61] := {99} tii[39,62] := {126} tii[39,63] := {130} tii[39,64] := {154} tii[39,65] := {156} tii[39,66] := {56, 238} tii[39,67] := {180} tii[39,68] := {1, 204} tii[39,69] := {86} tii[39,70] := {114} tii[39,71] := {119} tii[39,72] := {141} tii[39,73] := {145} tii[39,74] := {71, 232} tii[39,75] := {173} tii[39,76] := {167} tii[39,77] := {168} tii[39,78] := {106, 211} tii[39,79] := {191} tii[39,80] := {207} tii[39,81] := {77} tii[39,82] := {101} tii[39,83] := {27, 178} tii[39,84] := {128} tii[39,85] := {132} tii[39,86] := {6, 175} tii[39,87] := {78} tii[39,88] := {103} tii[39,89] := {104} tii[39,90] := {129} tii[39,91] := {133} tii[39,92] := {79, 245} tii[39,93] := {160} tii[39,94] := {0, 182} tii[39,95] := {64} tii[39,96] := {90} tii[39,97] := {92} tii[39,98] := {116} tii[39,99] := {121} tii[39,100] := {47, 217} tii[39,101] := {57, 248} tii[39,102] := {150} tii[39,103] := {139} tii[39,104] := {143} tii[39,105] := {83, 190} tii[39,106] := {32, 246} tii[39,107] := {171} tii[39,108] := {55, 249} tii[39,109] := {187} tii[39,110] := {41} tii[39,111] := {68} tii[39,112] := {69} tii[39,113] := {91} tii[39,114] := {93} tii[39,115] := {23, 231} tii[39,116] := {123} tii[39,117] := {115} tii[39,118] := {120} tii[39,119] := {63, 169} tii[39,120] := {9, 224} tii[39,121] := {149} tii[39,122] := {20, 236} tii[39,123] := {166} tii[39,124] := {138} tii[39,125] := {142} tii[39,126] := {82, 189} tii[39,127] := {170} tii[39,128] := {59, 206} tii[39,129] := {186} tii[39,130] := {205} tii[39,131] := {45, 146} tii[39,132] := {33, 225} tii[39,133] := {70, 158} tii[39,134] := {21, 210} tii[39,135] := {94, 147} tii[39,136] := {42, 192} tii[39,137] := {34, 243} tii[39,138] := {80, 179} tii[39,139] := {14, 239} tii[39,140] := {46, 218} tii[39,141] := {105, 157} tii[39,142] := {31, 244} tii[39,143] := {66, 200} tii[39,144] := {8, 226} tii[39,145] := {95, 148} tii[39,146] := {19, 237} tii[39,147] := {89, 193} tii[39,148] := {39, 223} tii[39,149] := {58, 159} tii[39,150] := {22, 199} tii[39,151] := {81, 134} tii[39,152] := {43, 181} tii[39,153] := {3, 209} tii[39,154] := {72, 122} tii[39,155] := {10, 222} tii[39,156] := {67, 174} tii[39,157] := {24, 208} tii[39,158] := {48, 96} tii[39,159] := {44, 151} tii[39,160] := {40, 188} cell#12 , |C| = 35 special orbit = [7, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[], [4, 1, 1, 1, 1]] , dim = 35 cell rep = phi[[],[4, 1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 35*X TII subcells: tii[38,1] := {33} tii[38,2] := {26} tii[38,3] := {31} tii[38,4] := {15} tii[38,5] := {25} tii[38,6] := {32} tii[38,7] := {11} tii[38,8] := {21} tii[38,9] := {30} tii[38,10] := {34} tii[38,11] := {3} tii[38,12] := {10} tii[38,13] := {23} tii[38,14] := {29} tii[38,15] := {22} tii[38,16] := {27} tii[38,17] := {16} tii[38,18] := {24} tii[38,19] := {17} tii[38,20] := {12} tii[38,21] := {19} tii[38,22] := {13} tii[38,23] := {28} tii[38,24] := {18} tii[38,25] := {14} tii[38,26] := {4} tii[38,27] := {8} tii[38,28] := {5} tii[38,29] := {20} tii[38,30] := {7} tii[38,31] := {6} tii[38,32] := {9} tii[38,33] := {2} tii[38,34] := {1} tii[38,35] := {0} cell#13 , |C| = 336 special orbit = [5, 5, 1, 1, 1, 1, 1, 1] special rep = [[2], [3, 1, 1, 1]] , dim = 280 cell rep = phi[[],[3, 3, 1, 1]]+phi[[2],[3, 1, 1, 1]] TII depth = 5 TII multiplicity polynomial = 56*X^2+224*X TII subcells: tii[29,1] := {70, 152} tii[29,2] := {200} tii[29,3] := {109, 193} tii[29,4] := {44, 119} tii[29,5] := {237} tii[29,6] := {150, 229} tii[29,7] := {266} tii[29,8] := {112, 190} tii[29,9] := {287} tii[29,10] := {151, 231} tii[29,11] := {267} tii[29,12] := {79, 162} tii[29,13] := {192, 261} tii[29,14] := {45, 120} tii[29,15] := {290} tii[29,16] := {155, 228} tii[29,17] := {75, 154} tii[29,18] := {304} tii[29,19] := {230, 284} tii[29,20] := {305} tii[29,21] := {195, 260} tii[29,22] := {156, 227} tii[29,23] := {315} tii[29,24] := {322} tii[29,25] := {11} tii[29,26] := {76} tii[29,27] := {77} tii[29,28] := {20, 82} tii[29,29] := {127} tii[29,30] := {136} tii[29,31] := {36} tii[29,32] := {43, 118} tii[29,33] := {115} tii[29,34] := {116} tii[29,35] := {15} tii[29,36] := {19, 81} tii[29,37] := {48} tii[29,38] := {170} tii[29,39] := {55} tii[29,40] := {177} tii[29,41] := {158} tii[29,42] := {160} tii[29,43] := {42, 111} tii[29,44] := {122} tii[29,45] := {211} tii[29,46] := {131} tii[29,47] := {217} tii[29,48] := {247} tii[29,49] := {252} tii[29,50] := {283} tii[29,51] := {69} tii[29,52] := {157} tii[29,53] := {159} tii[29,54] := {78, 161} tii[29,55] := {18, 80} tii[29,56] := {39} tii[29,57] := {210} tii[29,58] := {84} tii[29,59] := {216} tii[29,60] := {92} tii[29,61] := {74, 153} tii[29,62] := {41, 110} tii[29,63] := {16} tii[29,64] := {197} tii[29,65] := {199} tii[29,66] := {49} tii[29,67] := {166} tii[29,68] := {246} tii[29,69] := {56} tii[29,70] := {173} tii[29,71] := {251} tii[29,72] := {89} tii[29,73] := {274} tii[29,74] := {97} tii[29,75] := {278} tii[29,76] := {144} tii[29,77] := {301} tii[29,78] := {73, 149} tii[29,79] := {233} tii[29,80] := {235} tii[29,81] := {272} tii[29,82] := {206} tii[29,83] := {276} tii[29,84] := {212} tii[29,85] := {167} tii[29,86] := {294} tii[29,87] := {174} tii[29,88] := {297} tii[29,89] := {67, 253} tii[29,90] := {222} tii[29,91] := {312} tii[29,92] := {306} tii[29,93] := {309} tii[29,94] := {262} tii[29,95] := {320} tii[29,96] := {323} tii[29,97] := {108} tii[29,98] := {196} tii[29,99] := {198} tii[29,100] := {117, 201} tii[29,101] := {72} tii[29,102] := {245} tii[29,103] := {123} tii[29,104] := {250} tii[29,105] := {132} tii[29,106] := {234} tii[29,107] := {236} tii[29,108] := {114, 194} tii[29,109] := {40} tii[29,110] := {207} tii[29,111] := {85} tii[29,112] := {273} tii[29,113] := {213} tii[29,114] := {93} tii[29,115] := {277} tii[29,116] := {129} tii[29,117] := {295} tii[29,118] := {138} tii[29,119] := {298} tii[29,120] := {187} tii[29,121] := {313} tii[29,122] := {113, 191} tii[29,123] := {17} tii[29,124] := {264} tii[29,125] := {265} tii[29,126] := {50} tii[29,127] := {293} tii[29,128] := {243} tii[29,129] := {57} tii[29,130] := {296} tii[29,131] := {248} tii[29,132] := {208} tii[29,133] := {90} tii[29,134] := {308} tii[29,135] := {214} tii[29,136] := {98} tii[29,137] := {311} tii[29,138] := {106, 280} tii[29,139] := {258} tii[29,140] := {145} tii[29,141] := {321} tii[29,142] := {126} tii[29,143] := {316} tii[29,144] := {135} tii[29,145] := {318} tii[29,146] := {38, 221} tii[29,147] := {285} tii[29,148] := {185} tii[29,149] := {326} tii[29,150] := {204} tii[29,151] := {328} tii[29,152] := {288} tii[29,153] := {289} tii[29,154] := {307} tii[29,155] := {271} tii[29,156] := {310} tii[29,157] := {275} tii[29,158] := {317} tii[29,159] := {244} tii[29,160] := {319} tii[29,161] := {249} tii[29,162] := {148, 299} tii[29,163] := {282} tii[29,164] := {327} tii[29,165] := {209} tii[29,166] := {324} tii[29,167] := {215} tii[29,168] := {325} tii[29,169] := {303} tii[29,170] := {107, 279} tii[29,171] := {259} tii[29,172] := {331} tii[29,173] := {66, 291} tii[29,174] := {270} tii[29,175] := {332} tii[29,176] := {329} tii[29,177] := {330} tii[29,178] := {314} tii[29,179] := {333} tii[29,180] := {302} tii[29,181] := {334} tii[29,182] := {335} tii[29,183] := {1} tii[29,184] := {26} tii[29,185] := {30} tii[29,186] := {4} tii[29,187] := {47} tii[29,188] := {25} tii[29,189] := {54} tii[29,190] := {29} tii[29,191] := {53} tii[29,192] := {60} tii[29,193] := {105} tii[29,194] := {3} tii[29,195] := {83} tii[29,196] := {24} tii[29,197] := {91} tii[29,198] := {28} tii[29,199] := {88} tii[29,200] := {52} tii[29,201] := {96} tii[29,202] := {59} tii[29,203] := {31, 100} tii[29,204] := {143} tii[29,205] := {104} tii[29,206] := {87} tii[29,207] := {95} tii[29,208] := {13, 181} tii[29,209] := {179} tii[29,210] := {142} tii[29,211] := {164} tii[29,212] := {2} tii[29,213] := {121} tii[29,214] := {23} tii[29,215] := {130} tii[29,216] := {27} tii[29,217] := {51} tii[29,218] := {128} tii[29,219] := {58} tii[29,220] := {137} tii[29,221] := {61, 139} tii[29,222] := {103} tii[29,223] := {186} tii[29,224] := {86} tii[29,225] := {125} tii[29,226] := {94} tii[29,227] := {134} tii[29,228] := {37, 220} tii[29,229] := {12, 180} tii[29,230] := {32, 101} tii[29,231] := {219} tii[29,232] := {184} tii[29,233] := {141} tii[29,234] := {21, 188} tii[29,235] := {163} tii[29,236] := {203} tii[29,237] := {124} tii[29,238] := {133} tii[29,239] := {35, 218} tii[29,240] := {255} tii[29,241] := {183} tii[29,242] := {10, 239} tii[29,243] := {202} tii[29,244] := {238} tii[29,245] := {232} tii[29,246] := {165} tii[29,247] := {172} tii[29,248] := {171} tii[29,249] := {178} tii[29,250] := {99, 182} tii[29,251] := {225} tii[29,252] := {169} tii[29,253] := {176} tii[29,254] := {71, 257} tii[29,255] := {256} tii[29,256] := {62, 140} tii[29,257] := {224} tii[29,258] := {46, 226} tii[29,259] := {241} tii[29,260] := {168} tii[29,261] := {175} tii[29,262] := {68, 254} tii[29,263] := {33, 102} tii[29,264] := {281} tii[29,265] := {223} tii[29,266] := {34, 269} tii[29,267] := {22, 189} tii[29,268] := {240} tii[29,269] := {268} tii[29,270] := {14, 242} tii[29,271] := {263} tii[29,272] := {300} tii[29,273] := {292} tii[29,274] := {286} tii[29,275] := {7, 65} tii[29,276] := {9, 64} tii[29,277] := {5, 147} tii[29,278] := {8, 63} tii[29,279] := {6, 146} tii[29,280] := {0, 205} cell#14 , |C| = 35 special orbit = [7, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[], [4, 1, 1, 1, 1]] , dim = 35 cell rep = phi[[],[4, 1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 35*X TII subcells: tii[38,1] := {17} tii[38,2] := {9} tii[38,3] := {16} tii[38,4] := {3} tii[38,5] := {8} tii[38,6] := {15} tii[38,7] := {2} tii[38,8] := {6} tii[38,9] := {11} tii[38,10] := {19} tii[38,11] := {0} tii[38,12] := {1} tii[38,13] := {5} tii[38,14] := {10} tii[38,15] := {4} tii[38,16] := {26} tii[38,17] := {18} tii[38,18] := {25} tii[38,19] := {31} tii[38,20] := {14} tii[38,21] := {23} tii[38,22] := {29} tii[38,23] := {30} tii[38,24] := {33} tii[38,25] := {34} tii[38,26] := {7} tii[38,27] := {13} tii[38,28] := {21} tii[38,29] := {22} tii[38,30] := {28} tii[38,31] := {32} tii[38,32] := {12} tii[38,33] := {20} tii[38,34] := {27} tii[38,35] := {24} cell#15 , |C| = 184 special orbit = [5, 3, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[1], [3, 1, 1, 1, 1]] , dim = 120 cell rep = phi[[],[3, 2, 1, 1, 1]]+phi[[1],[3, 1, 1, 1, 1]] TII depth = 3 TII multiplicity polynomial = 64*X^2+56*X TII subcells: tii[24,1] := {47, 151} tii[24,2] := {83, 121} tii[24,3] := {34, 164} tii[24,4] := {66, 100} tii[24,5] := {22, 150} tii[24,6] := {82, 120} tii[24,7] := {25, 174} tii[24,8] := {57, 92} tii[24,9] := {14, 163} tii[24,10] := {7, 149} tii[24,11] := {73, 110} tii[24,12] := {91, 127} tii[24,13] := {15, 180} tii[24,14] := {42, 74} tii[24,15] := {8, 173} tii[24,16] := {56, 89} tii[24,17] := {4, 162} tii[24,18] := {1, 155} tii[24,19] := {72, 109} tii[24,20] := {90, 126} tii[24,21] := {63} tii[24,22] := {33, 137} tii[24,23] := {81} tii[24,24] := {101} tii[24,25] := {104} tii[24,26] := {13, 136} tii[24,27] := {65} tii[24,28] := {84} tii[24,29] := {86} tii[24,30] := {103} tii[24,31] := {106} tii[24,32] := {124} tii[24,33] := {48} tii[24,34] := {3, 135} tii[24,35] := {67} tii[24,36] := {68} tii[24,37] := {85} tii[24,38] := {87} tii[24,39] := {36, 167} tii[24,40] := {108} tii[24,41] := {102} tii[24,42] := {105} tii[24,43] := {64, 139} tii[24,44] := {123} tii[24,45] := {138} tii[24,46] := {0, 141} tii[24,47] := {41} tii[24,48] := {58} tii[24,49] := {60} tii[24,50] := {76} tii[24,51] := {78} tii[24,52] := {31, 177} tii[24,53] := {98} tii[24,54] := {94} tii[24,55] := {96} tii[24,56] := {55, 132} tii[24,57] := {19, 166} tii[24,58] := {118} tii[24,59] := {29, 175} tii[24,60] := {129} tii[24,61] := {113} tii[24,62] := {115} tii[24,63] := {71, 148} tii[24,64] := {134} tii[24,65] := {53, 160} tii[24,66] := {145} tii[24,67] := {157} tii[24,68] := {28} tii[24,69] := {44} tii[24,70] := {45} tii[24,71] := {59} tii[24,72] := {61} tii[24,73] := {20, 182} tii[24,74] := {80} tii[24,75] := {75} tii[24,76] := {77} tii[24,77] := {39, 116} tii[24,78] := {11, 176} tii[24,79] := {97} tii[24,80] := {18, 181} tii[24,81] := {111} tii[24,82] := {93} tii[24,83] := {95} tii[24,84] := {5, 172} tii[24,85] := {54, 131} tii[24,86] := {117} tii[24,87] := {38, 143} tii[24,88] := {9, 179} tii[24,89] := {128} tii[24,90] := {16, 183} tii[24,91] := {142} tii[24,92] := {112} tii[24,93] := {114} tii[24,94] := {70, 147} tii[24,95] := {133} tii[24,96] := {52, 159} tii[24,97] := {144} tii[24,98] := {37, 169} tii[24,99] := {156} tii[24,100] := {168} tii[24,101] := {50, 122} tii[24,102] := {23, 154} tii[24,103] := {69, 107} tii[24,104] := {35, 140} tii[24,105] := {10, 153} tii[24,106] := {51, 88} tii[24,107] := {17, 165} tii[24,108] := {49, 125} tii[24,109] := {26, 152} tii[24,110] := {2, 161} tii[24,111] := {46, 79} tii[24,112] := {6, 171} tii[24,113] := {43, 119} tii[24,114] := {12, 178} tii[24,115] := {40, 146} tii[24,116] := {21, 170} tii[24,117] := {32, 62} tii[24,118] := {30, 99} tii[24,119] := {27, 130} tii[24,120] := {24, 158} cell#16 , |C| = 250 special orbit = [7, 3, 1, 1, 1, 1, 1, 1] special rep = [[1], [4, 1, 1, 1]] , dim = 160 cell rep = phi[[],[4, 2, 1, 1]]+phi[[1],[4, 1, 1, 1]] TII depth = 2 TII multiplicity polynomial = 90*X^2+70*X TII subcells: tii[39,1] := {183, 184} tii[39,2] := {169, 170} tii[39,3] := {104, 105} tii[39,4] := {211, 212} tii[39,5] := {205, 206} tii[39,6] := {224, 225} tii[39,7] := {131, 132} tii[39,8] := {213, 214} tii[39,9] := {227, 228} tii[39,10] := {106, 107} tii[39,11] := {198, 199} tii[39,12] := {148, 149} tii[39,13] := {180, 232} tii[39,14] := {167, 168} tii[39,15] := {200, 241} tii[39,16] := {87, 88} tii[39,17] := {181, 233} tii[39,18] := {166, 247} tii[39,19] := {201, 202} tii[39,20] := {53, 54} tii[39,21] := {163, 164} tii[39,22] := {142, 240} tii[39,23] := {99, 234} tii[39,24] := {100, 101} tii[39,25] := {165, 226} tii[39,26] := {22, 23} tii[39,27] := {127, 197} tii[39,28] := {86, 182} tii[39,29] := {51, 52} tii[39,30] := {21, 98} tii[39,31] := {17} tii[39,32] := {33} tii[39,33] := {144, 145} tii[39,34] := {102, 103} tii[39,35] := {15} tii[39,36] := {34} tii[39,37] := {39} tii[39,38] := {76} tii[39,39] := {203, 204} tii[39,40] := {133, 134} tii[39,41] := {185, 186} tii[39,42] := {31} tii[39,43] := {56} tii[39,44] := {60} tii[39,45] := {146, 147} tii[39,46] := {16} tii[39,47] := {35} tii[39,48] := {40} tii[39,49] := {79} tii[39,50] := {82} tii[39,51] := {125} tii[39,52] := {120} tii[39,53] := {128, 242} tii[39,54] := {74} tii[39,55] := {173, 174} tii[39,56] := {97, 223} tii[39,57] := {109} tii[39,58] := {111} tii[39,59] := {50, 215} tii[39,60] := {171, 172} tii[39,61] := {30} tii[39,62] := {55} tii[39,63] := {59} tii[39,64] := {110} tii[39,65] := {112} tii[39,66] := {237, 238} tii[39,67] := {156} tii[39,68] := {20, 187} tii[39,69] := {18} tii[39,70] := {36} tii[39,71] := {41} tii[39,72] := {80} tii[39,73] := {83} tii[39,74] := {230, 231} tii[39,75] := {126} tii[39,76] := {122} tii[39,77] := {123} tii[39,78] := {194, 195} tii[39,79] := {162} tii[39,80] := {196} tii[39,81] := {75} tii[39,82] := {32} tii[39,83] := {135, 136} tii[39,84] := {57} tii[39,85] := {61} tii[39,86] := {129, 130} tii[39,87] := {8} tii[39,88] := {24} tii[39,89] := {25} tii[39,90] := {58} tii[39,91] := {62} tii[39,92] := {218, 245} tii[39,93] := {116} tii[39,94] := {46, 143} tii[39,95] := {3} tii[39,96] := {9} tii[39,97] := {12} tii[39,98] := {38} tii[39,99] := {43} tii[39,100] := {207, 208} tii[39,101] := {190, 248} tii[39,102] := {85} tii[39,103] := {78} tii[39,104] := {81} tii[39,105] := {154, 155} tii[39,106] := {153, 246} tii[39,107] := {124} tii[39,108] := {117, 249} tii[39,109] := {161} tii[39,110] := {0} tii[39,111] := {1} tii[39,112] := {2} tii[39,113] := {11} tii[39,114] := {14} tii[39,115] := {175, 229} tii[39,116] := {45} tii[39,117] := {37} tii[39,118] := {42} tii[39,119] := {114, 115} tii[39,120] := {139, 219} tii[39,121] := {84} tii[39,122] := {96, 235} tii[39,123] := {121} tii[39,124] := {10} tii[39,125] := {13} tii[39,126] := {70, 152} tii[39,127] := {44} tii[39,128] := {29, 188} tii[39,129] := {77} tii[39,130] := {108} tii[39,131] := {63, 64} tii[39,132] := {220, 221} tii[39,133] := {91, 92} tii[39,134] := {192, 193} tii[39,135] := {65, 66} tii[39,136] := {157, 158} tii[39,137] := {151, 243} tii[39,138] := {137, 138} tii[39,139] := {113, 239} tii[39,140] := {209, 210} tii[39,141] := {89, 90} tii[39,142] := {71, 244} tii[39,143] := {178, 179} tii[39,144] := {69, 222} tii[39,145] := {67, 68} tii[39,146] := {28, 236} tii[39,147] := {159, 160} tii[39,148] := {6, 217} tii[39,149] := {93, 94} tii[39,150] := {176, 177} tii[39,151] := {47, 48} tii[39,152] := {140, 141} tii[39,153] := {95, 191} tii[39,154] := {26, 27} tii[39,155] := {49, 216} tii[39,156] := {118, 119} tii[39,157] := {19, 189} tii[39,158] := {4, 5} tii[39,159] := {72, 73} tii[39,160] := {7, 150} cell#17 , |C| = 280 special orbit = [5, 3, 3, 1, 1, 1, 1, 1] special rep = [[1], [3, 2, 1, 1]] , dim = 280 cell rep = phi[[1],[3, 2, 1, 1]] TII depth = 4 TII multiplicity polynomial = 280*X TII subcells: tii[27,1] := {212} tii[27,2] := {97} tii[27,3] := {240} tii[27,4] := {241} tii[27,5] := {180} tii[27,6] := {181} tii[27,7] := {61} tii[27,8] := {260} tii[27,9] := {94} tii[27,10] := {95} tii[27,11] := {238} tii[27,12] := {134} tii[27,13] := {261} tii[27,14] := {262} tii[27,15] := {40} tii[27,16] := {217} tii[27,17] := {218} tii[27,18] := {271} tii[27,19] := {272} tii[27,20] := {68} tii[27,21] := {178} tii[27,22] := {179} tii[27,23] := {257} tii[27,24] := {69} tii[27,25] := {258} tii[27,26] := {213} tii[27,27] := {214} tii[27,28] := {107} tii[27,29] := {277} tii[27,30] := {108} tii[27,31] := {109} tii[27,32] := {270} tii[27,33] := {151} tii[27,34] := {256} tii[27,35] := {152} tii[27,36] := {194} tii[27,37] := {88} tii[27,38] := {28} tii[27,39] := {140} tii[27,40] := {211} tii[27,41] := {128} tii[27,42] := {183} tii[27,43] := {13} tii[27,44] := {137} tii[27,45] := {182} tii[27,46] := {87} tii[27,47] := {138} tii[27,48] := {112} tii[27,49] := {118} tii[27,50] := {96} tii[27,51] := {27} tii[27,52] := {177} tii[27,53] := {42} tii[27,54] := {46} tii[27,55] := {259} tii[27,56] := {171} tii[27,57] := {237} tii[27,58] := {219} tii[27,59] := {220} tii[27,60] := {135} tii[27,61] := {136} tii[27,62] := {3} tii[27,63] := {127} tii[27,64] := {154} tii[27,65] := {159} tii[27,66] := {60} tii[27,67] := {174} tii[27,68] := {216} tii[27,69] := {215} tii[27,70] := {175} tii[27,71] := {86} tii[27,72] := {12} tii[27,73] := {111} tii[27,74] := {20} tii[27,75] := {117} tii[27,76] := {22} tii[27,77] := {157} tii[27,78] := {162} tii[27,79] := {207} tii[27,80] := {133} tii[27,81] := {210} tii[27,82] := {26} tii[27,83] := {41} tii[27,84] := {45} tii[27,85] := {73} tii[27,86] := {78} tii[27,87] := {266} tii[27,88] := {122} tii[27,89] := {189} tii[27,90] := {208} tii[27,91] := {244} tii[27,92] := {245} tii[27,93] := {2} tii[27,94] := {170} tii[27,95] := {197} tii[27,96] := {200} tii[27,97] := {242} tii[27,98] := {39} tii[27,99] := {7} tii[27,100] := {243} tii[27,101] := {126} tii[27,102] := {14} tii[27,103] := {153} tii[27,104] := {15} tii[27,105] := {158} tii[27,106] := {199} tii[27,107] := {202} tii[27,108] := {236} tii[27,109] := {106} tii[27,110] := {239} tii[27,111] := {85} tii[27,112] := {17} tii[27,113] := {110} tii[27,114] := {29} tii[27,115] := {116} tii[27,116] := {31} tii[27,117] := {56} tii[27,118] := {156} tii[27,119] := {58} tii[27,120] := {161} tii[27,121] := {275} tii[27,122] := {276} tii[27,123] := {93} tii[27,124] := {206} tii[27,125] := {198} tii[27,126] := {201} tii[27,127] := {248} tii[27,128] := {249} tii[27,129] := {164} tii[27,130] := {235} tii[27,131] := {255} tii[27,132] := {34} tii[27,133] := {55} tii[27,134] := {57} tii[27,135] := {90} tii[27,136] := {92} tii[27,137] := {279} tii[27,138] := {132} tii[27,139] := {129} tii[27,140] := {130} tii[27,141] := {203} tii[27,142] := {204} tii[27,143] := {274} tii[27,144] := {173} tii[27,145] := {278} tii[27,146] := {209} tii[27,147] := {234} tii[27,148] := {254} tii[27,149] := {54} tii[27,150] := {139} tii[27,151] := {53} tii[27,152] := {72} tii[27,153] := {77} tii[27,154] := {44} tii[27,155] := {48} tii[27,156] := {67} tii[27,157] := {176} tii[27,158] := {52} tii[27,159] := {71} tii[27,160] := {76} tii[27,161] := {21} tii[27,162] := {115} tii[27,163] := {23} tii[27,164] := {121} tii[27,165] := {146} tii[27,166] := {38} tii[27,167] := {145} tii[27,168] := {167} tii[27,169] := {74} tii[27,170] := {79} tii[27,171] := {65} tii[27,172] := {227} tii[27,173] := {64} tii[27,174] := {123} tii[27,175] := {150} tii[27,176] := {51} tii[27,177] := {70} tii[27,178] := {75} tii[27,179] := {114} tii[27,180] := {8} tii[27,181] := {120} tii[27,182] := {9} tii[27,183] := {265} tii[27,184] := {186} tii[27,185] := {187} tii[27,186] := {166} tii[27,187] := {19} tii[27,188] := {155} tii[27,189] := {43} tii[27,190] := {160} tii[27,191] := {47} tii[27,192] := {251} tii[27,193] := {224} tii[27,194] := {250} tii[27,195] := {225} tii[27,196] := {36} tii[27,197] := {35} tii[27,198] := {205} tii[27,199] := {143} tii[27,200] := {144} tii[27,201] := {82} tii[27,202] := {232} tii[27,203] := {230} tii[27,204] := {231} tii[27,205] := {105} tii[27,206] := {113} tii[27,207] := {119} tii[27,208] := {188} tii[27,209] := {62} tii[27,210] := {247} tii[27,211] := {63} tii[27,212] := {165} tii[27,213] := {263} tii[27,214] := {195} tii[27,215] := {148} tii[27,216] := {147} tii[27,217] := {221} tii[27,218] := {4} tii[27,219] := {5} tii[27,220] := {222} tii[27,221] := {223} tii[27,222] := {11} tii[27,223] := {30} tii[27,224] := {32} tii[27,225] := {268} tii[27,226] := {25} tii[27,227] := {269} tii[27,228] := {184} tii[27,229] := {185} tii[27,230] := {24} tii[27,231] := {59} tii[27,232] := {252} tii[27,233] := {253} tii[27,234] := {84} tii[27,235] := {89} tii[27,236] := {91} tii[27,237] := {163} tii[27,238] := {267} tii[27,239] := {49} tii[27,240] := {141} tii[27,241] := {142} tii[27,242] := {50} tii[27,243] := {131} tii[27,244] := {273} tii[27,245] := {228} tii[27,246] := {229} tii[27,247] := {125} tii[27,248] := {124} tii[27,249] := {172} tii[27,250] := {264} tii[27,251] := {196} tii[27,252] := {80} tii[27,253] := {81} tii[27,254] := {168} tii[27,255] := {169} tii[27,256] := {233} tii[27,257] := {33} tii[27,258] := {103} tii[27,259] := {16} tii[27,260] := {102} tii[27,261] := {66} tii[27,262] := {226} tii[27,263] := {6} tii[27,264] := {100} tii[27,265] := {101} tii[27,266] := {192} tii[27,267] := {193} tii[27,268] := {37} tii[27,269] := {149} tii[27,270] := {98} tii[27,271] := {1} tii[27,272] := {99} tii[27,273] := {190} tii[27,274] := {191} tii[27,275] := {18} tii[27,276] := {104} tii[27,277] := {246} tii[27,278] := {0} tii[27,279] := {10} tii[27,280] := {83} cell#18 , |C| = 140 special orbit = [3, 3, 3, 3, 3, 1] special rep = [[1, 1], [2, 2, 2]] , dim = 140 cell rep = phi[[1, 1],[2, 2, 2]] TII depth = 3 TII multiplicity polynomial = 140*X TII subcells: tii[14,1] := {139} tii[14,2] := {58} tii[14,3] := {131} tii[14,4] := {84} tii[14,5] := {78} tii[14,6] := {137} tii[14,7] := {103} tii[14,8] := {94} tii[14,9] := {134} tii[14,10] := {109} tii[14,11] := {120} tii[14,12] := {121} tii[14,13] := {119} tii[14,14] := {130} tii[14,15] := {135} tii[14,16] := {136} tii[14,17] := {40} tii[14,18] := {4} tii[14,19] := {47} tii[14,20] := {8} tii[14,21] := {77} tii[14,22] := {124} tii[14,23] := {66} tii[14,24] := {16} tii[14,25] := {93} tii[14,26] := {27} tii[14,27] := {104} tii[14,28] := {29} tii[14,29] := {106} tii[14,30] := {68} tii[14,31] := {70} tii[14,32] := {102} tii[14,33] := {112} tii[14,34] := {114} tii[14,35] := {96} tii[14,36] := {98} tii[14,37] := {110} tii[14,38] := {15} tii[14,39] := {85} tii[14,40] := {26} tii[14,41] := {42} tii[14,42] := {44} tii[14,43] := {87} tii[14,44] := {89} tii[14,45] := {39} tii[14,46] := {118} tii[14,47] := {59} tii[14,48] := {125} tii[14,49] := {60} tii[14,50] := {127} tii[14,51] := {105} tii[14,52] := {67} tii[14,53] := {113} tii[14,54] := {107} tii[14,55] := {69} tii[14,56] := {115} tii[14,57] := {91} tii[14,58] := {92} tii[14,59] := {123} tii[14,60] := {129} tii[14,61] := {126} tii[14,62] := {128} tii[14,63] := {133} tii[14,64] := {138} tii[14,65] := {2} tii[14,66] := {9} tii[14,67] := {17} tii[14,68] := {19} tii[14,69] := {50} tii[14,70] := {10} tii[14,71] := {53} tii[14,72] := {11} tii[14,73] := {21} tii[14,74] := {63} tii[14,75] := {64} tii[14,76] := {35} tii[14,77] := {80} tii[14,78] := {25} tii[14,79] := {41} tii[14,80] := {43} tii[14,81] := {18} tii[14,82] := {86} tii[14,83] := {48} tii[14,84] := {20} tii[14,85] := {88} tii[14,86] := {51} tii[14,87] := {32} tii[14,88] := {73} tii[14,89] := {75} tii[14,90] := {81} tii[14,91] := {33} tii[14,92] := {82} tii[14,93] := {34} tii[14,94] := {45} tii[14,95] := {95} tii[14,96] := {116} tii[14,97] := {54} tii[14,98] := {55} tii[14,99] := {56} tii[14,100] := {83} tii[14,101] := {122} tii[14,102] := {71} tii[14,103] := {28} tii[14,104] := {30} tii[14,105] := {46} tii[14,106] := {49} tii[14,107] := {97} tii[14,108] := {52} tii[14,109] := {99} tii[14,110] := {74} tii[14,111] := {76} tii[14,112] := {62} tii[14,113] := {111} tii[14,114] := {72} tii[14,115] := {101} tii[14,116] := {132} tii[14,117] := {90} tii[14,118] := {79} tii[14,119] := {117} tii[14,120] := {108} tii[14,121] := {5} tii[14,122] := {6} tii[14,123] := {12} tii[14,124] := {1} tii[14,125] := {14} tii[14,126] := {22} tii[14,127] := {23} tii[14,128] := {31} tii[14,129] := {3} tii[14,130] := {36} tii[14,131] := {37} tii[14,132] := {65} tii[14,133] := {24} tii[14,134] := {7} tii[14,135] := {61} tii[14,136] := {100} tii[14,137] := {38} tii[14,138] := {13} tii[14,139] := {57} tii[14,140] := {0} cell#19 , |C| = 336 special orbit = [5, 5, 1, 1, 1, 1, 1, 1] special rep = [[2], [3, 1, 1, 1]] , dim = 280 cell rep = phi[[],[3, 3, 1, 1]]+phi[[2],[3, 1, 1, 1]] TII depth = 5 TII multiplicity polynomial = 56*X^2+224*X TII subcells: tii[29,1] := {71, 278} tii[29,2] := {221} tii[29,3] := {113, 304} tii[29,4] := {148, 290} tii[29,5] := {259} tii[29,6] := {163, 321} tii[29,7] := {289} tii[29,8] := {115, 325} tii[29,9] := {312} tii[29,10] := {70, 276} tii[29,11] := {220} tii[29,12] := {99, 262} tii[29,13] := {114, 302} tii[29,14] := {58, 224} tii[29,15] := {258} tii[29,16] := {74, 311} tii[29,17] := {35, 255} tii[29,18] := {286} tii[29,19] := {72, 309} tii[29,20] := {219} tii[29,21] := {45, 323} tii[29,22] := {24, 306} tii[29,23] := {254} tii[29,24] := {282} tii[29,25] := {30} tii[29,26] := {77} tii[29,27] := {78} tii[29,28] := {33, 201} tii[29,29] := {131} tii[29,30] := {141} tii[29,31] := {56} tii[29,32] := {43, 246} tii[29,33] := {119} tii[29,34] := {121} tii[29,35] := {100} tii[29,36] := {101, 263} tii[29,37] := {153} tii[29,38] := {184} tii[29,39] := {157} tii[29,40] := {191} tii[29,41] := {168} tii[29,42] := {172} tii[29,43] := {60, 288} tii[29,44] := {127} tii[29,45] := {231} tii[29,46] := {136} tii[29,47] := {237} tii[29,48] := {268} tii[29,49] := {273} tii[29,50] := {301} tii[29,51] := {96} tii[29,52] := {165} tii[29,53] := {169} tii[29,54] := {73, 280} tii[29,55] := {34, 175} tii[29,56] := {147} tii[29,57] := {228} tii[29,58] := {203} tii[29,59] := {234} tii[29,60] := {205} tii[29,61] := {75, 313} tii[29,62] := {16, 214} tii[29,63] := {164} tii[29,64] := {216} tii[29,65] := {218} tii[29,66] := {227} tii[29,67] := {179} tii[29,68] := {265} tii[29,69] := {233} tii[29,70] := {186} tii[29,71] := {270} tii[29,72] := {204} tii[29,73] := {294} tii[29,74] := {206} tii[29,75] := {298} tii[29,76] := {249} tii[29,77] := {320} tii[29,78] := {9, 251} tii[29,79] := {256} tii[29,80] := {257} tii[29,81] := {292} tii[29,82] := {226} tii[29,83] := {296} tii[29,84] := {232} tii[29,85] := {180} tii[29,86] := {315} tii[29,87] := {187} tii[29,88] := {317} tii[29,89] := {69, 322} tii[29,90] := {240} tii[29,91] := {330} tii[29,92] := {327} tii[29,93] := {328} tii[29,94] := {284} tii[29,95] := {333} tii[29,96] := {335} tii[29,97] := {54} tii[29,98] := {118} tii[29,99] := {120} tii[29,100] := {44, 244} tii[29,101] := {98} tii[29,102] := {183} tii[29,103] := {151} tii[29,104] := {190} tii[29,105] := {155} tii[29,106] := {167} tii[29,107] := {171} tii[29,108] := {46, 287} tii[29,109] := {116} tii[29,110] := {126} tii[29,111] := {181} tii[29,112] := {230} tii[29,113] := {135} tii[29,114] := {188} tii[29,115] := {236} tii[29,116] := {152} tii[29,117] := {267} tii[29,118] := {156} tii[29,119] := {272} tii[29,120] := {208} tii[29,121] := {300} tii[29,122] := {12, 283} tii[29,123] := {76} tii[29,124] := {215} tii[29,125] := {217} tii[29,126] := {129} tii[29,127] := {264} tii[29,128] := {178} tii[29,129] := {138} tii[29,130] := {269} tii[29,131] := {185} tii[29,132] := {128} tii[29,133] := {103} tii[29,134] := {293} tii[29,135] := {137} tii[29,136] := {106} tii[29,137] := {297} tii[29,138] := {41, 303} tii[29,139] := {195} tii[29,140] := {159} tii[29,141] := {319} tii[29,142] := {63} tii[29,143] := {314} tii[29,144] := {66} tii[29,145] := {316} tii[29,146] := {14, 243} tii[29,147] := {252} tii[29,148] := {110} tii[29,149] := {329} tii[29,150] := {150} tii[29,151] := {332} tii[29,152] := {166} tii[29,153] := {170} tii[29,154] := {229} tii[29,155] := {125} tii[29,156] := {235} tii[29,157] := {134} tii[29,158] := {266} tii[29,159] := {83} tii[29,160] := {271} tii[29,161] := {90} tii[29,162] := {22, 310} tii[29,163] := {142} tii[29,164] := {299} tii[29,165] := {49} tii[29,166] := {291} tii[29,167] := {51} tii[29,168] := {295} tii[29,169] := {212} tii[29,170] := {11, 285} tii[29,171] := {95} tii[29,172] := {318} tii[29,173] := {7, 260} tii[29,174] := {122} tii[29,175] := {326} tii[29,176] := {307} tii[29,177] := {308} tii[29,178] := {250} tii[29,179] := {324} tii[29,180] := {211} tii[29,181] := {331} tii[29,182] := {334} tii[29,183] := {19} tii[29,184] := {36} tii[29,185] := {38} tii[29,186] := {59} tii[29,187] := {48} tii[29,188] := {104} tii[29,189] := {50} tii[29,190] := {107} tii[29,191] := {64} tii[29,192] := {67} tii[29,193] := {111} tii[29,194] := {117} tii[29,195] := {82} tii[29,196] := {182} tii[29,197] := {89} tii[29,198] := {189} tii[29,199] := {86} tii[29,200] := {154} tii[29,201] := {93} tii[29,202] := {158} tii[29,203] := {28, 209} tii[29,204] := {145} tii[29,205] := {210} tii[29,206] := {105} tii[29,207] := {108} tii[29,208] := {31, 279} tii[29,209] := {194} tii[29,210] := {161} tii[29,211] := {202} tii[29,212] := {47} tii[29,213] := {124} tii[29,214] := {84} tii[29,215] := {133} tii[29,216] := {91} tii[29,217] := {62} tii[29,218] := {132} tii[29,219] := {65} tii[29,220] := {140} tii[29,221] := {53, 248} tii[29,222] := {109} tii[29,223] := {198} tii[29,224] := {37} tii[29,225] := {130} tii[29,226] := {39} tii[29,227] := {139} tii[29,228] := {42, 305} tii[29,229] := {8, 199} tii[29,230] := {97, 275} tii[29,231] := {239} tii[29,232] := {197} tii[29,233] := {68} tii[29,234] := {27, 281} tii[29,235] := {102} tii[29,236] := {225} tii[29,237] := {17} tii[29,238] := {18} tii[29,239] := {4, 213} tii[29,240] := {274} tii[29,241] := {40} tii[29,242] := {2, 174} tii[29,243] := {61} tii[29,244] := {261} tii[29,245] := {80} tii[29,246] := {81} tii[29,247] := {88} tii[29,248] := {87} tii[29,249] := {94} tii[29,250] := {29, 207} tii[29,251] := {146} tii[29,252] := {85} tii[29,253] := {92} tii[29,254] := {23, 277} tii[29,255] := {193} tii[29,256] := {55, 241} tii[29,257] := {144} tii[29,258] := {13, 245} tii[29,259] := {176} tii[29,260] := {25} tii[29,261] := {26} tii[29,262] := {6, 253} tii[29,263] := {32, 196} tii[29,264] := {238} tii[29,265] := {52} tii[29,266] := {3, 223} tii[29,267] := {10, 200} tii[29,268] := {79} tii[29,269] := {222} tii[29,270] := {1, 177} tii[29,271] := {112} tii[29,272] := {192} tii[29,273] := {173} tii[29,274] := {162} tii[29,275] := {20, 160} tii[29,276] := {57, 242} tii[29,277] := {21, 247} tii[29,278] := {15, 143} tii[29,279] := {5, 149} tii[29,280] := {0, 123} cell#20 , |C| = 280 special orbit = [5, 3, 3, 1, 1, 1, 1, 1] special rep = [[1], [3, 2, 1, 1]] , dim = 280 cell rep = phi[[1],[3, 2, 1, 1]] TII depth = 4 TII multiplicity polynomial = 280*X TII subcells: tii[27,1] := {215} tii[27,2] := {168} tii[27,3] := {83} tii[27,4] := {238} tii[27,5] := {109} tii[27,6] := {229} tii[27,7] := {203} tii[27,8] := {253} tii[27,9] := {87} tii[27,10] := {231} tii[27,11] := {261} tii[27,12] := {248} tii[27,13] := {123} tii[27,14] := {256} tii[27,15] := {167} tii[27,16] := {147} tii[27,17] := {250} tii[27,18] := {162} tii[27,19] := {266} tii[27,20] := {53} tii[27,21] := {163} tii[27,22] := {265} tii[27,23] := {125} tii[27,24] := {201} tii[27,25] := {270} tii[27,26] := {148} tii[27,27] := {272} tii[27,28] := {226} tii[27,29] := {273} tii[27,30] := {86} tii[27,31] := {230} tii[27,32] := {277} tii[27,33] := {70} tii[27,34] := {279} tii[27,35] := {247} tii[27,36] := {262} tii[27,37] := {23} tii[27,38] := {25} tii[27,39] := {150} tii[27,40] := {51} tii[27,41] := {39} tii[27,42] := {185} tii[27,43] := {32} tii[27,44] := {72} tii[27,45] := {29} tii[27,46] := {71} tii[27,47] := {202} tii[27,48] := {112} tii[27,49] := {116} tii[27,50] := {44} tii[27,51] := {56} tii[27,52] := {227} tii[27,53] := {94} tii[27,54] := {99} tii[27,55] := {124} tii[27,56] := {67} tii[27,57] := {85} tii[27,58] := {52} tii[27,59] := {218} tii[27,60] := {126} tii[27,61] := {251} tii[27,62] := {58} tii[27,63] := {108} tii[27,64] := {152} tii[27,65] := {155} tii[27,66] := {57} tii[27,67] := {110} tii[27,68] := {246} tii[27,69] := {54} tii[27,70] := {264} tii[27,71] := {127} tii[27,72] := {91} tii[27,73] := {171} tii[27,74] := {135} tii[27,75] := {175} tii[27,76] := {140} tii[27,77] := {153} tii[27,78] := {156} tii[27,79] := {195} tii[27,80] := {73} tii[27,81] := {271} tii[27,82] := {129} tii[27,83] := {173} tii[27,84] := {177} tii[27,85] := {132} tii[27,86] := {137} tii[27,87] := {254} tii[27,88] := {179} tii[27,89] := {225} tii[27,90] := {105} tii[27,91] := {84} tii[27,92] := {241} tii[27,93] := {33} tii[27,94] := {146} tii[27,95] := {188} tii[27,96] := {191} tii[27,97] := {88} tii[27,98] := {31} tii[27,99] := {55} tii[27,100] := {263} tii[27,101] := {164} tii[27,102] := {93} tii[27,103] := {205} tii[27,104] := {98} tii[27,105] := {208} tii[27,106] := {189} tii[27,107] := {192} tii[27,108] := {222} tii[27,109] := {42} tii[27,110] := {278} tii[27,111] := {198} tii[27,112] := {89} tii[27,113] := {232} tii[27,114] := {133} tii[27,115] := {233} tii[27,116] := {138} tii[27,117] := {92} tii[27,118] := {204} tii[27,119] := {97} tii[27,120] := {207} tii[27,121] := {81} tii[27,122] := {267} tii[27,123] := {141} tii[27,124] := {234} tii[27,125] := {190} tii[27,126] := {193} tii[27,127] := {107} tii[27,128] := {260} tii[27,129] := {197} tii[27,130] := {223} tii[27,131] := {243} tii[27,132] := {128} tii[27,133] := {172} tii[27,134] := {176} tii[27,135] := {131} tii[27,136] := {136} tii[27,137] := {274} tii[27,138] := {178} tii[27,139] := {111} tii[27,140] := {115} tii[27,141] := {38} tii[27,142] := {224} tii[27,143] := {276} tii[27,144] := {158} tii[27,145] := {275} tii[27,146] := {184} tii[27,147] := {244} tii[27,148] := {237} tii[27,149] := {9} tii[27,150] := {14} tii[27,151] := {43} tii[27,152] := {75} tii[27,153] := {78} tii[27,154] := {45} tii[27,155] := {46} tii[27,156] := {80} tii[27,157] := {30} tii[27,158] := {90} tii[27,159] := {134} tii[27,160] := {139} tii[27,161] := {60} tii[27,162] := {113} tii[27,163] := {63} tii[27,164] := {117} tii[27,165] := {159} tii[27,166] := {103} tii[27,167] := {20} tii[27,168] := {160} tii[27,169] := {76} tii[27,170] := {79} tii[27,171] := {143} tii[27,172] := {216} tii[27,173] := {24} tii[27,174] := {121} tii[27,175] := {151} tii[27,176] := {165} tii[27,177] := {206} tii[27,178] := {209} tii[27,179] := {170} tii[27,180] := {96} tii[27,181] := {174} tii[27,182] := {101} tii[27,183] := {47} tii[27,184] := {36} tii[27,185] := {194} tii[27,186] := {210} tii[27,187] := {145} tii[27,188] := {154} tii[27,189] := {95} tii[27,190] := {157} tii[27,191] := {100} tii[27,192] := {239} tii[27,193] := {69} tii[27,194] := {26} tii[27,195] := {245} tii[27,196] := {182} tii[27,197] := {28} tii[27,198] := {196} tii[27,199] := {68} tii[27,200] := {211} tii[27,201] := {144} tii[27,202] := {220} tii[27,203] := {18} tii[27,204] := {219} tii[27,205] := {169} tii[27,206] := {114} tii[27,207] := {118} tii[27,208] := {41} tii[27,209] := {50} tii[27,210] := {259} tii[27,211] := {213} tii[27,212] := {161} tii[27,213] := {255} tii[27,214] := {187} tii[27,215] := {200} tii[27,216] := {21} tii[27,217] := {217} tii[27,218] := {61} tii[27,219] := {64} tii[27,220] := {65} tii[27,221] := {221} tii[27,222] := {104} tii[27,223] := {59} tii[27,224] := {62} tii[27,225] := {48} tii[27,226] := {142} tii[27,227] := {257} tii[27,228] := {106} tii[27,229] := {235} tii[27,230] := {13} tii[27,231] := {102} tii[27,232] := {35} tii[27,233] := {242} tii[27,234] := {130} tii[27,235] := {74} tii[27,236] := {77} tii[27,237] := {22} tii[27,238] := {269} tii[27,239] := {27} tii[27,240] := {122} tii[27,241] := {252} tii[27,242] := {180} tii[27,243] := {119} tii[27,244] := {268} tii[27,245] := {66} tii[27,246] := {249} tii[27,247] := {166} tii[27,248] := {5} tii[27,249] := {149} tii[27,250] := {258} tii[27,251] := {183} tii[27,252] := {49} tii[27,253] := {212} tii[27,254] := {19} tii[27,255] := {199} tii[27,256] := {214} tii[27,257] := {3} tii[27,258] := {120} tii[27,259] := {11} tii[27,260] := {7} tii[27,261] := {2} tii[27,262] := {12} tii[27,263] := {16} tii[27,264] := {40} tii[27,265] := {181} tii[27,266] := {6} tii[27,267] := {186} tii[27,268] := {10} tii[27,269] := {0} tii[27,270] := {82} tii[27,271] := {34} tii[27,272] := {236} tii[27,273] := {37} tii[27,274] := {228} tii[27,275] := {15} tii[27,276] := {8} tii[27,277] := {240} tii[27,278] := {17} tii[27,279] := {4} tii[27,280] := {1} cell#21 , |C| = 280 special orbit = [5, 3, 3, 1, 1, 1, 1, 1] special rep = [[1], [3, 2, 1, 1]] , dim = 280 cell rep = phi[[1],[3, 2, 1, 1]] TII depth = 4 TII multiplicity polynomial = 280*X TII subcells: tii[27,1] := {137} tii[27,2] := {110} tii[27,3] := {133} tii[27,4] := {177} tii[27,5] := {107} tii[27,6] := {187} tii[27,7] := {148} tii[27,8] := {210} tii[27,9] := {106} tii[27,10] := {186} tii[27,11] := {234} tii[27,12] := {213} tii[27,13] := {174} tii[27,14] := {211} tii[27,15] := {109} tii[27,16] := {145} tii[27,17] := {218} tii[27,18] := {207} tii[27,19] := {236} tii[27,20] := {69} tii[27,21] := {184} tii[27,22] := {239} tii[27,23] := {215} tii[27,24] := {147} tii[27,25] := {252} tii[27,26] := {216} tii[27,27] := {257} tii[27,28] := {180} tii[27,29] := {253} tii[27,30] := {105} tii[27,31] := {185} tii[27,32] := {265} tii[27,33] := {141} tii[27,34] := {272} tii[27,35] := {214} tii[27,36] := {233} tii[27,37] := {6} tii[27,38] := {3} tii[27,39] := {63} tii[27,40] := {93} tii[27,41] := {16} tii[27,42] := {98} tii[27,43] := {10} tii[27,44] := {70} tii[27,45] := {60} tii[27,46] := {18} tii[27,47] := {149} tii[27,48] := {47} tii[27,49] := {51} tii[27,50] := {42} tii[27,51] := {20} tii[27,52] := {176} tii[27,53] := {46} tii[27,54] := {50} tii[27,55] := {172} tii[27,56] := {33} tii[27,57] := {181} tii[27,58] := {95} tii[27,59] := {138} tii[27,60] := {144} tii[27,61] := {217} tii[27,62] := {21} tii[27,63] := {37} tii[27,64] := {77} tii[27,65] := {83} tii[27,66] := {71} tii[27,67] := {182} tii[27,68] := {209} tii[27,69] := {143} tii[27,70] := {238} tii[27,71] := {68} tii[27,72] := {40} tii[27,73] := {113} tii[27,74] := {76} tii[27,75] := {120} tii[27,76] := {82} tii[27,77] := {155} tii[27,78] := {161} tii[27,79] := {203} tii[27,80] := {142} tii[27,81] := {251} tii[27,82] := {67} tii[27,83] := {112} tii[27,84] := {119} tii[27,85] := {154} tii[27,86] := {160} tii[27,87] := {255} tii[27,88] := {202} tii[27,89] := {245} tii[27,90] := {59} tii[27,91] := {135} tii[27,92] := {178} tii[27,93] := {9} tii[27,94] := {65} tii[27,95] := {114} tii[27,96] := {121} tii[27,97] := {183} tii[27,98] := {41} tii[27,99] := {19} tii[27,100] := {235} tii[27,101] := {102} tii[27,102] := {45} tii[27,103] := {151} tii[27,104] := {49} tii[27,105] := {157} tii[27,106] := {192} tii[27,107] := {197} tii[27,108] := {229} tii[27,109] := {103} tii[27,110] := {264} tii[27,111] := {140} tii[27,112] := {38} tii[27,113] := {188} tii[27,114] := {74} tii[27,115] := {193} tii[27,116] := {80} tii[27,117] := {115} tii[27,118] := {221} tii[27,119] := {122} tii[27,120] := {223} tii[27,121] := {208} tii[27,122] := {268} tii[27,123] := {167} tii[27,124] := {248} tii[27,125] := {243} tii[27,126] := {244} tii[27,127] := {179} tii[27,128] := {271} tii[27,129] := {224} tii[27,130] := {262} tii[27,131] := {269} tii[27,132] := {66} tii[27,133] := {111} tii[27,134] := {118} tii[27,135] := {153} tii[27,136] := {159} tii[27,137] := {275} tii[27,138] := {201} tii[27,139] := {189} tii[27,140] := {194} tii[27,141] := {99} tii[27,142] := {246} tii[27,143] := {278} tii[27,144] := {226} tii[27,145] := {279} tii[27,146] := {240} tii[27,147] := {254} tii[27,148] := {266} tii[27,149] := {2} tii[27,150] := {34} tii[27,151] := {8} tii[27,152] := {23} tii[27,153] := {26} tii[27,154] := {11} tii[27,155] := {12} tii[27,156] := {31} tii[27,157] := {104} tii[27,158] := {39} tii[27,159] := {75} tii[27,160] := {81} tii[27,161] := {25} tii[27,162] := {116} tii[27,163] := {28} tii[27,164] := {123} tii[27,165] := {91} tii[27,166] := {57} tii[27,167] := {36} tii[27,168] := {168} tii[27,169] := {79} tii[27,170] := {85} tii[27,171] := {90} tii[27,172] := {212} tii[27,173] := {30} tii[27,174] := {132} tii[27,175] := {171} tii[27,176] := {101} tii[27,177] := {150} tii[27,178] := {156} tii[27,179] := {191} tii[27,180] := {48} tii[27,181] := {196} tii[27,182] := {52} tii[27,183] := {173} tii[27,184] := {62} tii[27,185] := {130} tii[27,186] := {228} tii[27,187] := {92} tii[27,188] := {220} tii[27,189] := {117} tii[27,190] := {222} tii[27,191] := {124} tii[27,192] := {237} tii[27,193] := {139} tii[27,194] := {134} tii[27,195] := {261} tii[27,196] := {129} tii[27,197] := {55} tii[27,198] := {247} tii[27,199] := {86} tii[27,200] := {165} tii[27,201] := {169} tii[27,202] := {258} tii[27,203] := {96} tii[27,204] := {232} tii[27,205] := {205} tii[27,206] := {190} tii[27,207] := {195} tii[27,208] := {100} tii[27,209] := {88} tii[27,210] := {267} tii[27,211] := {164} tii[27,212] := {227} tii[27,213] := {273} tii[27,214] := {241} tii[27,215] := {231} tii[27,216] := {73} tii[27,217] := {259} tii[27,218] := {24} tii[27,219] := {27} tii[27,220] := {97} tii[27,221] := {166} tii[27,222] := {56} tii[27,223] := {78} tii[27,224] := {84} tii[27,225] := {175} tii[27,226] := {89} tii[27,227] := {256} tii[27,228] := {125} tii[27,229] := {199} tii[27,230] := {29} tii[27,231] := {131} tii[27,232] := {136} tii[27,233] := {250} tii[27,234] := {170} tii[27,235] := {152} tii[27,236] := {158} tii[27,237] := {64} tii[27,238] := {274} tii[27,239] := {53} tii[27,240] := {162} tii[27,241] := {225} tii[27,242] := {127} tii[27,243] := {200} tii[27,244] := {277} tii[27,245] := {146} tii[27,246] := {263} tii[27,247] := {204} tii[27,248] := {43} tii[27,249] := {219} tii[27,250] := {276} tii[27,251] := {242} tii[27,252] := {87} tii[27,253] := {163} tii[27,254] := {72} tii[27,255] := {230} tii[27,256] := {260} tii[27,257] := {0} tii[27,258] := {58} tii[27,259] := {1} tii[27,260] := {17} tii[27,261] := {7} tii[27,262] := {94} tii[27,263] := {5} tii[27,264] := {54} tii[27,265] := {128} tii[27,266] := {61} tii[27,267] := {206} tii[27,268] := {14} tii[27,269] := {35} tii[27,270] := {126} tii[27,271] := {13} tii[27,272] := {198} tii[27,273] := {108} tii[27,274] := {249} tii[27,275] := {32} tii[27,276] := {44} tii[27,277] := {270} tii[27,278] := {4} tii[27,279] := {15} tii[27,280] := {22} cell#22 , |C| = 35 special orbit = [7, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[], [4, 1, 1, 1, 1]] , dim = 35 cell rep = phi[[],[4, 1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 35*X TII subcells: tii[38,1] := {19} tii[38,2] := {26} tii[38,3] := {20} tii[38,4] := {32} tii[38,5] := {25} tii[38,6] := {21} tii[38,7] := {27} tii[38,8] := {16} tii[38,9] := {11} tii[38,10] := {6} tii[38,11] := {17} tii[38,12] := {10} tii[38,13] := {5} tii[38,14] := {2} tii[38,15] := {0} tii[38,16] := {30} tii[38,17] := {33} tii[38,18] := {31} tii[38,19] := {34} tii[38,20] := {28} tii[38,21] := {24} tii[38,22] := {29} tii[38,23] := {15} tii[38,24] := {23} tii[38,25] := {13} tii[38,26] := {18} tii[38,27] := {14} tii[38,28] := {22} tii[38,29] := {9} tii[38,30] := {12} tii[38,31] := {8} tii[38,32] := {4} tii[38,33] := {7} tii[38,34] := {3} tii[38,35] := {1} cell#23 , |C| = 184 special orbit = [5, 3, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[1], [3, 1, 1, 1, 1]] , dim = 120 cell rep = phi[[],[3, 2, 1, 1, 1]]+phi[[1],[3, 1, 1, 1, 1]] TII depth = 3 TII multiplicity polynomial = 64*X^2+56*X TII subcells: tii[24,1] := {64, 146} tii[24,2] := {74, 142} tii[24,3] := {82, 158} tii[24,4] := {85, 157} tii[24,5] := {66, 165} tii[24,6] := {75, 167} tii[24,7] := {103, 168} tii[24,8] := {68, 143} tii[24,9] := {84, 177} tii[24,10] := {67, 182} tii[24,11] := {55, 156} tii[24,12] := {39, 166} tii[24,13] := {81, 173} tii[24,14] := {49, 125} tii[24,15] := {65, 180} tii[24,16] := {38, 140} tii[24,17] := {48, 183} tii[24,18] := {34, 181} tii[24,19] := {26, 154} tii[24,20] := {17, 162} tii[24,21] := {52} tii[24,22] := {47, 133} tii[24,23] := {73} tii[24,24] := {96} tii[24,25] := {99} tii[24,26] := {51, 155} tii[24,27] := {86} tii[24,28] := {108} tii[24,29] := {111} tii[24,30] := {97} tii[24,31] := {100} tii[24,32] := {119} tii[24,33] := {105} tii[24,34] := {50, 178} tii[24,35] := {126} tii[24,36] := {127} tii[24,37] := {107} tii[24,38] := {110} tii[24,39] := {43, 159} tii[24,40] := {128} tii[24,41] := {98} tii[24,42] := {101} tii[24,43] := {54, 153} tii[24,44] := {120} tii[24,45] := {135} tii[24,46] := {21, 172} tii[24,47] := {87} tii[24,48] := {109} tii[24,49] := {112} tii[24,50] := {88} tii[24,51] := {90} tii[24,52] := {62, 169} tii[24,53] := {113} tii[24,54] := {77} tii[24,55] := {78} tii[24,56] := {37, 139} tii[24,57] := {45, 176} tii[24,58] := {102} tii[24,59] := {29, 170} tii[24,60] := {117} tii[24,61] := {58} tii[24,62] := {60} tii[24,63] := {25, 151} tii[24,64] := {80} tii[24,65] := {14, 145} tii[24,66] := {95} tii[24,67] := {116} tii[24,68] := {69} tii[24,69] := {89} tii[24,70] := {91} tii[24,71] := {70} tii[24,72] := {71} tii[24,73] := {44, 174} tii[24,74] := {92} tii[24,75] := {57} tii[24,76] := {59} tii[24,77] := {24, 122} tii[24,78] := {31, 179} tii[24,79] := {79} tii[24,80] := {18, 175} tii[24,81] := {94} tii[24,82] := {40} tii[24,83] := {41} tii[24,84] := {20, 171} tii[24,85] := {16, 137} tii[24,86] := {61} tii[24,87] := {8, 131} tii[24,88] := {11, 163} tii[24,89] := {76} tii[24,90] := {7, 152} tii[24,91] := {93} tii[24,92] := {27} tii[24,93] := {28} tii[24,94] := {9, 149} tii[24,95] := {42} tii[24,96] := {4, 136} tii[24,97] := {56} tii[24,98] := {2, 121} tii[24,99] := {72} tii[24,100] := {83} tii[24,101] := {35, 118} tii[24,102] := {30, 147} tii[24,103] := {53, 129} tii[24,104] := {22, 134} tii[24,105] := {32, 164} tii[24,106] := {63, 144} tii[24,107] := {19, 160} tii[24,108] := {36, 141} tii[24,109] := {13, 148} tii[24,110] := {12, 161} tii[24,111] := {46, 130} tii[24,112] := {6, 150} tii[24,113] := {23, 124} tii[24,114] := {3, 138} tii[24,115] := {10, 132} tii[24,116] := {1, 123} tii[24,117] := {33, 114} tii[24,118] := {15, 106} tii[24,119] := {5, 115} tii[24,120] := {0, 104} cell#24 , |C| = 250 special orbit = [7, 3, 1, 1, 1, 1, 1, 1] special rep = [[1], [4, 1, 1, 1]] , dim = 160 cell rep = phi[[],[4, 2, 1, 1]]+phi[[1],[4, 1, 1, 1]] TII depth = 2 TII multiplicity polynomial = 90*X^2+70*X TII subcells: tii[39,1] := {52, 138} tii[39,2] := {37, 154} tii[39,3] := {93, 144} tii[39,4] := {80, 163} tii[39,5] := {62, 175} tii[39,6] := {86, 186} tii[39,7] := {117, 167} tii[39,8] := {81, 206} tii[39,9] := {87, 196} tii[39,10] := {141, 191} tii[39,11] := {58, 212} tii[39,12] := {165, 210} tii[39,13] := {50, 187} tii[39,14] := {36, 153} tii[39,15] := {59, 208} tii[39,16] := {92, 143} tii[39,17] := {51, 223} tii[39,18] := {35, 224} tii[39,19] := {60, 174} tii[39,20] := {116, 166} tii[39,21] := {33, 190} tii[39,22] := {25, 235} tii[39,23] := {10, 242} tii[39,24] := {140, 188} tii[39,25] := {34, 185} tii[39,26] := {91, 142} tii[39,27] := {15, 205} tii[39,28] := {6, 221} tii[39,29] := {115, 164} tii[39,30] := {110, 189} tii[39,31] := {3} tii[39,32] := {7} tii[39,33] := {26, 112} tii[39,34] := {11, 109} tii[39,35] := {18} tii[39,36] := {43} tii[39,37] := {44} tii[39,38] := {23} tii[39,39] := {61, 162} tii[39,40] := {19, 135} tii[39,41] := {53, 184} tii[39,42] := {40} tii[39,43] := {70} tii[39,44] := {72} tii[39,45] := {27, 169} tii[39,46] := {65} tii[39,47] := {98} tii[39,48] := {102} tii[39,49] := {123} tii[39,50] := {128} tii[39,51] := {159} tii[39,52] := {46} tii[39,53] := {16, 207} tii[39,54] := {66} tii[39,55] := {41, 160} tii[39,56] := {9, 222} tii[39,57] := {99} tii[39,58] := {103} tii[39,59] := {2, 234} tii[39,60] := {38, 193} tii[39,61] := {90} tii[39,62] := {120} tii[39,63] := {125} tii[39,64] := {148} tii[39,65] := {152} tii[39,66] := {111, 226} tii[39,67] := {179} tii[39,68] := {0, 227} tii[39,69] := {114} tii[39,70] := {145} tii[39,71] := {149} tii[39,72] := {171} tii[39,73] := {173} tii[39,74] := {104, 233} tii[39,75] := {199} tii[39,76] := {194} tii[39,77] := {195} tii[39,78] := {139, 231} tii[39,79] := {217} tii[39,80] := {228} tii[39,81] := {22} tii[39,82] := {39} tii[39,83] := {20, 134} tii[39,84] := {69} tii[39,85] := {71} tii[39,86] := {17, 168} tii[39,87] := {64} tii[39,88] := {97} tii[39,89] := {101} tii[39,90] := {122} tii[39,91] := {127} tii[39,92] := {84, 238} tii[39,93] := {158} tii[39,94] := {1, 211} tii[39,95] := {89} tii[39,96] := {119} tii[39,97] := {124} tii[39,98] := {147} tii[39,99] := {151} tii[39,100] := {73, 218} tii[39,101] := {56, 245} tii[39,102] := {178} tii[39,103] := {170} tii[39,104] := {172} tii[39,105] := {113, 215} tii[39,106] := {31, 248} tii[39,107] := {198} tii[39,108] := {55, 249} tii[39,109] := {213} tii[39,110] := {63} tii[39,111] := {96} tii[39,112] := {100} tii[39,113] := {121} tii[39,114] := {126} tii[39,115] := {45, 225} tii[39,116] := {157} tii[39,117] := {146} tii[39,118] := {150} tii[39,119] := {88, 197} tii[39,120] := {24, 236} tii[39,121] := {177} tii[39,122] := {42, 243} tii[39,123] := {192} tii[39,124] := {136} tii[39,125] := {137} tii[39,126] := {82, 216} tii[39,127] := {161} tii[39,128] := {54, 230} tii[39,129] := {183} tii[39,130] := {204} tii[39,131] := {32, 78} tii[39,132] := {85, 209} tii[39,133] := {48, 108} tii[39,134] := {57, 203} tii[39,135] := {76, 132} tii[39,136] := {83, 182} tii[39,137] := {30, 237} tii[39,138] := {79, 133} tii[39,139] := {14, 244} tii[39,140] := {77, 220} tii[39,141] := {106, 156} tii[39,142] := {29, 247} tii[39,143] := {95, 201} tii[39,144] := {4, 241} tii[39,145] := {129, 176} tii[39,146] := {13, 246} tii[39,147] := {118, 219} tii[39,148] := {5, 239} tii[39,149] := {49, 107} tii[39,150] := {47, 202} tii[39,151] := {75, 131} tii[39,152] := {68, 181} tii[39,153] := {8, 232} tii[39,154] := {105, 155} tii[39,155] := {21, 240} tii[39,156] := {94, 200} tii[39,157] := {12, 229} tii[39,158] := {74, 130} tii[39,159] := {67, 180} tii[39,160] := {28, 214} cell#25 , |C| = 280 special orbit = [5, 3, 3, 1, 1, 1, 1, 1] special rep = [[1], [3, 2, 1, 1]] , dim = 280 cell rep = phi[[1],[3, 2, 1, 1]] TII depth = 4 TII multiplicity polynomial = 280*X TII subcells: tii[27,1] := {140} tii[27,2] := {116} tii[27,3] := {37} tii[27,4] := {173} tii[27,5] := {96} tii[27,6] := {165} tii[27,7] := {150} tii[27,8] := {202} tii[27,9] := {113} tii[27,10] := {182} tii[27,11] := {222} tii[27,12] := {209} tii[27,13] := {63} tii[27,14] := {203} tii[27,15] := {183} tii[27,16] := {130} tii[27,17] := {196} tii[27,18] := {93} tii[27,19] := {227} tii[27,20] := {148} tii[27,21] := {164} tii[27,22] := {223} tii[27,23] := {61} tii[27,24] := {211} tii[27,25] := {244} tii[27,26] := {194} tii[27,27] := {242} tii[27,28] := {233} tii[27,29] := {246} tii[27,30] := {181} tii[27,31] := {234} tii[27,32] := {259} tii[27,33] := {210} tii[27,34] := {269} tii[27,35] := {252} tii[27,36] := {265} tii[27,37] := {4} tii[27,38] := {5} tii[27,39] := {77} tii[27,40] := {18} tii[27,41] := {11} tii[27,42] := {110} tii[27,43] := {13} tii[27,44] := {66} tii[27,45] := {10} tii[27,46] := {20} tii[27,47] := {132} tii[27,48] := {43} tii[27,49] := {44} tii[27,50] := {52} tii[27,51] := {27} tii[27,52] := {166} tii[27,53] := {54} tii[27,54] := {56} tii[27,55] := {62} tii[27,56] := {24} tii[27,57] := {36} tii[27,58] := {21} tii[27,59] := {144} tii[27,60] := {129} tii[27,61] := {195} tii[27,62] := {28} tii[27,63] := {40} tii[27,64] := {69} tii[27,65] := {71} tii[27,66] := {80} tii[27,67] := {163} tii[27,68] := {197} tii[27,69] := {19} tii[27,70] := {221} tii[27,71] := {64} tii[27,72] := {50} tii[27,73] := {99} tii[27,74] := {83} tii[27,75] := {102} tii[27,76] := {86} tii[27,77] := {135} tii[27,78] := {138} tii[27,79] := {176} tii[27,80] := {147} tii[27,81] := {243} tii[27,82] := {78} tii[27,83] := {117} tii[27,84] := {120} tii[27,85] := {152} tii[27,86] := {155} tii[27,87] := {249} tii[27,88] := {191} tii[27,89] := {238} tii[27,90] := {45} tii[27,91] := {41} tii[27,92] := {177} tii[27,93] := {51} tii[27,94] := {65} tii[27,95] := {100} tii[27,96] := {103} tii[27,97] := {38} tii[27,98] := {114} tii[27,99] := {79} tii[27,100] := {224} tii[27,101] := {95} tii[27,102] := {118} tii[27,103] := {134} tii[27,104] := {121} tii[27,105] := {137} tii[27,106] := {169} tii[27,107] := {172} tii[27,108] := {206} tii[27,109] := {180} tii[27,110] := {258} tii[27,111] := {128} tii[27,112] := {112} tii[27,113] := {167} tii[27,114] := {151} tii[27,115] := {170} tii[27,116] := {154} tii[27,117] := {186} tii[27,118] := {199} tii[27,119] := {189} tii[27,120] := {201} tii[27,121] := {105} tii[27,122] := {264} tii[27,123] := {218} tii[27,124] := {229} tii[27,125] := {225} tii[27,126] := {226} tii[27,127] := {162} tii[27,128] := {262} tii[27,129] := {255} tii[27,130] := {248} tii[27,131] := {260} tii[27,132] := {146} tii[27,133] := {184} tii[27,134] := {187} tii[27,135] := {213} tii[27,136] := {215} tii[27,137] := {273} tii[27,138] := {240} tii[27,139] := {236} tii[27,140] := {237} tii[27,141] := {179} tii[27,142] := {268} tii[27,143] := {277} tii[27,144] := {256} tii[27,145] := {279} tii[27,146] := {266} tii[27,147] := {275} tii[27,148] := {278} tii[27,149] := {1} tii[27,150] := {3} tii[27,151] := {9} tii[27,152] := {22} tii[27,153] := {23} tii[27,154] := {14} tii[27,155] := {15} tii[27,156] := {34} tii[27,157] := {8} tii[27,158] := {39} tii[27,159] := {68} tii[27,160] := {70} tii[27,161] := {30} tii[27,162] := {101} tii[27,163] := {31} tii[27,164] := {104} tii[27,165] := {75} tii[27,166] := {59} tii[27,167] := {26} tii[27,168] := {143} tii[27,169] := {85} tii[27,170] := {88} tii[27,171] := {91} tii[27,172] := {208} tii[27,173] := {33} tii[27,174] := {126} tii[27,175] := {161} tii[27,176] := {94} tii[27,177] := {133} tii[27,178] := {136} tii[27,179] := {168} tii[27,180] := {55} tii[27,181] := {171} tii[27,182] := {57} tii[27,183] := {72} tii[27,184] := {49} tii[27,185] := {109} tii[27,186] := {205} tii[27,187] := {92} tii[27,188] := {198} tii[27,189] := {119} tii[27,190] := {200} tii[27,191] := {122} tii[27,192] := {232} tii[27,193] := {127} tii[27,194] := {47} tii[27,195] := {247} tii[27,196] := {124} tii[27,197] := {58} tii[27,198] := {228} tii[27,199] := {73} tii[27,200] := {141} tii[27,201] := {160} tii[27,202] := {245} tii[27,203] := {67} tii[27,204] := {207} tii[27,205] := {193} tii[27,206] := {185} tii[27,207] := {188} tii[27,208] := {111} tii[27,209] := {89} tii[27,210] := {263} tii[27,211] := {158} tii[27,212] := {217} tii[27,213] := {271} tii[27,214] := {235} tii[27,215] := {219} tii[27,216] := {81} tii[27,217] := {254} tii[27,218] := {84} tii[27,219] := {87} tii[27,220] := {76} tii[27,221] := {142} tii[27,222] := {125} tii[27,223] := {153} tii[27,224] := {156} tii[27,225] := {74} tii[27,226] := {159} tii[27,227] := {251} tii[27,228] := {107} tii[27,229] := {175} tii[27,230] := {90} tii[27,231] := {192} tii[27,232] := {98} tii[27,233] := {231} tii[27,234] := {220} tii[27,235] := {212} tii[27,236] := {214} tii[27,237] := {145} tii[27,238] := {272} tii[27,239] := {123} tii[27,240] := {139} tii[27,241] := {204} tii[27,242] := {190} tii[27,243] := {239} tii[27,244] := {276} tii[27,245] := {131} tii[27,246] := {250} tii[27,247] := {241} tii[27,248] := {115} tii[27,249] := {253} tii[27,250] := {270} tii[27,251] := {267} tii[27,252] := {157} tii[27,253] := {216} tii[27,254] := {149} tii[27,255] := {257} tii[27,256] := {274} tii[27,257] := {0} tii[27,258] := {48} tii[27,259] := {2} tii[27,260] := {12} tii[27,261] := {7} tii[27,262] := {25} tii[27,263] := {6} tii[27,264] := {46} tii[27,265] := {108} tii[27,266] := {42} tii[27,267] := {178} tii[27,268] := {17} tii[27,269] := {29} tii[27,270] := {106} tii[27,271] := {16} tii[27,272] := {174} tii[27,273] := {97} tii[27,274] := {230} tii[27,275] := {35} tii[27,276] := {53} tii[27,277] := {261} tii[27,278] := {32} tii[27,279] := {60} tii[27,280] := {82} cell#26 , |C| = 280 special orbit = [5, 3, 3, 1, 1, 1, 1, 1] special rep = [[1], [3, 2, 1, 1]] , dim = 280 cell rep = phi[[1],[3, 2, 1, 1]] TII depth = 4 TII multiplicity polynomial = 280*X TII subcells: tii[27,1] := {218} tii[27,2] := {185} tii[27,3] := {214} tii[27,4] := {248} tii[27,5] := {182} tii[27,6] := {254} tii[27,7] := {224} tii[27,8] := {266} tii[27,9] := {181} tii[27,10] := {253} tii[27,11] := {275} tii[27,12] := {269} tii[27,13] := {173} tii[27,14] := {217} tii[27,15] := {184} tii[27,16] := {135} tii[27,17] := {223} tii[27,18] := {126} tii[27,19] := {247} tii[27,20] := {134} tii[27,21] := {92} tii[27,22] := {186} tii[27,23] := {82} tii[27,24] := {222} tii[27,25] := {264} tii[27,26] := {60} tii[27,27] := {216} tii[27,28] := {250} tii[27,29] := {231} tii[27,30] := {91} tii[27,31] := {183} tii[27,32] := {252} tii[27,33] := {59} tii[27,34] := {226} tii[27,35] := {221} tii[27,36] := {251} tii[27,37] := {24} tii[27,38] := {16} tii[27,39] := {131} tii[27,40] := {174} tii[27,41] := {46} tii[27,42] := {180} tii[27,43] := {32} tii[27,44] := {136} tii[27,45] := {128} tii[27,46] := {52} tii[27,47] := {225} tii[27,48] := {100} tii[27,49] := {110} tii[27,50] := {94} tii[27,51] := {56} tii[27,52] := {246} tii[27,53] := {98} tii[27,54] := {108} tii[27,55] := {81} tii[27,56] := {80} tii[27,57] := {47} tii[27,58] := {175} tii[27,59] := {219} tii[27,60] := {58} tii[27,61] := {138} tii[27,62] := {57} tii[27,63] := {86} tii[27,64] := {144} tii[27,65] := {153} tii[27,66] := {137} tii[27,67] := {33} tii[27,68] := {265} tii[27,69] := {25} tii[27,70] := {178} tii[27,71] := {133} tii[27,72] := {90} tii[27,73] := {189} tii[27,74] := {143} tii[27,75] := {195} tii[27,76] := {152} tii[27,77] := {228} tii[27,78] := {230} tii[27,79] := {257} tii[27,80] := {17} tii[27,81] := {139} tii[27,82] := {132} tii[27,83] := {188} tii[27,84] := {194} tii[27,85] := {227} tii[27,86] := {229} tii[27,87] := {279} tii[27,88] := {256} tii[27,89] := {278} tii[27,90] := {45} tii[27,91] := {127} tii[27,92] := {179} tii[27,93] := {31} tii[27,94] := {51} tii[27,95] := {99} tii[27,96] := {109} tii[27,97] := {48} tii[27,98] := {93} tii[27,99] := {55} tii[27,100] := {245} tii[27,101] := {88} tii[27,102] := {97} tii[27,103] := {141} tii[27,104] := {107} tii[27,105] := {150} tii[27,106] := {191} tii[27,107] := {197} tii[27,108] := {235} tii[27,109] := {34} tii[27,110] := {187} tii[27,111] := {54} tii[27,112] := {87} tii[27,113] := {96} tii[27,114] := {140} tii[27,115] := {106} tii[27,116] := {149} tii[27,117] := {190} tii[27,118] := {146} tii[27,119] := {196} tii[27,120] := {155} tii[27,121] := {49} tii[27,122] := {276} tii[27,123] := {234} tii[27,124] := {206} tii[27,125] := {104} tii[27,126] := {114} tii[27,127] := {42} tii[27,128] := {249} tii[27,129] := {270} tii[27,130] := {169} tii[27,131] := {210} tii[27,132] := {53} tii[27,133] := {95} tii[27,134] := {105} tii[27,135] := {145} tii[27,136] := {154} tii[27,137] := {272} tii[27,138] := {205} tii[27,139] := {103} tii[27,140] := {113} tii[27,141] := {41} tii[27,142] := {255} tii[27,143] := {263} tii[27,144] := {168} tii[27,145] := {244} tii[27,146] := {209} tii[27,147] := {271} tii[27,148] := {258} tii[27,149] := {12} tii[27,150] := {83} tii[27,151] := {30} tii[27,152] := {62} tii[27,153] := {68} tii[27,154] := {35} tii[27,155] := {37} tii[27,156] := {77} tii[27,157] := {13} tii[27,158] := {89} tii[27,159] := {142} tii[27,160] := {151} tii[27,161] := {64} tii[27,162] := {192} tii[27,163] := {70} tii[27,164] := {198} tii[27,165] := {165} tii[27,166] := {121} tii[27,167] := {85} tii[27,168] := {236} tii[27,169] := {148} tii[27,170] := {157} tii[27,171] := {163} tii[27,172] := {268} tii[27,173] := {76} tii[27,174] := {208} tii[27,175] := {240} tii[27,176] := {29} tii[27,177] := {61} tii[27,178] := {67} tii[27,179] := {102} tii[27,180] := {101} tii[27,181] := {112} tii[27,182] := {111} tii[27,183] := {26} tii[27,184] := {129} tii[27,185] := {204} tii[27,186] := {167} tii[27,187] := {166} tii[27,188] := {65} tii[27,189] := {193} tii[27,190] := {71} tii[27,191] := {199} tii[27,192] := {277} tii[27,193] := {20} tii[27,194] := {14} tii[27,195] := {220} tii[27,196] := {203} tii[27,197] := {118} tii[27,198] := {122} tii[27,199] := {158} tii[27,200] := {233} tii[27,201] := {237} tii[27,202] := {170} tii[27,203] := {7} tii[27,204] := {274} tii[27,205] := {261} tii[27,206] := {36} tii[27,207] := {38} tii[27,208] := {9} tii[27,209] := {159} tii[27,210] := {213} tii[27,211] := {232} tii[27,212] := {78} tii[27,213] := {176} tii[27,214] := {125} tii[27,215] := {273} tii[27,216] := {3} tii[27,217] := {172} tii[27,218] := {63} tii[27,219] := {69} tii[27,220] := {84} tii[27,221] := {164} tii[27,222] := {120} tii[27,223] := {147} tii[27,224] := {156} tii[27,225] := {27} tii[27,226] := {162} tii[27,227] := {267} tii[27,228] := {115} tii[27,229] := {201} tii[27,230] := {75} tii[27,231] := {207} tii[27,232] := {15} tii[27,233] := {260} tii[27,234] := {239} tii[27,235] := {66} tii[27,236] := {72} tii[27,237] := {21} tii[27,238] := {243} tii[27,239] := {116} tii[27,240] := {74} tii[27,241] := {161} tii[27,242] := {200} tii[27,243] := {123} tii[27,244] := {215} tii[27,245] := {22} tii[27,246] := {241} tii[27,247] := {259} tii[27,248] := {11} tii[27,249] := {171} tii[27,250] := {177} tii[27,251] := {212} tii[27,252] := {73} tii[27,253] := {160} tii[27,254] := {23} tii[27,255] := {238} tii[27,256] := {242} tii[27,257] := {5} tii[27,258] := {124} tii[27,259] := {8} tii[27,260] := {50} tii[27,261] := {28} tii[27,262] := {6} tii[27,263] := {19} tii[27,264] := {117} tii[27,265] := {202} tii[27,266] := {2} tii[27,267] := {262} tii[27,268] := {43} tii[27,269] := {0} tii[27,270] := {40} tii[27,271] := {39} tii[27,272] := {119} tii[27,273] := {10} tii[27,274] := {211} tii[27,275] := {79} tii[27,276] := {1} tii[27,277] := {130} tii[27,278] := {18} tii[27,279] := {44} tii[27,280] := {4} cell#27 , |C| = 280 special orbit = [5, 3, 3, 1, 1, 1, 1, 1] special rep = [[1], [3, 2, 1, 1]] , dim = 280 cell rep = phi[[1],[3, 2, 1, 1]] TII depth = 4 TII multiplicity polynomial = 280*X TII subcells: tii[27,1] := {126} tii[27,2] := {230} tii[27,3] := {234} tii[27,4] := {178} tii[27,5] := {241} tii[27,6] := {150} tii[27,7] := {257} tii[27,8] := {221} tii[27,9] := {270} tii[27,10] := {271} tii[27,11] := {238} tii[27,12] := {276} tii[27,13] := {189} tii[27,14] := {123} tii[27,15] := {228} tii[27,16] := {200} tii[27,17] := {97} tii[27,18] := {141} tii[27,19] := {175} tii[27,20] := {254} tii[27,21] := {151} tii[27,22] := {57} tii[27,23] := {91} tii[27,24] := {255} tii[27,25] := {198} tii[27,26] := {187} tii[27,27] := {96} tii[27,28] := {269} tii[27,29] := {136} tii[27,30] := {239} tii[27,31] := {240} tii[27,32] := {181} tii[27,33] := {202} tii[27,34] := {129} tii[27,35] := {262} tii[27,36] := {237} tii[27,37] := {4} tii[27,38] := {42} tii[27,39] := {41} tii[27,40] := {192} tii[27,41] := {16} tii[27,42] := {80} tii[27,43] := {82} tii[27,44] := {201} tii[27,45] := {146} tii[27,46] := {25} tii[27,47] := {98} tii[27,48] := {60} tii[27,49] := {65} tii[27,50] := {229} tii[27,51] := {128} tii[27,52] := {149} tii[27,53] := {154} tii[27,54] := {161} tii[27,55] := {89} tii[27,56] := {37} tii[27,57] := {50} tii[27,58] := {195} tii[27,59] := {130} tii[27,60] := {99} tii[27,61] := {27} tii[27,62] := {132} tii[27,63] := {53} tii[27,64] := {103} tii[27,65] := {111} tii[27,66] := {256} tii[27,67] := {139} tii[27,68] := {199} tii[27,69] := {23} tii[27,70] := {56} tii[27,71] := {95} tii[27,72] := {180} tii[27,73] := {155} tii[27,74] := {204} tii[27,75] := {162} tii[27,76] := {209} tii[27,77] := {207} tii[27,78] := {212} tii[27,79] := {248} tii[27,80] := {100} tii[27,81] := {39} tii[27,82] := {223} tii[27,83] := {242} tii[27,84] := {245} tii[27,85] := {263} tii[27,86] := {264} tii[27,87] := {222} tii[27,88] := {275} tii[27,89] := {279} tii[27,90] := {15} tii[27,91] := {143} tii[27,92] := {77} tii[27,93] := {79} tii[27,94] := {24} tii[27,95] := {59} tii[27,96] := {64} tii[27,97] := {52} tii[27,98] := {227} tii[27,99] := {125} tii[27,100] := {148} tii[27,101] := {54} tii[27,102] := {153} tii[27,103] := {101} tii[27,104] := {160} tii[27,105] := {108} tii[27,106] := {157} tii[27,107] := {164} tii[27,108] := {216} tii[27,109] := {152} tii[27,110] := {76} tii[27,111] := {26} tii[27,112] := {177} tii[27,113] := {58} tii[27,114] := {203} tii[27,115] := {63} tii[27,116] := {208} tii[27,117] := {243} tii[27,118] := {105} tii[27,119] := {246} tii[27,120] := {112} tii[27,121] := {72} tii[27,122] := {176} tii[27,123] := {266} tii[27,124] := {171} tii[27,125] := {156} tii[27,126] := {163} tii[27,127] := {140} tii[27,128] := {75} tii[27,129] := {277} tii[27,130] := {218} tii[27,131] := {236} tii[27,132] := {138} tii[27,133] := {182} tii[27,134] := {184} tii[27,135] := {224} tii[27,136] := {225} tii[27,137] := {137} tii[27,138] := {253} tii[27,139] := {183} tii[27,140] := {185} tii[27,141] := {167} tii[27,142] := {274} tii[27,143] := {87} tii[27,144] := {226} tii[27,145] := {48} tii[27,146] := {252} tii[27,147] := {265} tii[27,148] := {251} tii[27,149] := {0} tii[27,150] := {93} tii[27,151] := {11} tii[27,152] := {29} tii[27,153] := {31} tii[27,154] := {62} tii[27,155] := {67} tii[27,156] := {94} tii[27,157] := {9} tii[27,158] := {55} tii[27,159] := {102} tii[27,160] := {109} tii[27,161] := {107} tii[27,162] := {158} tii[27,163] := {114} tii[27,164] := {165} tii[27,165] := {45} tii[27,166] := {147} tii[27,167] := {119} tii[27,168] := {217} tii[27,169] := {206} tii[27,170] := {211} tii[27,171] := {193} tii[27,172] := {127} tii[27,173] := {191} tii[27,174] := {250} tii[27,175] := {261} tii[27,176] := {10} tii[27,177] := {28} tii[27,178] := {30} tii[27,179] := {61} tii[27,180] := {159} tii[27,181] := {66} tii[27,182] := {166} tii[27,183] := {33} tii[27,184] := {170} tii[27,185] := {85} tii[27,186] := {120} tii[27,187] := {196} tii[27,188] := {104} tii[27,189] := {244} tii[27,190] := {110} tii[27,191] := {247} tii[27,192] := {179} tii[27,193] := {88} tii[27,194] := {13} tii[27,195] := {38} tii[27,196] := {235} tii[27,197] := {233} tii[27,198] := {172} tii[27,199] := {215} tii[27,200] := {115} tii[27,201] := {267} tii[27,202] := {197} tii[27,203] := {22} tii[27,204] := {131} tii[27,205] := {273} tii[27,206] := {83} tii[27,207] := {84} tii[27,208] := {70} tii[27,209] := {258} tii[27,210] := {20} tii[27,211] := {259} tii[27,212] := {135} tii[27,213] := {6} tii[27,214] := {174} tii[27,215] := {278} tii[27,216] := {35} tii[27,217] := {122} tii[27,218] := {106} tii[27,219] := {113} tii[27,220] := {118} tii[27,221] := {43} tii[27,222] := {144} tii[27,223] := {205} tii[27,224] := {210} tii[27,225] := {34} tii[27,226] := {190} tii[27,227] := {124} tii[27,228] := {168} tii[27,229] := {68} tii[27,230] := {188} tii[27,231] := {249} tii[27,232] := {51} tii[27,233] := {78} tii[27,234] := {260} tii[27,235] := {133} tii[27,236] := {134} tii[27,237] := {116} tii[27,238] := {47} tii[27,239] := {231} tii[27,240] := {117} tii[27,241] := {32} tii[27,242] := {232} tii[27,243] := {186} tii[27,244] := {21} tii[27,245] := {90} tii[27,246] := {40} tii[27,247] := {272} tii[27,248] := {74} tii[27,249] := {220} tii[27,250] := {7} tii[27,251] := {173} tii[27,252] := {213} tii[27,253] := {214} tii[27,254] := {121} tii[27,255] := {268} tii[27,256] := {219} tii[27,257] := {5} tii[27,258] := {18} tii[27,259] := {19} tii[27,260] := {73} tii[27,261] := {92} tii[27,262] := {2} tii[27,263] := {46} tii[27,264] := {169} tii[27,265] := {69} tii[27,266] := {8} tii[27,267] := {81} tii[27,268] := {145} tii[27,269] := {3} tii[27,270] := {71} tii[27,271] := {86} tii[27,272] := {12} tii[27,273] := {49} tii[27,274] := {17} tii[27,275] := {194} tii[27,276] := {14} tii[27,277] := {1} tii[27,278] := {44} tii[27,279] := {142} tii[27,280] := {36} cell#28 , |C| = 350 special orbit = [5, 3, 2, 2, 1, 1, 1, 1] special rep = [[1, 1], [3, 1, 1, 1]] , dim = 280 cell rep = phi[[],[3, 2, 2, 1]]+phi[[1, 1],[3, 1, 1, 1]] TII depth = 4 TII multiplicity polynomial = 70*X^2+210*X TII subcells: tii[25,1] := {207, 258} tii[25,2] := {173, 268} tii[25,3] := {172, 267} tii[25,4] := {255, 297} tii[25,5] := {219, 304} tii[25,6] := {293, 324} tii[25,7] := {125, 221} tii[25,8] := {265, 327} tii[25,9] := {301, 339} tii[25,10] := {302, 342} tii[25,11] := {171, 266} tii[25,12] := {215, 299} tii[25,13] := {30} tii[25,14] := {19} tii[25,15] := {159, 211} tii[25,16] := {50} tii[25,17] := {34} tii[25,18] := {126, 222} tii[25,19] := {116, 164} tii[25,20] := {52} tii[25,21] := {91} tii[25,22] := {101} tii[25,23] := {86, 176} tii[25,24] := {54} tii[25,25] := {90} tii[25,26] := {98} tii[25,27] := {96} tii[25,28] := {104} tii[25,29] := {253, 296} tii[25,30] := {77} tii[25,31] := {262, 322} tii[25,32] := {161, 212} tii[25,33] := {218, 303} tii[25,34] := {55} tii[25,35] := {81} tii[25,36] := {133} tii[25,37] := {141} tii[25,38] := {127, 223} tii[25,39] := {263, 326} tii[25,40] := {217, 295} tii[25,41] := {84} tii[25,42] := {124} tii[25,43] := {132} tii[25,44] := {179} tii[25,45] := {140} tii[25,46] := {189} tii[25,47] := {137} tii[25,48] := {231} tii[25,49] := {145} tii[25,50] := {239} tii[25,51] := {289} tii[25,52] := {216, 300} tii[25,53] := {123} tii[25,54] := {178} tii[25,55] := {188} tii[25,56] := {186} tii[25,57] := {230} tii[25,58] := {196} tii[25,59] := {238} tii[25,60] := {288} tii[25,61] := {228} tii[25,62] := {236} tii[25,63] := {286} tii[25,64] := {115} tii[25,65] := {209, 259} tii[25,66] := {33} tii[25,67] := {121} tii[25,68] := {181} tii[25,69] := {191} tii[25,70] := {53} tii[25,71] := {264, 323} tii[25,72] := {85, 175} tii[25,73] := {168} tii[25,74] := {89} tii[25,75] := {225} tii[25,76] := {97} tii[25,77] := {233} tii[25,78] := {95} tii[25,79] := {275} tii[25,80] := {103} tii[25,81] := {281} tii[25,82] := {318} tii[25,83] := {169, 261} tii[25,84] := {214} tii[25,85] := {82} tii[25,86] := {270} tii[25,87] := {130} tii[25,88] := {276} tii[25,89] := {138} tii[25,90] := {136} tii[25,91] := {182} tii[25,92] := {309} tii[25,93] := {144} tii[25,94] := {192} tii[25,95] := {311} tii[25,96] := {294, 347} tii[25,97] := {246} tii[25,98] := {336} tii[25,99] := {331} tii[25,100] := {180} tii[25,101] := {332} tii[25,102] := {190} tii[25,103] := {260, 349} tii[25,104] := {244} tii[25,105] := {345} tii[25,106] := {348} tii[25,107] := {122} tii[25,108] := {177} tii[25,109] := {187} tii[25,110] := {185} tii[25,111] := {229} tii[25,112] := {195} tii[25,113] := {237} tii[25,114] := {287} tii[25,115] := {272} tii[25,116] := {227} tii[25,117] := {278} tii[25,118] := {235} tii[25,119] := {165, 333} tii[25,120] := {285} tii[25,121] := {315} tii[25,122] := {328} tii[25,123] := {271} tii[25,124] := {277} tii[25,125] := {314} tii[25,126] := {330} tii[25,127] := {0} tii[25,128] := {18} tii[25,129] := {1} tii[25,130] := {3} tii[25,131] := {4} tii[25,132] := {78, 119} tii[25,133] := {32} tii[25,134] := {2} tii[25,135] := {57} tii[25,136] := {7} tii[25,137] := {64} tii[25,138] := {8} tii[25,139] := {38} tii[25,140] := {13} tii[25,141] := {42} tii[25,142] := {16} tii[25,143] := {28} tii[25,144] := {29} tii[25,145] := {6} tii[25,146] := {170, 257} tii[25,147] := {83} tii[25,148] := {12} tii[25,149] := {131} tii[25,150] := {15} tii[25,151] := {139} tii[25,152] := {22} tii[25,153] := {61} tii[25,154] := {183} tii[25,155] := {25} tii[25,156] := {66} tii[25,157] := {193} tii[25,158] := {45} tii[25,159] := {47} tii[25,160] := {80, 155} tii[25,161] := {247} tii[25,162] := {37} tii[25,163] := {135} tii[25,164] := {41} tii[25,165] := {143} tii[25,166] := {71} tii[25,167] := {74} tii[25,168] := {67, 150} tii[25,169] := {204} tii[25,170] := {158} tii[25,171] := {167} tii[25,172] := {10} tii[25,173] := {224} tii[25,174] := {20} tii[25,175] := {232} tii[25,176] := {23} tii[25,177] := {94} tii[25,178] := {274} tii[25,179] := {35} tii[25,180] := {102} tii[25,181] := {280} tii[25,182] := {39} tii[25,183] := {254, 340} tii[25,184] := {118, 202} tii[25,185] := {317} tii[25,186] := {69} tii[25,187] := {72} tii[25,188] := {308} tii[25,189] := {59} tii[25,190] := {184} tii[25,191] := {310} tii[25,192] := {63} tii[25,193] := {194} tii[25,194] := {213, 344} tii[25,195] := {208, 325} tii[25,196] := {107, 201} tii[25,197] := {109} tii[25,198] := {111} tii[25,199] := {335} tii[25,200] := {146, 243} tii[25,201] := {248} tii[25,202] := {343} tii[25,203] := {162, 321} tii[25,204] := {206} tii[25,205] := {93} tii[25,206] := {273} tii[25,207] := {100} tii[25,208] := {279} tii[25,209] := {166, 334} tii[25,210] := {148, 242} tii[25,211] := {152} tii[25,212] := {154} tii[25,213] := {316} tii[25,214] := {329} tii[25,215] := {129, 320} tii[25,216] := {250} tii[25,217] := {306} tii[25,218] := {5} tii[25,219] := {11} tii[25,220] := {14} tii[25,221] := {60} tii[25,222] := {21} tii[25,223] := {65} tii[25,224] := {24} tii[25,225] := {163, 245} tii[25,226] := {44} tii[25,227] := {46} tii[25,228] := {36} tii[25,229] := {134} tii[25,230] := {40} tii[25,231] := {142} tii[25,232] := {256, 341} tii[25,233] := {70} tii[25,234] := {73} tii[25,235] := {197, 283} tii[25,236] := {68, 149} tii[25,237] := {203} tii[25,238] := {210, 338} tii[25,239] := {157} tii[25,240] := {226} tii[25,241] := {58} tii[25,242] := {234} tii[25,243] := {62} tii[25,244] := {120, 312} tii[25,245] := {106, 199} tii[25,246] := {240, 313} tii[25,247] := {108} tii[25,248] := {110} tii[25,249] := {284} tii[25,250] := {220, 346} tii[25,251] := {87, 290} tii[25,252] := {305} tii[25,253] := {205} tii[25,254] := {269} tii[25,255] := {92} tii[25,256] := {99} tii[25,257] := {147, 241} tii[25,258] := {151} tii[25,259] := {153} tii[25,260] := {128, 319} tii[25,261] := {249} tii[25,262] := {307} tii[25,263] := {9} tii[25,264] := {17} tii[25,265] := {51, 112} tii[25,266] := {31, 76} tii[25,267] := {160, 298} tii[25,268] := {105, 200} tii[25,269] := {27} tii[25,270] := {117, 291} tii[25,271] := {48, 114} tii[25,272] := {79, 252} tii[25,273] := {198, 282} tii[25,274] := {43} tii[25,275] := {174, 337} tii[25,276] := {75, 156} tii[25,277] := {88, 292} tii[25,278] := {26} tii[25,279] := {49, 113} tii[25,280] := {56, 251} cell#29 , |C| = 184 special orbit = [5, 3, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[1], [3, 1, 1, 1, 1]] , dim = 120 cell rep = phi[[],[3, 2, 1, 1, 1]]+phi[[1],[3, 1, 1, 1, 1]] TII depth = 3 TII multiplicity polynomial = 64*X^2+56*X TII subcells: tii[24,1] := {135, 136} tii[24,2] := {80, 81} tii[24,3] := {156, 157} tii[24,4] := {48, 49} tii[24,5] := {133, 134} tii[24,6] := {78, 79} tii[24,7] := {171, 172} tii[24,8] := {30, 31} tii[24,9] := {153, 154} tii[24,10] := {130, 131} tii[24,11] := {55, 56} tii[24,12] := {89, 90} tii[24,13] := {155, 180} tii[24,14] := {11, 12} tii[24,15] := {132, 170} tii[24,16] := {28, 29} tii[24,17] := {104, 152} tii[24,18] := {77, 145} tii[24,19] := {53, 54} tii[24,20] := {27, 88} tii[24,21] := {70} tii[24,22] := {109, 110} tii[24,23] := {39} tii[24,24] := {58} tii[24,25] := {61} tii[24,26] := {107, 108} tii[24,27] := {17} tii[24,28] := {33} tii[24,29] := {35} tii[24,30] := {60} tii[24,31] := {63} tii[24,32] := {99} tii[24,33] := {6} tii[24,34] := {105, 106} tii[24,35] := {13} tii[24,36] := {14} tii[24,37] := {34} tii[24,38] := {36} tii[24,39] := {164, 165} tii[24,40] := {67} tii[24,41] := {59} tii[24,42] := {62} tii[24,43] := {114, 115} tii[24,44] := {98} tii[24,45] := {122} tii[24,46] := {47, 118} tii[24,47] := {3} tii[24,48] := {7} tii[24,49] := {9} tii[24,50] := {20} tii[24,51] := {23} tii[24,52] := {176, 177} tii[24,53] := {46} tii[24,54] := {41} tii[24,55] := {43} tii[24,56] := {96, 97} tii[24,57] := {161, 162} tii[24,58] := {76} tii[24,59] := {173, 174} tii[24,60] := {102} tii[24,61] := {73} tii[24,62] := {74} tii[24,63] := {126, 127} tii[24,64] := {103} tii[24,65] := {148, 149} tii[24,66] := {129} tii[24,67] := {151} tii[24,68] := {0} tii[24,69] := {1} tii[24,70] := {2} tii[24,71] := {8} tii[24,72] := {10} tii[24,73] := {163, 182} tii[24,74] := {24} tii[24,75] := {19} tii[24,76] := {22} tii[24,77] := {65, 66} tii[24,78] := {140, 175} tii[24,79] := {45} tii[24,80] := {158, 181} tii[24,81] := {72} tii[24,82] := {40} tii[24,83] := {42} tii[24,84] := {113, 169} tii[24,85] := {94, 95} tii[24,86] := {75} tii[24,87] := {120, 121} tii[24,88] := {137, 179} tii[24,89] := {101} tii[24,90] := {112, 183} tii[24,91] := {128} tii[24,92] := {18} tii[24,93] := {21} tii[24,94] := {64, 125} tii[24,95] := {44} tii[24,96] := {91, 147} tii[24,97] := {71} tii[24,98] := {57, 166} tii[24,99] := {100} tii[24,100] := {119} tii[24,101] := {83, 84} tii[24,102] := {143, 144} tii[24,103] := {51, 52} tii[24,104] := {116, 117} tii[24,105] := {141, 142} tii[24,106] := {25, 26} tii[24,107] := {159, 160} tii[24,108] := {86, 87} tii[24,109] := {138, 139} tii[24,110] := {85, 150} tii[24,111] := {15, 16} tii[24,112] := {111, 168} tii[24,113] := {68, 69} tii[24,114] := {82, 178} tii[24,115] := {123, 124} tii[24,116] := {50, 167} tii[24,117] := {4, 5} tii[24,118] := {37, 38} tii[24,119] := {92, 93} tii[24,120] := {32, 146} cell#30 , |C| = 252 special orbit = [4, 4, 3, 1, 1, 1, 1, 1] special rep = [[2], [2, 2, 1, 1]] , dim = 252 cell rep = phi[[2],[2, 2, 1, 1]] TII depth = 4 TII multiplicity polynomial = 252*X TII subcells: tii[19,1] := {151} tii[19,2] := {103} tii[19,3] := {177} tii[19,4] := {148} tii[19,5] := {199} tii[19,6] := {215} tii[19,7] := {200} tii[19,8] := {136} tii[19,9] := {175} tii[19,10] := {164} tii[19,11] := {217} tii[19,12] := {189} tii[19,13] := {229} tii[19,14] := {198} tii[19,15] := {230} tii[19,16] := {216} tii[19,17] := {239} tii[19,18] := {245} tii[19,19] := {17} tii[19,20] := {34} tii[19,21] := {20} tii[19,22] := {21} tii[19,23] := {72} tii[19,24] := {48} tii[19,25] := {55} tii[19,26] := {59} tii[19,27] := {90} tii[19,28] := {92} tii[19,29] := {94} tii[19,30] := {39} tii[19,31] := {41} tii[19,32] := {135} tii[19,33] := {60} tii[19,34] := {77} tii[19,35] := {82} tii[19,36] := {119} tii[19,37] := {69} tii[19,38] := {71} tii[19,39] := {163} tii[19,40] := {88} tii[19,41] := {45} tii[19,42] := {122} tii[19,43] := {108} tii[19,44] := {51} tii[19,45] := {125} tii[19,46] := {112} tii[19,47] := {140} tii[19,48] := {143} tii[19,49] := {171} tii[19,50] := {174} tii[19,51] := {117} tii[19,52] := {152} tii[19,53] := {155} tii[19,54] := {179} tii[19,55] := {182} tii[19,56] := {208} tii[19,57] := {234} tii[19,58] := {68} tii[19,59] := {70} tii[19,60] := {89} tii[19,61] := {107} tii[19,62] := {111} tii[19,63] := {149} tii[19,64] := {100} tii[19,65] := {102} tii[19,66] := {118} tii[19,67] := {75} tii[19,68] := {153} tii[19,69] := {139} tii[19,70] := {80} tii[19,71] := {156} tii[19,72] := {142} tii[19,73] := {167} tii[19,74] := {170} tii[19,75] := {195} tii[19,76] := {197} tii[19,77] := {133} tii[19,78] := {134} tii[19,79] := {147} tii[19,80] := {106} tii[19,81] := {165} tii[19,82] := {178} tii[19,83] := {110} tii[19,84] := {168} tii[19,85] := {181} tii[19,86] := {76} tii[19,87] := {203} tii[19,88] := {191} tii[19,89] := {81} tii[19,90] := {206} tii[19,91] := {193} tii[19,92] := {116} tii[19,93] := {224} tii[19,94] := {214} tii[19,95] := {211} tii[19,96] := {212} tii[19,97] := {162} tii[19,98] := {242} tii[19,99] := {228} tii[19,100] := {238} tii[19,101] := {173} tii[19,102] := {201} tii[19,103] := {204} tii[19,104] := {219} tii[19,105] := {221} tii[19,106] := {236} tii[19,107] := {232} tii[19,108] := {233} tii[19,109] := {196} tii[19,110] := {248} tii[19,111] := {243} tii[19,112] := {246} tii[19,113] := {250} tii[19,114] := {251} tii[19,115] := {8} tii[19,116] := {9} tii[19,117] := {25} tii[19,118] := {3} tii[19,119] := {31} tii[19,120] := {5} tii[19,121] := {35} tii[19,122] := {36} tii[19,123] := {66} tii[19,124] := {40} tii[19,125] := {42} tii[19,126] := {10} tii[19,127] := {23} tii[19,128] := {78} tii[19,129] := {13} tii[19,130] := {28} tii[19,131] := {83} tii[19,132] := {62} tii[19,133] := {109} tii[19,134] := {12} tii[19,135] := {63} tii[19,136] := {113} tii[19,137] := {15} tii[19,138] := {97} tii[19,139] := {145} tii[19,140] := {33} tii[19,141] := {124} tii[19,142] := {127} tii[19,143] := {130} tii[19,144] := {161} tii[19,145] := {65} tii[19,146] := {188} tii[19,147] := {99} tii[19,148] := {101} tii[19,149] := {22} tii[19,150] := {74} tii[19,151] := {138} tii[19,152] := {27} tii[19,153] := {79} tii[19,154] := {141} tii[19,155] := {26} tii[19,156] := {46} tii[19,157] := {166} tii[19,158] := {93} tii[19,159] := {30} tii[19,160] := {52} tii[19,161] := {169} tii[19,162] := {95} tii[19,163] := {85} tii[19,164] := {58} tii[19,165] := {194} tii[19,166] := {131} tii[19,167] := {190} tii[19,168] := {24} tii[19,169] := {154} tii[19,170] := {192} tii[19,171] := {29} tii[19,172] := {157} tii[19,173] := {132} tii[19,174] := {84} tii[19,175] := {159} tii[19,176] := {96} tii[19,177] := {213} tii[19,178] := {57} tii[19,179] := {187} tii[19,180] := {227} tii[19,181] := {210} tii[19,182] := {73} tii[19,183] := {202} tii[19,184] := {205} tii[19,185] := {146} tii[19,186] := {128} tii[19,187] := {185} tii[19,188] := {223} tii[19,189] := {231} tii[19,190] := {225} tii[19,191] := {120} tii[19,192] := {241} tii[19,193] := {44} tii[19,194] := {50} tii[19,195] := {49} tii[19,196] := {123} tii[19,197] := {54} tii[19,198] := {126} tii[19,199] := {160} tii[19,200] := {87} tii[19,201] := {47} tii[19,202] := {180} tii[19,203] := {53} tii[19,204] := {183} tii[19,205] := {186} tii[19,206] := {86} tii[19,207] := {115} tii[19,208] := {129} tii[19,209] := {209} tii[19,210] := {105} tii[19,211] := {226} tii[19,212] := {218} tii[19,213] := {220} tii[19,214] := {172} tii[19,215] := {144} tii[19,216] := {158} tii[19,217] := {207} tii[19,218] := {235} tii[19,219] := {137} tii[19,220] := {237} tii[19,221] := {150} tii[19,222] := {240} tii[19,223] := {247} tii[19,224] := {184} tii[19,225] := {222} tii[19,226] := {176} tii[19,227] := {244} tii[19,228] := {249} tii[19,229] := {0} tii[19,230] := {1} tii[19,231] := {2} tii[19,232] := {4} tii[19,233] := {6} tii[19,234] := {7} tii[19,235] := {16} tii[19,236] := {19} tii[19,237] := {11} tii[19,238] := {14} tii[19,239] := {56} tii[19,240] := {18} tii[19,241] := {32} tii[19,242] := {43} tii[19,243] := {38} tii[19,244] := {61} tii[19,245] := {114} tii[19,246] := {37} tii[19,247] := {104} tii[19,248] := {67} tii[19,249] := {91} tii[19,250] := {64} tii[19,251] := {98} tii[19,252] := {121} cell#31 , |C| = 140 special orbit = [4, 4, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[2], [2, 1, 1, 1, 1]] , dim = 140 cell rep = phi[[2],[2, 1, 1, 1, 1]] TII depth = 6 TII multiplicity polynomial = 140*X TII subcells: tii[15,1] := {59} tii[15,2] := {78} tii[15,3] := {92} tii[15,4] := {93} tii[15,5] := {104} tii[15,6] := {114} tii[15,7] := {77} tii[15,8] := {91} tii[15,9] := {103} tii[15,10] := {113} tii[15,11] := {18} tii[15,12] := {19} tii[15,13] := {43} tii[15,14] := {47} tii[15,15] := {35} tii[15,16] := {36} tii[15,17] := {21} tii[15,18] := {64} tii[15,19] := {25} tii[15,20] := {66} tii[15,21] := {82} tii[15,22] := {85} tii[15,23] := {100} tii[15,24] := {56} tii[15,25] := {58} tii[15,26] := {41} tii[15,27] := {81} tii[15,28] := {45} tii[15,29] := {84} tii[15,30] := {23} tii[15,31] := {96} tii[15,32] := {27} tii[15,33] := {99} tii[15,34] := {50} tii[15,35] := {112} tii[15,36] := {106} tii[15,37] := {109} tii[15,38] := {73} tii[15,39] := {120} tii[15,40] := {125} tii[15,41] := {75} tii[15,42] := {76} tii[15,43] := {63} tii[15,44] := {94} tii[15,45] := {65} tii[15,46] := {97} tii[15,47] := {42} tii[15,48] := {107} tii[15,49] := {46} tii[15,50] := {110} tii[15,51] := {69} tii[15,52] := {121} tii[15,53] := {24} tii[15,54] := {116} tii[15,55] := {28} tii[15,56] := {118} tii[15,57] := {90} tii[15,58] := {51} tii[15,59] := {129} tii[15,60] := {62} tii[15,61] := {132} tii[15,62] := {126} tii[15,63] := {127} tii[15,64] := {102} tii[15,65] := {133} tii[15,66] := {88} tii[15,67] := {136} tii[15,68] := {138} tii[15,69] := {55} tii[15,70] := {57} tii[15,71] := {40} tii[15,72] := {80} tii[15,73] := {44} tii[15,74] := {83} tii[15,75] := {22} tii[15,76] := {95} tii[15,77] := {26} tii[15,78] := {98} tii[15,79] := {49} tii[15,80] := {111} tii[15,81] := {7} tii[15,82] := {105} tii[15,83] := {12} tii[15,84] := {108} tii[15,85] := {72} tii[15,86] := {29} tii[15,87] := {119} tii[15,88] := {37} tii[15,89] := {124} tii[15,90] := {2} tii[15,91] := {115} tii[15,92] := {3} tii[15,93] := {117} tii[15,94] := {89} tii[15,95] := {16} tii[15,96] := {128} tii[15,97] := {71} tii[15,98] := {20} tii[15,99] := {131} tii[15,100] := {34} tii[15,101] := {135} tii[15,102] := {122} tii[15,103] := {123} tii[15,104] := {101} tii[15,105] := {130} tii[15,106] := {87} tii[15,107] := {134} tii[15,108] := {70} tii[15,109] := {137} tii[15,110] := {139} tii[15,111] := {6} tii[15,112] := {11} tii[15,113] := {10} tii[15,114] := {15} tii[15,115] := {32} tii[15,116] := {9} tii[15,117] := {14} tii[15,118] := {48} tii[15,119] := {31} tii[15,120] := {39} tii[15,121] := {8} tii[15,122] := {13} tii[15,123] := {68} tii[15,124] := {30} tii[15,125] := {38} tii[15,126] := {61} tii[15,127] := {54} tii[15,128] := {0} tii[15,129] := {1} tii[15,130] := {86} tii[15,131] := {4} tii[15,132] := {5} tii[15,133] := {79} tii[15,134] := {17} tii[15,135] := {74} tii[15,136] := {33} tii[15,137] := {67} tii[15,138] := {60} tii[15,139] := {53} tii[15,140] := {52} cell#32 , |C| = 112 special orbit = [3, 3, 3, 1, 1, 1, 1, 1, 1, 1] special rep = [[1], [2, 2, 1, 1, 1]] , dim = 112 cell rep = phi[[1],[2, 2, 1, 1, 1]] TII depth = 4 TII multiplicity polynomial = 112*X TII subcells: tii[11,1] := {70} tii[11,2] := {24} tii[11,3] := {84} tii[11,4] := {94} tii[11,5] := {37} tii[11,6] := {96} tii[11,7] := {23} tii[11,8] := {102} tii[11,9] := {107} tii[11,10] := {51} tii[11,11] := {103} tii[11,12] := {36} tii[11,13] := {108} tii[11,14] := {32} tii[11,15] := {110} tii[11,16] := {111} tii[11,17] := {18} tii[11,18] := {17} tii[11,19] := {25} tii[11,20] := {41} tii[11,21] := {44} tii[11,22] := {16} tii[11,23] := {38} tii[11,24] := {57} tii[11,25] := {60} tii[11,26] := {40} tii[11,27] := {43} tii[11,28] := {62} tii[11,29] := {81} tii[11,30] := {20} tii[11,31] := {52} tii[11,32] := {72} tii[11,33] := {74} tii[11,34] := {56} tii[11,35] := {59} tii[11,36] := {76} tii[11,37] := {39} tii[11,38] := {42} tii[11,39] := {14} tii[11,40] := {93} tii[11,41] := {61} tii[11,42] := {68} tii[11,43] := {100} tii[11,44] := {91} tii[11,45] := {67} tii[11,46] := {85} tii[11,47] := {86} tii[11,48] := {71} tii[11,49] := {73} tii[11,50] := {87} tii[11,51] := {55} tii[11,52] := {58} tii[11,53] := {21} tii[11,54] := {101} tii[11,55] := {75} tii[11,56] := {82} tii[11,57] := {48} tii[11,58] := {49} tii[11,59] := {19} tii[11,60] := {106} tii[11,61] := {65} tii[11,62] := {11} tii[11,63] := {99} tii[11,64] := {79} tii[11,65] := {90} tii[11,66] := {109} tii[11,67] := {105} tii[11,68] := {104} tii[11,69] := {28} tii[11,70] := {31} tii[11,71] := {47} tii[11,72] := {27} tii[11,73] := {30} tii[11,74] := {63} tii[11,75] := {9} tii[11,76] := {46} tii[11,77] := {54} tii[11,78] := {26} tii[11,79] := {29} tii[11,80] := {8} tii[11,81] := {15} tii[11,82] := {77} tii[11,83] := {45} tii[11,84] := {69} tii[11,85] := {53} tii[11,86] := {3} tii[11,87] := {66} tii[11,88] := {33} tii[11,89] := {34} tii[11,90] := {12} tii[11,91] := {22} tii[11,92] := {88} tii[11,93] := {50} tii[11,94] := {6} tii[11,95] := {7} tii[11,96] := {64} tii[11,97] := {83} tii[11,98] := {78} tii[11,99] := {80} tii[11,100] := {2} tii[11,101] := {89} tii[11,102] := {35} tii[11,103] := {97} tii[11,104] := {13} tii[11,105] := {95} tii[11,106] := {5} tii[11,107] := {92} tii[11,108] := {98} tii[11,109] := {10} tii[11,110] := {4} tii[11,111] := {1} tii[11,112] := {0} cell#33 , |C| = 112 special orbit = [3, 3, 3, 1, 1, 1, 1, 1, 1, 1] special rep = [[1], [2, 2, 1, 1, 1]] , dim = 112 cell rep = phi[[1],[2, 2, 1, 1, 1]] TII depth = 4 TII multiplicity polynomial = 112*X TII subcells: tii[11,1] := {34} tii[11,2] := {19} tii[11,3] := {47} tii[11,4] := {58} tii[11,5] := {32} tii[11,6] := {61} tii[11,7] := {45} tii[11,8] := {70} tii[11,9] := {82} tii[11,10] := {46} tii[11,11] := {72} tii[11,12] := {60} tii[11,13] := {83} tii[11,14] := {71} tii[11,15] := {92} tii[11,16] := {99} tii[11,17] := {1} tii[11,18] := {10} tii[11,19] := {3} tii[11,20] := {12} tii[11,21] := {13} tii[11,22] := {31} tii[11,23] := {9} tii[11,24] := {21} tii[11,25] := {23} tii[11,26] := {36} tii[11,27] := {38} tii[11,28] := {55} tii[11,29] := {78} tii[11,30] := {59} tii[11,31] := {18} tii[11,32] := {35} tii[11,33] := {37} tii[11,34] := {50} tii[11,35] := {53} tii[11,36] := {68} tii[11,37] := {62} tii[11,38] := {64} tii[11,39] := {28} tii[11,40] := {88} tii[11,41] := {79} tii[11,42] := {84} tii[11,43] := {96} tii[11,44] := {101} tii[11,45] := {30} tii[11,46] := {48} tii[11,47] := {51} tii[11,48] := {63} tii[11,49] := {65} tii[11,50] := {80} tii[11,51] := {75} tii[11,52] := {77} tii[11,53] := {44} tii[11,54] := {97} tii[11,55] := {90} tii[11,56] := {94} tii[11,57] := {86} tii[11,58] := {87} tii[11,59] := {57} tii[11,60] := {104} tii[11,61] := {98} tii[11,62] := {42} tii[11,63] := {108} tii[11,64] := {102} tii[11,65] := {106} tii[11,66] := {105} tii[11,67] := {109} tii[11,68] := {111} tii[11,69] := {5} tii[11,70] := {6} tii[11,71] := {15} tii[11,72] := {22} tii[11,73] := {24} tii[11,74] := {26} tii[11,75] := {7} tii[11,76] := {41} tii[11,77] := {56} tii[11,78] := {49} tii[11,79] := {52} tii[11,80] := {16} tii[11,81] := {14} tii[11,82] := {40} tii[11,83] := {67} tii[11,84] := {69} tii[11,85] := {73} tii[11,86] := {11} tii[11,87] := {85} tii[11,88] := {74} tii[11,89] := {76} tii[11,90] := {43} tii[11,91] := {25} tii[11,92] := {54} tii[11,93] := {89} tii[11,94] := {27} tii[11,95] := {20} tii[11,96] := {93} tii[11,97] := {81} tii[11,98] := {100} tii[11,99] := {95} tii[11,100] := {17} tii[11,101] := {107} tii[11,102] := {39} tii[11,103] := {66} tii[11,104] := {33} tii[11,105] := {91} tii[11,106] := {29} tii[11,107] := {103} tii[11,108] := {110} tii[11,109] := {0} tii[11,110] := {2} tii[11,111] := {4} tii[11,112] := {8} cell#34 , |C| = 21 special orbit = [5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[], [3, 1, 1, 1, 1, 1]] , dim = 21 cell rep = phi[[],[3, 1, 1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 21*X TII subcells: tii[23,1] := {17} tii[23,2] := {13} tii[23,3] := {8} tii[23,4] := {4} tii[23,5] := {1} tii[23,6] := {0} tii[23,7] := {19} tii[23,8] := {14} tii[23,9] := {18} tii[23,10] := {12} tii[23,11] := {16} tii[23,12] := {20} tii[23,13] := {7} tii[23,14] := {11} tii[23,15] := {15} tii[23,16] := {10} tii[23,17] := {3} tii[23,18] := {6} tii[23,19] := {9} tii[23,20] := {5} tii[23,21] := {2} cell#35 , |C| = 68 special orbit = [3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[1], [2, 1, 1, 1, 1, 1]] , dim = 48 cell rep = phi[[],[2, 2, 1, 1, 1, 1]]+phi[[1],[2, 1, 1, 1, 1, 1]] TII depth = 3 TII multiplicity polynomial = 20*X^2+28*X TII subcells: tii[8,1] := {28, 56} tii[8,2] := {23, 61} tii[8,3] := {18, 64} tii[8,4] := {14, 66} tii[8,5] := {11, 67} tii[8,6] := {34} tii[8,7] := {43} tii[8,8] := {44} tii[8,9] := {35} tii[8,10] := {36} tii[8,11] := {45} tii[8,12] := {29} tii[8,13] := {30} tii[8,14] := {17, 55} tii[8,15] := {37} tii[8,16] := {42} tii[8,17] := {25} tii[8,18] := {26} tii[8,19] := {13, 60} tii[8,20] := {33} tii[8,21] := {9, 54} tii[8,22] := {40} tii[8,23] := {47} tii[8,24] := {19} tii[8,25] := {20} tii[8,26] := {10, 63} tii[8,27] := {27} tii[8,28] := {7, 59} tii[8,29] := {32} tii[8,30] := {4, 57} tii[8,31] := {39} tii[8,32] := {46} tii[8,33] := {15} tii[8,34] := {16} tii[8,35] := {8, 65} tii[8,36] := {21} tii[8,37] := {5, 62} tii[8,38] := {24} tii[8,39] := {2, 58} tii[8,40] := {31} tii[8,41] := {1, 53} tii[8,42] := {38} tii[8,43] := {41} tii[8,44] := {22, 51} tii[8,45] := {12, 50} tii[8,46] := {6, 49} tii[8,47] := {3, 52} tii[8,48] := {0, 48} cell#36 , |C| = 364 special orbit = [3, 3, 3, 3, 1, 1, 1, 1] special rep = [[1, 1], [2, 2, 1, 1]] , dim = 252 cell rep = phi[[1],[2, 2, 2, 1]]+phi[[1, 1],[2, 2, 1, 1]] TII depth = 3 TII multiplicity polynomial = 112*X^2+140*X TII subcells: tii[12,1] := {169, 262} tii[12,2] := {258, 259} tii[12,3] := {214, 304} tii[12,4] := {168, 333} tii[12,5] := {299, 300} tii[12,6] := {260, 334} tii[12,7] := {296, 351} tii[12,8] := {331, 332} tii[12,9] := {349, 350} tii[12,10] := {31} tii[12,11] := {52} tii[12,12] := {128, 218} tii[12,13] := {21, 83} tii[12,14] := {170, 171} tii[12,15] := {82} tii[12,16] := {104} tii[12,17] := {110} tii[12,18] := {37, 122} tii[12,19] := {126, 301} tii[12,20] := {213, 302} tii[12,21] := {84} tii[12,22] := {215, 216} tii[12,23] := {257, 330} tii[12,24] := {89, 261} tii[12,25] := {58, 165} tii[12,26] := {120} tii[12,27] := {90, 191} tii[12,28] := {145} tii[12,29] := {93, 199} tii[12,30] := {152} tii[12,31] := {151} tii[12,32] := {158} tii[12,33] := {297, 298} tii[12,34] := {164} tii[12,35] := {190} tii[12,36] := {198} tii[12,37] := {239} tii[12,38] := {247} tii[12,39] := {292} tii[12,40] := {59, 167} tii[12,41] := {123} tii[12,42] := {127, 303} tii[12,43] := {166} tii[12,44] := {263, 264} tii[12,45] := {88, 212} tii[12,46] := {130, 237} tii[12,47] := {192} tii[12,48] := {133, 245} tii[12,49] := {200} tii[12,50] := {197} tii[12,51] := {205} tii[12,52] := {328, 329} tii[12,53] := {125, 256} tii[12,54] := {210} tii[12,55] := {172, 278} tii[12,56] := {235} tii[12,57] := {175, 285} tii[12,58] := {243} tii[12,59] := {242} tii[12,60] := {219, 319} tii[12,61] := {281} tii[12,62] := {250} tii[12,63] := {220, 322} tii[12,64] := {288} tii[12,65] := {271, 348} tii[12,66] := {325} tii[12,67] := {280} tii[12,68] := {287} tii[12,69] := {335, 362} tii[12,70] := {324} tii[12,71] := {255} tii[12,72] := {277} tii[12,73] := {284} tii[12,74] := {318} tii[12,75] := {321} tii[12,76] := {347} tii[12,77] := {344} tii[12,78] := {345} tii[12,79] := {360, 361} tii[12,80] := {359} tii[12,81] := {363} tii[12,82] := {1} tii[12,83] := {11, 53} tii[12,84] := {3} tii[12,85] := {8} tii[12,86] := {9} tii[12,87] := {46} tii[12,88] := {49} tii[12,89] := {7} tii[12,90] := {60, 217} tii[12,91] := {36, 121} tii[12,92] := {17} tii[12,93] := {61, 146} tii[12,94] := {18} tii[12,95] := {63, 153} tii[12,96] := {72} tii[12,97] := {26} tii[12,98] := {109} tii[12,99] := {38, 107} tii[12,100] := {76} tii[12,101] := {27} tii[12,102] := {115} tii[12,103] := {39, 113} tii[12,104] := {50} tii[12,105] := {51} tii[12,106] := {66, 142} tii[12,107] := {148} tii[12,108] := {155} tii[12,109] := {208} tii[12,110] := {136, 137} tii[12,111] := {87, 211} tii[12,112] := {16} tii[12,113] := {129, 236} tii[12,114] := {32} tii[12,115] := {132, 244} tii[12,116] := {33} tii[12,117] := {62, 149} tii[12,118] := {108} tii[12,119] := {196} tii[12,120] := {173, 282} tii[12,121] := {44} tii[12,122] := {64, 156} tii[12,123] := {114} tii[12,124] := {204} tii[12,125] := {176, 289} tii[12,126] := {47} tii[12,127] := {99, 186} tii[12,128] := {228, 326} tii[12,129] := {78} tii[12,130] := {80} tii[12,131] := {238} tii[12,132] := {71} tii[12,133] := {193} tii[12,134] := {131, 240} tii[12,135] := {246} tii[12,136] := {75} tii[12,137] := {201} tii[12,138] := {134, 248} tii[12,139] := {309, 354} tii[12,140] := {138, 224} tii[12,141] := {117} tii[12,142] := {119} tii[12,143] := {251} tii[12,144] := {291} tii[12,145] := {65, 223} tii[12,146] := {178, 179} tii[12,147] := {184, 293} tii[12,148] := {232, 313} tii[12,149] := {209} tii[12,150] := {279} tii[12,151] := {286} tii[12,152] := {336, 337} tii[12,153] := {221, 222} tii[12,154] := {323} tii[12,155] := {342} tii[12,156] := {310, 311} tii[12,157] := {30} tii[12,158] := {54} tii[12,159] := {55} tii[12,160] := {91, 195} tii[12,161] := {150} tii[12,162] := {70} tii[12,163] := {94, 203} tii[12,164] := {157} tii[12,165] := {74} tii[12,166] := {139, 231} tii[12,167] := {116} tii[12,168] := {118} tii[12,169] := {174, 283} tii[12,170] := {106} tii[12,171] := {241} tii[12,172] := {177, 290} tii[12,173] := {112} tii[12,174] := {249} tii[12,175] := {183, 270} tii[12,176] := {97, 269} tii[12,177] := {160} tii[12,178] := {162} tii[12,179] := {229, 327} tii[12,180] := {294} tii[12,181] := {225, 226} tii[12,182] := {273, 341} tii[12,183] := {254} tii[12,184] := {317} tii[12,185] := {147} tii[12,186] := {320} tii[12,187] := {154} tii[12,188] := {352, 353} tii[12,189] := {135, 307} tii[12,190] := {227, 308} tii[12,191] := {265, 266} tii[12,192] := {206} tii[12,193] := {207} tii[12,194] := {346} tii[12,195] := {358} tii[12,196] := {312, 357} tii[12,197] := {338, 339} tii[12,198] := {295} tii[12,199] := {343} tii[12,200] := {305, 306} tii[12,201] := {355, 356} tii[12,202] := {4} tii[12,203] := {5} tii[12,204] := {10} tii[12,205] := {14} tii[12,206] := {22, 73} tii[12,207] := {15} tii[12,208] := {23, 77} tii[12,209] := {28} tii[12,210] := {29} tii[12,211] := {19} tii[12,212] := {42, 103} tii[12,213] := {6, 34} tii[12,214] := {68, 69} tii[12,215] := {45} tii[12,216] := {92, 194} tii[12,217] := {48} tii[12,218] := {95, 202} tii[12,219] := {35} tii[12,220] := {98, 181} tii[12,221] := {12, 56} tii[12,222] := {41, 180} tii[12,223] := {79} tii[12,224] := {81} tii[12,225] := {140, 252} tii[12,226] := {189, 276} tii[12,227] := {163} tii[12,228] := {100, 101} tii[12,229] := {25, 141} tii[12,230] := {233, 234} tii[12,231] := {105} tii[12,232] := {111} tii[12,233] := {24, 85} tii[12,234] := {96, 267} tii[12,235] := {182, 268} tii[12,236] := {159} tii[12,237] := {161} tii[12,238] := {57} tii[12,239] := {272, 340} tii[12,240] := {43, 185} tii[12,241] := {253} tii[12,242] := {143, 144} tii[12,243] := {316} tii[12,244] := {274, 275} tii[12,245] := {40, 124} tii[12,246] := {86} tii[12,247] := {67, 230} tii[12,248] := {187, 188} tii[12,249] := {314, 315} tii[12,250] := {0} tii[12,251] := {2, 20} tii[12,252] := {13, 102} cell#37 , |C| = 364 special orbit = [3, 3, 3, 3, 1, 1, 1, 1] special rep = [[1, 1], [2, 2, 1, 1]] , dim = 252 cell rep = phi[[1],[2, 2, 2, 1]]+phi[[1, 1],[2, 2, 1, 1]] TII depth = 3 TII multiplicity polynomial = 112*X^2+140*X TII subcells: tii[12,1] := {313, 314} tii[12,2] := {323, 324} tii[12,3] := {275, 339} tii[12,4] := {69, 354} tii[12,5] := {288, 289} tii[12,6] := {231, 353} tii[12,7] := {192, 360} tii[12,8] := {311, 312} tii[12,9] := {276, 336} tii[12,10] := {55} tii[12,11] := {92} tii[12,12] := {277, 278} tii[12,13] := {112, 113} tii[12,14] := {244, 245} tii[12,15] := {134} tii[12,16] := {165} tii[12,17] := {171} tii[12,18] := {162, 163} tii[12,19] := {40, 338} tii[12,20] := {183, 337} tii[12,21] := {135} tii[12,22] := {290, 291} tii[12,23] := {143, 352} tii[12,24] := {20, 315} tii[12,25] := {214, 215} tii[12,26] := {182} tii[12,27] := {247, 248} tii[12,28] := {218} tii[12,29] := {253, 254} tii[12,30] := {223} tii[12,31] := {221} tii[12,32] := {226} tii[12,33] := {184, 345} tii[12,34] := {230} tii[12,35] := {266} tii[12,36] := {269} tii[12,37] := {307} tii[12,38] := {308} tii[12,39] := {335} tii[12,40] := {111, 216} tii[12,41] := {91} tii[12,42] := {41, 340} tii[12,43] := {133} tii[12,44] := {242, 243} tii[12,45] := {159, 265} tii[12,46] := {193, 293} tii[12,47] := {164} tii[12,48] := {199, 297} tii[12,49] := {170} tii[12,50] := {168} tii[12,51] := {174} tii[12,52] := {232, 322} tii[12,53] := {110, 306} tii[12,54] := {181} tii[12,55] := {144, 325} tii[12,56] := {217} tii[12,57] := {149, 328} tii[12,58] := {222} tii[12,59] := {118} tii[12,60] := {99, 346} tii[12,61] := {267} tii[12,62] := {123} tii[12,63] := {103, 347} tii[12,64] := {270} tii[12,65] := {138, 359} tii[12,66] := {309} tii[12,67] := {166} tii[12,68] := {172} tii[12,69] := {154, 363} tii[12,70] := {227} tii[12,71] := {213} tii[12,72] := {246} tii[12,73] := {252} tii[12,74] := {294} tii[12,75] := {298} tii[12,76] := {331} tii[12,77] := {249} tii[12,78] := {255} tii[12,79] := {234, 355} tii[12,80] := {302} tii[12,81] := {320} tii[12,82] := {3} tii[12,83] := {70, 71} tii[12,84] := {6} tii[12,85] := {14} tii[12,86] := {15} tii[12,87] := {76} tii[12,88] := {81} tii[12,89] := {13} tii[12,90] := {9, 279} tii[12,91] := {160, 161} tii[12,92] := {31} tii[12,93] := {194, 195} tii[12,94] := {33} tii[12,95] := {200, 201} tii[12,96] := {117} tii[12,97] := {43} tii[12,98] := {169} tii[12,99] := {147, 148} tii[12,100] := {122} tii[12,101] := {46} tii[12,102] := {175} tii[12,103] := {152, 153} tii[12,104] := {86} tii[12,105] := {89} tii[12,106] := {189, 190} tii[12,107] := {220} tii[12,108] := {225} tii[12,109] := {273} tii[12,110] := {207, 208} tii[12,111] := {68, 264} tii[12,112] := {29} tii[12,113] := {98, 292} tii[12,114] := {56} tii[12,115] := {102, 296} tii[12,116] := {57} tii[12,117] := {197, 198} tii[12,118] := {167} tii[12,119] := {75} tii[12,120] := {62, 326} tii[12,121] := {72} tii[12,122] := {203, 204} tii[12,123] := {173} tii[12,124] := {80} tii[12,125] := {64, 329} tii[12,126] := {77} tii[12,127] := {238, 239} tii[12,128] := {94, 349} tii[12,129] := {126} tii[12,130] := {129} tii[12,131] := {115} tii[12,132] := {114} tii[12,133] := {268} tii[12,134] := {37, 295} tii[12,135] := {120} tii[12,136] := {119} tii[12,137] := {271} tii[12,138] := {38, 299} tii[12,139] := {106, 361} tii[12,140] := {282, 283} tii[12,141] := {177} tii[12,142] := {178} tii[12,143] := {310} tii[12,144] := {179} tii[12,145] := {10, 284} tii[12,146] := {260, 261} tii[12,147] := {60, 332} tii[12,148] := {39, 344} tii[12,149] := {274} tii[12,150] := {145} tii[12,151] := {150} tii[12,152] := {137, 358} tii[12,153] := {300, 301} tii[12,154] := {209} tii[12,155] := {241} tii[12,156] := {95, 351} tii[12,157] := {12} tii[12,158] := {30} tii[12,159] := {32} tii[12,160] := {146, 251} tii[12,161] := {116} tii[12,162] := {42} tii[12,163] := {151, 257} tii[12,164] := {121} tii[12,165] := {45} tii[12,166] := {187, 285} tii[12,167] := {85} tii[12,168] := {88} tii[12,169] := {63, 327} tii[12,170] := {73} tii[12,171] := {219} tii[12,172] := {65, 330} tii[12,173] := {78} tii[12,174] := {224} tii[12,175] := {233, 318} tii[12,176] := {26, 319} tii[12,177] := {127} tii[12,178] := {130} tii[12,179] := {96, 350} tii[12,180] := {272} tii[12,181] := {205, 206} tii[12,182] := {67, 357} tii[12,183] := {228} tii[12,184] := {196} tii[12,185] := {44} tii[12,186] := {202} tii[12,187] := {47} tii[12,188] := {186, 348} tii[12,189] := {48, 342} tii[12,190] := {185, 341} tii[12,191] := {258, 259} tii[12,192] := {87} tii[12,193] := {90} tii[12,194] := {262} tii[12,195] := {287} tii[12,196] := {107, 362} tii[12,197] := {139, 333} tii[12,198] := {180} tii[12,199] := {263} tii[12,200] := {280, 281} tii[12,201] := {188, 343} tii[12,202] := {7} tii[12,203] := {8} tii[12,204] := {16} tii[12,205] := {21} tii[12,206] := {100, 101} tii[12,207] := {23} tii[12,208] := {104, 105} tii[12,209] := {52} tii[12,210] := {54} tii[12,211] := {34} tii[12,212] := {140, 141} tii[12,213] := {49, 50} tii[12,214] := {108, 109} tii[12,215] := {74} tii[12,216] := {17, 250} tii[12,217] := {79} tii[12,218] := {18, 256} tii[12,219] := {59} tii[12,220] := {235, 236} tii[12,221] := {83, 84} tii[12,222] := {4, 237} tii[12,223] := {128} tii[12,224] := {131} tii[12,225] := {35, 303} tii[12,226] := {19, 321} tii[12,227] := {229} tii[12,228] := {157, 158} tii[12,229] := {2, 191} tii[12,230] := {36, 305} tii[12,231] := {22} tii[12,232] := {24} tii[12,233] := {124, 125} tii[12,234] := {25, 317} tii[12,235] := {136, 316} tii[12,236] := {51} tii[12,237] := {53} tii[12,238] := {93} tii[12,239] := {66, 356} tii[12,240] := {5, 240} tii[12,241] := {132} tii[12,242] := {210, 211} tii[12,243] := {212} tii[12,244] := {61, 334} tii[12,245] := {82, 176} tii[12,246] := {58} tii[12,247] := {11, 286} tii[12,248] := {155, 156} tii[12,249] := {97, 304} tii[12,250] := {1} tii[12,251] := {27, 28} tii[12,252] := {0, 142} cell#38 , |C| = 35 special orbit = [7, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[], [4, 1, 1, 1, 1]] , dim = 35 cell rep = phi[[],[4, 1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 35*X TII subcells: tii[38,1] := {17} tii[38,2] := {25} tii[38,3] := {18} tii[38,4] := {32} tii[38,5] := {24} tii[38,6] := {19} tii[38,7] := {26} tii[38,8] := {14} tii[38,9] := {9} tii[38,10] := {4} tii[38,11] := {15} tii[38,12] := {8} tii[38,13] := {3} tii[38,14] := {1} tii[38,15] := {0} tii[38,16] := {30} tii[38,17] := {33} tii[38,18] := {31} tii[38,19] := {34} tii[38,20] := {27} tii[38,21] := {23} tii[38,22] := {29} tii[38,23] := {13} tii[38,24] := {22} tii[38,25] := {28} tii[38,26] := {16} tii[38,27] := {12} tii[38,28] := {21} tii[38,29] := {6} tii[38,30] := {11} tii[38,31] := {20} tii[38,32] := {2} tii[38,33] := {5} tii[38,34] := {10} tii[38,35] := {7} cell#39 , |C| = 184 special orbit = [5, 3, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[1], [3, 1, 1, 1, 1]] , dim = 120 cell rep = phi[[],[3, 2, 1, 1, 1]]+phi[[1],[3, 1, 1, 1, 1]] TII depth = 3 TII multiplicity polynomial = 64*X^2+56*X TII subcells: tii[24,1] := {14, 85} tii[24,2] := {43, 78} tii[24,3] := {25, 102} tii[24,4] := {60, 94} tii[24,5] := {13, 112} tii[24,6] := {76, 110} tii[24,7] := {38, 118} tii[24,8] := {77, 113} tii[24,9] := {23, 130} tii[24,10] := {11, 145} tii[24,11] := {92, 128} tii[24,12] := {111, 143} tii[24,13] := {24, 126} tii[24,14] := {59, 93} tii[24,15] := {12, 142} tii[24,16] := {75, 109} tii[24,17] := {3, 156} tii[24,18] := {1, 168} tii[24,19] := {91, 127} tii[24,20] := {89, 144} tii[24,21] := {9} tii[24,22] := {6, 70} tii[24,23] := {16} tii[24,24] := {31} tii[24,25] := {32} tii[24,26] := {5, 95} tii[24,27] := {27} tii[24,28] := {47} tii[24,29] := {48} tii[24,30] := {64} tii[24,31] := {67} tii[24,32] := {88} tii[24,33] := {42} tii[24,34] := {4, 129} tii[24,35] := {63} tii[24,36] := {66} tii[24,37] := {81} tii[24,38] := {84} tii[24,39] := {35, 139} tii[24,40] := {105} tii[24,41] := {97} tii[24,42] := {100} tii[24,43] := {56, 136} tii[24,44] := {120} tii[24,45] := {132} tii[24,46] := {0, 158} tii[24,47] := {58} tii[24,48] := {79} tii[24,49] := {82} tii[24,50] := {98} tii[24,51] := {101} tii[24,52] := {49, 154} tii[24,53] := {121} tii[24,54] := {115} tii[24,55] := {117} tii[24,56] := {74, 151} tii[24,57] := {33, 166} tii[24,58] := {138} tii[24,59] := {44, 174} tii[24,60] := {147} tii[24,61] := {133} tii[24,62] := {134} tii[24,63] := {90, 164} tii[24,64] := {153} tii[24,65] := {72, 172} tii[24,66] := {161} tii[24,67] := {170} tii[24,68] := {41} tii[24,69] := {62} tii[24,70] := {65} tii[24,71] := {80} tii[24,72] := {83} tii[24,73] := {34, 157} tii[24,74] := {104} tii[24,75] := {96} tii[24,76] := {99} tii[24,77] := {55, 135} tii[24,78] := {18, 169} tii[24,79] := {119} tii[24,80] := {28, 176} tii[24,81] := {131} tii[24,82] := {114} tii[24,83] := {116} tii[24,84] := {8, 177} tii[24,85] := {73, 150} tii[24,86] := {137} tii[24,87] := {54, 160} tii[24,88] := {17, 181} tii[24,89] := {146} tii[24,90] := {26, 183} tii[24,91] := {159} tii[24,92] := {107} tii[24,93] := {108} tii[24,94] := {71, 165} tii[24,95] := {125} tii[24,96] := {53, 173} tii[24,97] := {141} tii[24,98] := {37, 179} tii[24,99] := {155} tii[24,100] := {167} tii[24,101] := {21, 52} tii[24,102] := {20, 124} tii[24,103] := {36, 69} tii[24,104] := {30, 106} tii[24,105] := {19, 152} tii[24,106] := {51, 87} tii[24,107] := {29, 163} tii[24,108] := {46, 123} tii[24,109] := {40, 149} tii[24,110] := {2, 175} tii[24,111] := {68, 103} tii[24,112] := {7, 180} tii[24,113] := {61, 140} tii[24,114] := {15, 182} tii[24,115] := {57, 162} tii[24,116] := {10, 178} tii[24,117] := {50, 86} tii[24,118] := {45, 122} tii[24,119] := {39, 148} tii[24,120] := {22, 171} cell#40 , |C| = 184 special orbit = [5, 3, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[1], [3, 1, 1, 1, 1]] , dim = 120 cell rep = phi[[],[3, 2, 1, 1, 1]]+phi[[1],[3, 1, 1, 1, 1]] TII depth = 3 TII multiplicity polynomial = 64*X^2+56*X TII subcells: tii[24,1] := {76, 102} tii[24,2] := {60, 108} tii[24,3] := {100, 124} tii[24,4] := {83, 127} tii[24,5] := {105, 144} tii[24,6] := {106, 148} tii[24,7] := {74, 145} tii[24,8] := {59, 107} tii[24,9] := {80, 161} tii[24,10] := {58, 173} tii[24,11] := {81, 125} tii[24,12] := {57, 143} tii[24,13] := {48, 134} tii[24,14] := {38, 84} tii[24,15] := {54, 150} tii[24,16] := {56, 103} tii[24,17] := {36, 165} tii[24,18] := {23, 149} tii[24,19] := {35, 122} tii[24,20] := {22, 104} tii[24,21] := {15} tii[24,22] := {51, 78} tii[24,23] := {20} tii[24,24] := {42} tii[24,25] := {45} tii[24,26] := {82, 123} tii[24,27] := {34} tii[24,28] := {63} tii[24,29] := {67} tii[24,30] := {90} tii[24,31] := {95} tii[24,32] := {119} tii[24,33] := {55} tii[24,34] := {37, 160} tii[24,35] := {86} tii[24,36] := {91} tii[24,37] := {112} tii[24,38] := {114} tii[24,39] := {101, 164} tii[24,40] := {138} tii[24,41] := {132} tii[24,42] := {133} tii[24,43] := {79, 169} tii[24,44] := {157} tii[24,45] := {166} tii[24,46] := {12, 126} tii[24,47] := {33} tii[24,48] := {62} tii[24,49] := {66} tii[24,50] := {89} tii[24,51] := {94} tii[24,52] := {75, 176} tii[24,53] := {118} tii[24,54] := {111} tii[24,55] := {113} tii[24,56] := {53, 155} tii[24,57] := {50, 181} tii[24,58] := {137} tii[24,59] := {29, 183} tii[24,60] := {151} tii[24,61] := {88} tii[24,62] := {93} tii[24,63] := {32, 163} tii[24,64] := {117} tii[24,65] := {25, 174} tii[24,66] := {129} tii[24,67] := {152} tii[24,68] := {21} tii[24,69] := {40} tii[24,70] := {43} tii[24,71] := {65} tii[24,72] := {69} tii[24,73] := {49, 171} tii[24,74] := {99} tii[24,75] := {87} tii[24,76] := {92} tii[24,77] := {31, 135} tii[24,78] := {27, 179} tii[24,79] := {116} tii[24,80] := {17, 182} tii[24,81] := {128} tii[24,82] := {64} tii[24,83] := {68} tii[24,84] := {16, 170} tii[24,85] := {19, 146} tii[24,86] := {98} tii[24,87] := {13, 162} tii[24,88] := {9, 178} tii[24,89] := {109} tii[24,90] := {5, 172} tii[24,91] := {130} tii[24,92] := {41} tii[24,93] := {44} tii[24,94] := {11, 136} tii[24,95] := {72} tii[24,96] := {6, 154} tii[24,97] := {85} tii[24,98] := {3, 141} tii[24,99] := {110} tii[24,100] := {131} tii[24,101] := {30, 73} tii[24,102] := {77, 147} tii[24,103] := {46, 97} tii[24,104] := {52, 140} tii[24,105] := {28, 175} tii[24,106] := {70, 115} tii[24,107] := {18, 180} tii[24,108] := {61, 158} tii[24,109] := {10, 177} tii[24,110] := {8, 156} tii[24,111] := {47, 96} tii[24,112] := {4, 168} tii[24,113] := {39, 139} tii[24,114] := {2, 159} tii[24,115] := {14, 167} tii[24,116] := {0, 142} tii[24,117] := {26, 71} tii[24,118] := {24, 120} tii[24,119] := {7, 153} tii[24,120] := {1, 121} cell#41 , |C| = 112 special orbit = [3, 3, 3, 1, 1, 1, 1, 1, 1, 1] special rep = [[1], [2, 2, 1, 1, 1]] , dim = 112 cell rep = phi[[1],[2, 2, 1, 1, 1]] TII depth = 4 TII multiplicity polynomial = 112*X TII subcells: tii[11,1] := {47} tii[11,2] := {31} tii[11,3] := {62} tii[11,4] := {76} tii[11,5] := {46} tii[11,6] := {77} tii[11,7] := {60} tii[11,8] := {88} tii[11,9] := {97} tii[11,10] := {30} tii[11,11] := {61} tii[11,12] := {44} tii[11,13] := {75} tii[11,14] := {29} tii[11,15] := {87} tii[11,16] := {98} tii[11,17] := {3} tii[11,18] := {18} tii[11,19] := {8} tii[11,20] := {21} tii[11,21] := {22} tii[11,22] := {45} tii[11,23] := {16} tii[11,24] := {34} tii[11,25] := {38} tii[11,26] := {51} tii[11,27] := {55} tii[11,28] := {73} tii[11,29] := {94} tii[11,30] := {17} tii[11,31] := {28} tii[11,32] := {48} tii[11,33] := {52} tii[11,34] := {66} tii[11,35] := {69} tii[11,36] := {84} tii[11,37] := {80} tii[11,38] := {81} tii[11,39] := {43} tii[11,40] := {104} tii[11,41] := {95} tii[11,42] := {99} tii[11,43] := {108} tii[11,44] := {110} tii[11,45] := {15} tii[11,46] := {33} tii[11,47] := {37} tii[11,48] := {50} tii[11,49] := {54} tii[11,50] := {72} tii[11,51] := {64} tii[11,52] := {67} tii[11,53] := {26} tii[11,54] := {93} tii[11,55] := {82} tii[11,56] := {89} tii[11,57] := {49} tii[11,58] := {53} tii[11,59] := {14} tii[11,60] := {103} tii[11,61] := {71} tii[11,62] := {9} tii[11,63] := {105} tii[11,64] := {78} tii[11,65] := {91} tii[11,66] := {109} tii[11,67] := {111} tii[11,68] := {106} tii[11,69] := {11} tii[11,70] := {12} tii[11,71] := {25} tii[11,72] := {36} tii[11,73] := {40} tii[11,74] := {42} tii[11,75] := {13} tii[11,76] := {59} tii[11,77] := {74} tii[11,78] := {65} tii[11,79] := {68} tii[11,80] := {27} tii[11,81] := {24} tii[11,82] := {57} tii[11,83] := {83} tii[11,84] := {86} tii[11,85] := {90} tii[11,86] := {20} tii[11,87] := {101} tii[11,88] := {35} tii[11,89] := {39} tii[11,90] := {7} tii[11,91] := {41} tii[11,92] := {70} tii[11,93] := {58} tii[11,94] := {4} tii[11,95] := {32} tii[11,96] := {63} tii[11,97] := {96} tii[11,98] := {79} tii[11,99] := {107} tii[11,100] := {1} tii[11,101] := {92} tii[11,102] := {23} tii[11,103] := {56} tii[11,104] := {19} tii[11,105] := {85} tii[11,106] := {5} tii[11,107] := {100} tii[11,108] := {102} tii[11,109] := {2} tii[11,110] := {6} tii[11,111] := {10} tii[11,112] := {0} cell#42 , |C| = 184 special orbit = [5, 3, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[1], [3, 1, 1, 1, 1]] , dim = 120 cell rep = phi[[],[3, 2, 1, 1, 1]]+phi[[1],[3, 1, 1, 1, 1]] TII depth = 3 TII multiplicity polynomial = 64*X^2+56*X TII subcells: tii[24,1] := {56, 101} tii[24,2] := {41, 113} tii[24,3] := {88, 137} tii[24,4] := {72, 146} tii[24,5] := {109, 163} tii[24,6] := {111, 168} tii[24,7] := {100, 127} tii[24,8] := {40, 112} tii[24,9] := {135, 144} tii[24,10] := {99, 169} tii[24,11] := {70, 143} tii[24,12] := {110, 162} tii[24,13] := {63, 95} tii[24,14] := {16, 73} tii[24,15] := {98, 131} tii[24,16] := {39, 107} tii[24,17] := {61, 160} tii[24,18] := {33, 132} tii[24,19] := {69, 134} tii[24,20] := {59, 108} tii[24,21] := {1} tii[24,22] := {29, 64} tii[24,23] := {4} tii[24,24] := {19} tii[24,25] := {21} tii[24,26] := {71, 136} tii[24,27] := {15} tii[24,28] := {44} tii[24,29] := {47} tii[24,30] := {77} tii[24,31] := {81} tii[24,32] := {123} tii[24,33] := {38} tii[24,34] := {62, 145} tii[24,35] := {74} tii[24,36] := {78} tii[24,37] := {116} tii[24,38] := {119} tii[24,39] := {89, 179} tii[24,40] := {157} tii[24,41] := {150} tii[24,42] := {152} tii[24,43] := {68, 182} tii[24,44] := {175} tii[24,45] := {180} tii[24,46] := {12, 92} tii[24,47] := {14} tii[24,48] := {43} tii[24,49] := {46} tii[24,50] := {76} tii[24,51] := {80} tii[24,52] := {128, 166} tii[24,53] := {122} tii[24,54] := {115} tii[24,55] := {118} tii[24,56] := {37, 173} tii[24,57] := {141, 142} tii[24,58] := {156} tii[24,59] := {126, 129} tii[24,60] := {170} tii[24,61] := {149} tii[24,62] := {151} tii[24,63] := {67, 178} tii[24,64] := {174} tii[24,65] := {54, 165} tii[24,66] := {181} tii[24,67] := {183} tii[24,68] := {5} tii[24,69] := {18} tii[24,70] := {20} tii[24,71] := {45} tii[24,72] := {48} tii[24,73] := {96, 139} tii[24,74] := {84} tii[24,75] := {75} tii[24,76] := {79} tii[24,77] := {13, 153} tii[24,78] := {103, 130} tii[24,79] := {121} tii[24,80] := {85, 97} tii[24,81] := {147} tii[24,82] := {114} tii[24,83] := {117} tii[24,84] := {66, 91} tii[24,85] := {36, 164} tii[24,86] := {155} tii[24,87] := {26, 138} tii[24,88] := {52, 60} tii[24,89] := {171} tii[24,90] := {32, 65} tii[24,91] := {177} tii[24,92] := {93} tii[24,93] := {94} tii[24,94] := {27, 154} tii[24,95] := {133} tii[24,96] := {10, 124} tii[24,97] := {161} tii[24,98] := {2, 87} tii[24,99] := {172} tii[24,100] := {148} tii[24,101] := {9, 51} tii[24,102] := {57, 167} tii[24,103] := {22, 83} tii[24,104] := {30, 159} tii[24,105] := {105, 106} tii[24,106] := {49, 120} tii[24,107] := {86, 90} tii[24,108] := {42, 176} tii[24,109] := {58, 104} tii[24,110] := {35, 55} tii[24,111] := {23, 82} tii[24,112] := {24, 31} tii[24,113] := {17, 158} tii[24,114] := {11, 34} tii[24,115] := {28, 140} tii[24,116] := {3, 25} tii[24,117] := {7, 50} tii[24,118] := {6, 125} tii[24,119] := {8, 102} tii[24,120] := {0, 53} cell#43 , |C| = 112 special orbit = [3, 3, 3, 1, 1, 1, 1, 1, 1, 1] special rep = [[1], [2, 2, 1, 1, 1]] , dim = 112 cell rep = phi[[1],[2, 2, 1, 1, 1]] TII depth = 4 TII multiplicity polynomial = 112*X TII subcells: tii[11,1] := {25} tii[11,2] := {43} tii[11,3] := {44} tii[11,4] := {66} tii[11,5] := {67} tii[11,6] := {68} tii[11,7] := {85} tii[11,8] := {86} tii[11,9] := {100} tii[11,10] := {50} tii[11,11] := {51} tii[11,12] := {72} tii[11,13] := {73} tii[11,14] := {49} tii[11,15] := {91} tii[11,16] := {71} tii[11,17] := {1} tii[11,18] := {24} tii[11,19] := {4} tii[11,20] := {7} tii[11,21] := {8} tii[11,22] := {65} tii[11,23] := {10} tii[11,24] := {14} tii[11,25] := {16} tii[11,26] := {30} tii[11,27] := {32} tii[11,28] := {58} tii[11,29] := {88} tii[11,30] := {28} tii[11,31] := {19} tii[11,32] := {29} tii[11,33] := {31} tii[11,34] := {54} tii[11,35] := {56} tii[11,36] := {80} tii[11,37] := {76} tii[11,38] := {77} tii[11,39] := {102} tii[11,40] := {103} tii[11,41] := {98} tii[11,42] := {105} tii[11,43] := {109} tii[11,44] := {111} tii[11,45] := {11} tii[11,46] := {20} tii[11,47] := {22} tii[11,48] := {39} tii[11,49] := {41} tii[11,50] := {64} tii[11,51] := {61} tii[11,52] := {62} tii[11,53] := {96} tii[11,54] := {97} tii[11,55] := {84} tii[11,56] := {99} tii[11,57] := {38} tii[11,58] := {40} tii[11,59] := {78} tii[11,60] := {107} tii[11,61] := {63} tii[11,62] := {59} tii[11,63] := {110} tii[11,64] := {83} tii[11,65] := {94} tii[11,66] := {95} tii[11,67] := {104} tii[11,68] := {93} tii[11,69] := {2} tii[11,70] := {3} tii[11,71] := {6} tii[11,72] := {15} tii[11,73] := {17} tii[11,74] := {13} tii[11,75] := {12} tii[11,76] := {35} tii[11,77] := {48} tii[11,78] := {53} tii[11,79] := {55} tii[11,80] := {87} tii[11,81] := {26} tii[11,82] := {27} tii[11,83] := {79} tii[11,84] := {70} tii[11,85] := {92} tii[11,86] := {69} tii[11,87] := {101} tii[11,88] := {21} tii[11,89] := {23} tii[11,90] := {57} tii[11,91] := {45} tii[11,92] := {46} tii[11,93] := {42} tii[11,94] := {36} tii[11,95] := {89} tii[11,96] := {60} tii[11,97] := {90} tii[11,98] := {75} tii[11,99] := {108} tii[11,100] := {18} tii[11,101] := {52} tii[11,102] := {33} tii[11,103] := {34} tii[11,104] := {81} tii[11,105] := {82} tii[11,106] := {37} tii[11,107] := {106} tii[11,108] := {74} tii[11,109] := {0} tii[11,110] := {5} tii[11,111] := {47} tii[11,112] := {9} cell#44 , |C| = 168 special orbit = [3, 3, 2, 2, 1, 1, 1, 1, 1, 1] special rep = [[1, 1], [2, 1, 1, 1, 1]] , dim = 140 cell rep = phi[[],[2, 2, 2, 1, 1]]+phi[[1, 1],[2, 1, 1, 1, 1]] TII depth = 3 TII multiplicity polynomial = 28*X^2+112*X TII subcells: tii[9,1] := {38, 80} tii[9,2] := {58, 100} tii[9,3] := {78, 116} tii[9,4] := {79, 118} tii[9,5] := {99, 134} tii[9,6] := {117, 148} tii[9,7] := {6} tii[9,8] := {23, 60} tii[9,9] := {12} tii[9,10] := {25} tii[9,11] := {28} tii[9,12] := {27} tii[9,13] := {30} tii[9,14] := {57, 97} tii[9,15] := {22} tii[9,16] := {40} tii[9,17] := {44} tii[9,18] := {43} tii[9,19] := {63} tii[9,20] := {47} tii[9,21] := {67} tii[9,22] := {93} tii[9,23] := {62} tii[9,24] := {66} tii[9,25] := {92} tii[9,26] := {98, 133} tii[9,27] := {37} tii[9,28] := {61} tii[9,29] := {65} tii[9,30] := {64} tii[9,31] := {84} tii[9,32] := {68} tii[9,33] := {89} tii[9,34] := {113} tii[9,35] := {103} tii[9,36] := {83} tii[9,37] := {107} tii[9,38] := {88} tii[9,39] := {54, 143} tii[9,40] := {112} tii[9,41] := {129} tii[9,42] := {136} tii[9,43] := {102} tii[9,44] := {106} tii[9,45] := {128} tii[9,46] := {135} tii[9,47] := {56} tii[9,48] := {81} tii[9,49] := {86} tii[9,50] := {85} tii[9,51] := {105} tii[9,52] := {90} tii[9,53] := {109} tii[9,54] := {131} tii[9,55] := {104} tii[9,56] := {123} tii[9,57] := {108} tii[9,58] := {126} tii[9,59] := {77, 155} tii[9,60] := {130} tii[9,61] := {146} tii[9,62] := {152} tii[9,63] := {140} tii[9,64] := {122} tii[9,65] := {142} tii[9,66] := {125} tii[9,67] := {96, 164} tii[9,68] := {157} tii[9,69] := {145} tii[9,70] := {75, 167} tii[9,71] := {151} tii[9,72] := {162} tii[9,73] := {165} tii[9,74] := {139} tii[9,75] := {141} tii[9,76] := {156} tii[9,77] := {161} tii[9,78] := {166} tii[9,79] := {0} tii[9,80] := {1} tii[9,81] := {2} tii[9,82] := {15} tii[9,83] := {3} tii[9,84] := {17} tii[9,85] := {4} tii[9,86] := {9} tii[9,87] := {10} tii[9,88] := {7} tii[9,89] := {42} tii[9,90] := {8} tii[9,91] := {46} tii[9,92] := {19} tii[9,93] := {20} tii[9,94] := {18, 49} tii[9,95] := {73} tii[9,96] := {52} tii[9,97] := {14} tii[9,98] := {82} tii[9,99] := {16} tii[9,100] := {87} tii[9,101] := {35, 127} tii[9,102] := {31, 70} tii[9,103] := {32} tii[9,104] := {33} tii[9,105] := {111} tii[9,106] := {119} tii[9,107] := {24, 114} tii[9,108] := {74} tii[9,109] := {101} tii[9,110] := {26} tii[9,111] := {121} tii[9,112] := {29} tii[9,113] := {124} tii[9,114] := {76, 154} tii[9,115] := {48, 91} tii[9,116] := {50} tii[9,117] := {51} tii[9,118] := {144} tii[9,119] := {53, 160} tii[9,120] := {39, 132} tii[9,121] := {150} tii[9,122] := {94} tii[9,123] := {158} tii[9,124] := {120} tii[9,125] := {36, 153} tii[9,126] := {149} tii[9,127] := {41} tii[9,128] := {45} tii[9,129] := {69, 110} tii[9,130] := {71} tii[9,131] := {72} tii[9,132] := {59, 147} tii[9,133] := {115} tii[9,134] := {55, 163} tii[9,135] := {137} tii[9,136] := {159} tii[9,137] := {5} tii[9,138] := {11, 34} tii[9,139] := {13, 95} tii[9,140] := {21, 138} cell#45 , |C| = 112 special orbit = [3, 3, 3, 1, 1, 1, 1, 1, 1, 1] special rep = [[1], [2, 2, 1, 1, 1]] , dim = 112 cell rep = phi[[1],[2, 2, 1, 1, 1]] TII depth = 4 TII multiplicity polynomial = 112*X TII subcells: tii[11,1] := {86} tii[11,2] := {100} tii[11,3] := {101} tii[11,4] := {108} tii[11,5] := {83} tii[11,6] := {84} tii[11,7] := {62} tii[11,8] := {99} tii[11,9] := {92} tii[11,10] := {60} tii[11,11] := {61} tii[11,12] := {38} tii[11,13] := {81} tii[11,14] := {20} tii[11,15] := {70} tii[11,16] := {82} tii[11,17] := {19} tii[11,18] := {85} tii[11,19] := {37} tii[11,20] := {48} tii[11,21] := {52} tii[11,22] := {39} tii[11,23] := {59} tii[11,24] := {71} tii[11,25] := {74} tii[11,26] := {93} tii[11,27] := {94} tii[11,28] := {107} tii[11,29] := {111} tii[11,30] := {10} tii[11,31] := {36} tii[11,32] := {47} tii[11,33] := {51} tii[11,34] := {72} tii[11,35] := {75} tii[11,36] := {96} tii[11,37] := {50} tii[11,38] := {54} tii[11,39] := {42} tii[11,40] := {109} tii[11,41] := {78} tii[11,42] := {91} tii[11,43] := {106} tii[11,44] := {98} tii[11,45] := {18} tii[11,46] := {26} tii[11,47] := {30} tii[11,48] := {49} tii[11,49] := {53} tii[11,50] := {77} tii[11,51] := {27} tii[11,52] := {31} tii[11,53] := {21} tii[11,54] := {102} tii[11,55] := {55} tii[11,56] := {67} tii[11,57] := {14} tii[11,58] := {15} tii[11,59] := {11} tii[11,60] := {95} tii[11,61] := {34} tii[11,62] := {5} tii[11,63] := {79} tii[11,64] := {45} tii[11,65] := {35} tii[11,66] := {103} tii[11,67] := {90} tii[11,68] := {68} tii[11,69] := {29} tii[11,70] := {33} tii[11,71] := {44} tii[11,72] := {73} tii[11,73] := {76} tii[11,74] := {66} tii[11,75] := {65} tii[11,76] := {97} tii[11,77] := {105} tii[11,78] := {28} tii[11,79] := {32} tii[11,80] := {22} tii[11,81] := {87} tii[11,82] := {88} tii[11,83] := {56} tii[11,84] := {110} tii[11,85] := {69} tii[11,86] := {13} tii[11,87] := {58} tii[11,88] := {7} tii[11,89] := {8} tii[11,90] := {4} tii[11,91] := {63} tii[11,92] := {64} tii[11,93] := {16} tii[11,94] := {2} tii[11,95] := {23} tii[11,96] := {24} tii[11,97] := {104} tii[11,98] := {17} tii[11,99] := {80} tii[11,100] := {1} tii[11,101] := {25} tii[11,102] := {40} tii[11,103] := {41} tii[11,104] := {12} tii[11,105] := {89} tii[11,106] := {3} tii[11,107] := {57} tii[11,108] := {46} tii[11,109] := {9} tii[11,110] := {43} tii[11,111] := {6} tii[11,112] := {0} cell#46 , |C| = 21 special orbit = [5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[], [3, 1, 1, 1, 1, 1]] , dim = 21 cell rep = phi[[],[3, 1, 1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 21*X TII subcells: tii[23,1] := {16} tii[23,2] := {11} tii[23,3] := {6} tii[23,4] := {3} tii[23,5] := {1} tii[23,6] := {0} tii[23,7] := {18} tii[23,8] := {12} tii[23,9] := {17} tii[23,10] := {9} tii[23,11] := {15} tii[23,12] := {20} tii[23,13] := {5} tii[23,14] := {8} tii[23,15] := {14} tii[23,16] := {19} tii[23,17] := {2} tii[23,18] := {4} tii[23,19] := {7} tii[23,20] := {13} tii[23,21] := {10} cell#47 , |C| = 168 special orbit = [3, 3, 2, 2, 1, 1, 1, 1, 1, 1] special rep = [[1, 1], [2, 1, 1, 1, 1]] , dim = 140 cell rep = phi[[],[2, 2, 2, 1, 1]]+phi[[1, 1],[2, 1, 1, 1, 1]] TII depth = 3 TII multiplicity polynomial = 28*X^2+112*X TII subcells: tii[9,1] := {80, 81} tii[9,2] := {107, 108} tii[9,3] := {130, 131} tii[9,4] := {125, 126} tii[9,5] := {144, 145} tii[9,6] := {124, 157} tii[9,7] := {16} tii[9,8] := {59, 60} tii[9,9] := {27} tii[9,10] := {30} tii[9,11] := {34} tii[9,12] := {33} tii[9,13] := {37} tii[9,14] := {105, 106} tii[9,15] := {41} tii[9,16] := {44} tii[9,17] := {49} tii[9,18] := {48} tii[9,19] := {70} tii[9,20] := {53} tii[9,21] := {74} tii[9,22] := {99} tii[9,23] := {69} tii[9,24] := {73} tii[9,25] := {98} tii[9,26] := {100, 150} tii[9,27] := {57} tii[9,28] := {67} tii[9,29] := {71} tii[9,30] := {32} tii[9,31] := {94} tii[9,32] := {36} tii[9,33] := {96} tii[9,34] := {123} tii[9,35] := {120} tii[9,36] := {46} tii[9,37] := {121} tii[9,38] := {51} tii[9,39] := {153, 154} tii[9,40] := {76} tii[9,41] := {143} tii[9,42] := {156} tii[9,43] := {68} tii[9,44] := {72} tii[9,45] := {97} tii[9,46] := {118} tii[9,47] := {65} tii[9,48] := {82} tii[9,49] := {84} tii[9,50] := {19} tii[9,51] := {112} tii[9,52] := {22} tii[9,53] := {114} tii[9,54] := {139} tii[9,55] := {31} tii[9,56] := {134} tii[9,57] := {35} tii[9,58] := {135} tii[9,59] := {159, 160} tii[9,60] := {54} tii[9,61] := {155} tii[9,62] := {161} tii[9,63] := {111} tii[9,64] := {45} tii[9,65] := {113} tii[9,66] := {50} tii[9,67] := {147, 165} tii[9,68] := {138} tii[9,69] := {75} tii[9,70] := {129, 167} tii[9,71] := {91} tii[9,72] := {151} tii[9,73] := {158} tii[9,74] := {61} tii[9,75] := {62} tii[9,76] := {88} tii[9,77] := {109} tii[9,78] := {127} tii[9,79] := {0} tii[9,80] := {1} tii[9,81] := {2} tii[9,82] := {18} tii[9,83] := {3} tii[9,84] := {21} tii[9,85] := {5} tii[9,86] := {12} tii[9,87] := {14} tii[9,88] := {9} tii[9,89] := {47} tii[9,90] := {11} tii[9,91] := {52} tii[9,92] := {24} tii[9,93] := {26} tii[9,94] := {42, 43} tii[9,95] := {77} tii[9,96] := {56} tii[9,97] := {17} tii[9,98] := {93} tii[9,99] := {20} tii[9,100] := {95} tii[9,101] := {136, 137} tii[9,102] := {63, 64} tii[9,103] := {38} tii[9,104] := {39} tii[9,105] := {122} tii[9,106] := {142} tii[9,107] := {116, 117} tii[9,108] := {78} tii[9,109] := {119} tii[9,110] := {8} tii[9,111] := {83} tii[9,112] := {10} tii[9,113] := {85} tii[9,114] := {128, 163} tii[9,115] := {86, 87} tii[9,116] := {23} tii[9,117] := {25} tii[9,118] := {115} tii[9,119] := {103, 166} tii[9,120] := {140, 141} tii[9,121] := {132} tii[9,122] := {55} tii[9,123] := {146} tii[9,124] := {92} tii[9,125] := {79, 162} tii[9,126] := {133} tii[9,127] := {4} tii[9,128] := {6} tii[9,129] := {101, 102} tii[9,130] := {13} tii[9,131] := {15} tii[9,132] := {148, 149} tii[9,133] := {40} tii[9,134] := {104, 164} tii[9,135] := {66} tii[9,136] := {110} tii[9,137] := {7} tii[9,138] := {28, 29} tii[9,139] := {89, 90} tii[9,140] := {58, 152} cell#48 , |C| = 21 special orbit = [5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[], [3, 1, 1, 1, 1, 1]] , dim = 21 cell rep = phi[[],[3, 1, 1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 21*X TII subcells: tii[23,1] := {14} tii[23,2] := {18} tii[23,3] := {20} tii[23,4] := {19} tii[23,5] := {13} tii[23,6] := {10} tii[23,7] := {15} tii[23,8] := {17} tii[23,9] := {16} tii[23,10] := {12} tii[23,11] := {11} tii[23,12] := {8} tii[23,13] := {9} tii[23,14] := {7} tii[23,15] := {5} tii[23,16] := {3} tii[23,17] := {6} tii[23,18] := {4} tii[23,19] := {2} tii[23,20] := {1} tii[23,21] := {0} cell#49 , |C| = 68 special orbit = [3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[1], [2, 1, 1, 1, 1, 1]] , dim = 48 cell rep = phi[[],[2, 2, 1, 1, 1, 1]]+phi[[1],[2, 1, 1, 1, 1, 1]] TII depth = 3 TII multiplicity polynomial = 20*X^2+28*X TII subcells: tii[8,1] := {16, 28} tii[8,2] := {21, 35} tii[8,3] := {27, 42} tii[8,4] := {20, 49} tii[8,5] := {15, 43} tii[8,6] := {9} tii[8,7] := {17} tii[8,8] := {18} tii[8,9] := {23} tii[8,10] := {25} tii[8,11] := {34} tii[8,12] := {30} tii[8,13] := {32} tii[8,14] := {14, 47} tii[8,15] := {40} tii[8,16] := {46} tii[8,17] := {37} tii[8,18] := {38} tii[8,19] := {19, 54} tii[8,20] := {48} tii[8,21] := {12, 61} tii[8,22] := {52} tii[8,23] := {58} tii[8,24] := {29} tii[8,25] := {31} tii[8,26] := {13, 57} tii[8,27] := {39} tii[8,28] := {6, 64} tii[8,29] := {45} tii[8,30] := {5, 67} tii[8,31] := {50} tii[8,32] := {59} tii[8,33] := {22} tii[8,34] := {24} tii[8,35] := {7, 55} tii[8,36] := {33} tii[8,37] := {4, 62} tii[8,38] := {36} tii[8,39] := {2, 66} tii[8,40] := {44} tii[8,41] := {1, 63} tii[8,42] := {51} tii[8,43] := {60} tii[8,44] := {11, 26} tii[8,45] := {10, 41} tii[8,46] := {8, 53} tii[8,47] := {3, 65} tii[8,48] := {0, 56} cell#50 , |C| = 21 special orbit = [5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[], [3, 1, 1, 1, 1, 1]] , dim = 21 cell rep = phi[[],[3, 1, 1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 21*X TII subcells: tii[23,1] := {2} tii[23,2] := {7} tii[23,3] := {12} tii[23,4] := {6} tii[23,5] := {1} tii[23,6] := {0} tii[23,7] := {16} tii[23,8] := {19} tii[23,9] := {20} tii[23,10] := {15} tii[23,11] := {18} tii[23,12] := {17} tii[23,13] := {10} tii[23,14] := {14} tii[23,15] := {11} tii[23,16] := {13} tii[23,17] := {3} tii[23,18] := {9} tii[23,19] := {4} tii[23,20] := {8} tii[23,21] := {5} cell#51 , |C| = 68 special orbit = [3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[1], [2, 1, 1, 1, 1, 1]] , dim = 48 cell rep = phi[[],[2, 2, 1, 1, 1, 1]]+phi[[1],[2, 1, 1, 1, 1, 1]] TII depth = 3 TII multiplicity polynomial = 20*X^2+28*X TII subcells: tii[8,1] := {10, 24} tii[8,2] := {17, 29} tii[8,3] := {23, 38} tii[8,4] := {30, 47} tii[8,5] := {28, 39} tii[8,6] := {3} tii[8,7] := {11} tii[8,8] := {12} tii[8,9] := {18} tii[8,10] := {19} tii[8,11] := {27} tii[8,12] := {25} tii[8,13] := {26} tii[8,14] := {9, 44} tii[8,15] := {34} tii[8,16] := {40} tii[8,17] := {32} tii[8,18] := {33} tii[8,19] := {16, 52} tii[8,20] := {45} tii[8,21] := {8, 60} tii[8,22] := {49} tii[8,23] := {58} tii[8,24] := {42} tii[8,25] := {43} tii[8,26] := {22, 57} tii[8,27] := {54} tii[8,28] := {15, 64} tii[8,29] := {62} tii[8,30] := {13, 56} tii[8,31] := {65} tii[8,32] := {67} tii[8,33] := {36} tii[8,34] := {37} tii[8,35] := {21, 53} tii[8,36] := {46} tii[8,37] := {14, 61} tii[8,38] := {55} tii[8,39] := {7, 50} tii[8,40] := {63} tii[8,41] := {1, 41} tii[8,42] := {66} tii[8,43] := {59} tii[8,44] := {5, 20} tii[8,45] := {4, 35} tii[8,46] := {2, 51} tii[8,47] := {6, 48} tii[8,48] := {0, 31} cell#52 , |C| = 7 special orbit = [3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[], [2, 1, 1, 1, 1, 1, 1]] , dim = 7 cell rep = phi[[],[2, 1, 1, 1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 7*X TII subcells: tii[7,1] := {6} tii[7,2] := {5} tii[7,3] := {4} tii[7,4] := {3} tii[7,5] := {2} tii[7,6] := {1} tii[7,7] := {0} cell#53 , |C| = 68 special orbit = [3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[1], [2, 1, 1, 1, 1, 1]] , dim = 48 cell rep = phi[[],[2, 2, 1, 1, 1, 1]]+phi[[1],[2, 1, 1, 1, 1, 1]] TII depth = 3 TII multiplicity polynomial = 20*X^2+28*X TII subcells: tii[8,1] := {29, 30} tii[8,2] := {41, 42} tii[8,3] := {28, 52} tii[8,4] := {15, 48} tii[8,5] := {7, 53} tii[8,6] := {6} tii[8,7] := {10} tii[8,8] := {12} tii[8,9] := {24} tii[8,10] := {26} tii[8,11] := {40} tii[8,12] := {37} tii[8,13] := {38} tii[8,14] := {56, 57} tii[8,15] := {51} tii[8,16] := {58} tii[8,17] := {23} tii[8,18] := {25} tii[8,19] := {45, 63} tii[8,20] := {39} tii[8,21] := {34, 66} tii[8,22] := {49} tii[8,23] := {54} tii[8,24] := {11} tii[8,25] := {13} tii[8,26] := {33, 60} tii[8,27] := {27} tii[8,28] := {19, 65} tii[8,29] := {35} tii[8,30] := {9, 59} tii[8,31] := {43} tii[8,32] := {36} tii[8,33] := {4} tii[8,34] := {5} tii[8,35] := {18, 64} tii[8,36] := {14} tii[8,37] := {8, 67} tii[8,38] := {21} tii[8,39] := {2, 62} tii[8,40] := {31} tii[8,41] := {1, 55} tii[8,42] := {22} tii[8,43] := {32} tii[8,44] := {16, 17} tii[8,45] := {46, 47} tii[8,46] := {20, 61} tii[8,47] := {3, 50} tii[8,48] := {0, 44} cell#54 , |C| = 28 special orbit = [2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[1, 1], [1, 1, 1, 1, 1, 1]] , dim = 28 cell rep = phi[[1, 1],[1, 1, 1, 1, 1, 1]] TII depth = 2 TII multiplicity polynomial = 28*X TII subcells: tii[3,1] := {4} tii[3,2] := {5} tii[3,3] := {6} tii[3,4] := {7} tii[3,5] := {11} tii[3,6] := {9} tii[3,7] := {10} tii[3,8] := {15} tii[3,9] := {18} tii[3,10] := {13} tii[3,11] := {14} tii[3,12] := {19} tii[3,13] := {22} tii[3,14] := {24} tii[3,15] := {16} tii[3,16] := {17} tii[3,17] := {20} tii[3,18] := {23} tii[3,19] := {25} tii[3,20] := {27} tii[3,21] := {0} tii[3,22] := {1} tii[3,23] := {2} tii[3,24] := {3} tii[3,25] := {8} tii[3,26] := {12} tii[3,27] := {21} tii[3,28] := {26} cell#55 , |C| = 7 special orbit = [3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[], [2, 1, 1, 1, 1, 1, 1]] , dim = 7 cell rep = phi[[],[2, 1, 1, 1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 7*X TII subcells: tii[7,1] := {2} tii[7,2] := {5} tii[7,3] := {6} tii[7,4] := {4} tii[7,5] := {3} tii[7,6] := {1} tii[7,7] := {0} cell#56 , |C| = 8 special orbit = [2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[1], [1, 1, 1, 1, 1, 1, 1]] , dim = 8 cell rep = phi[[1],[1, 1, 1, 1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 8*X TII subcells: tii[2,1] := {0} tii[2,2] := {1} tii[2,3] := {2} tii[2,4] := {3} tii[2,5] := {4} tii[2,6] := {6} tii[2,7] := {5} tii[2,8] := {7} cell#57 , |C| = 7 special orbit = [3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[], [2, 1, 1, 1, 1, 1, 1]] , dim = 7 cell rep = phi[[],[2, 1, 1, 1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 7*X TII subcells: tii[7,1] := {0} tii[7,2] := {1} tii[7,3] := {2} tii[7,4] := {6} tii[7,5] := {3} tii[7,6] := {5} tii[7,7] := {4} cell#58 , |C| = 1 special orbit = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[], [1, 1, 1, 1, 1, 1, 1, 1]] , dim = 1 cell rep = phi[[],[1, 1, 1, 1, 1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = X TII subcells: tii[1,1] := {0}