TII subcells for the Spin(12,4) x PSO(10,6) block of Spin16 # cell#0 , |C| = 35 special orbit = [9, 1, 1, 1, 1, 1, 1, 1] special rep = [[], [5, 1, 1, 1]] , dim = 35 cell rep = phi[[],[5, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 35*X TII subcells: tii[49,1] := {0} tii[49,2] := {6} tii[49,3] := {1} tii[49,4] := {7} tii[49,5] := {13} tii[49,6] := {5} tii[49,7] := {11} tii[49,8] := {2} tii[49,9] := {8} tii[49,10] := {14} tii[49,11] := {21} tii[49,12] := {12} tii[49,13] := {20} tii[49,14] := {4} tii[49,15] := {10} tii[49,16] := {19} tii[49,17] := {3} tii[49,18] := {9} tii[49,19] := {15} tii[49,20] := {24} tii[49,21] := {16} tii[49,22] := {23} tii[49,23] := {17} tii[49,24] := {25} tii[49,25] := {29} tii[49,26] := {28} tii[49,27] := {22} tii[49,28] := {27} tii[49,29] := {32} tii[49,30] := {18} tii[49,31] := {26} tii[49,32] := {30} tii[49,33] := {31} tii[49,34] := {33} tii[49,35] := {34} cell#1 , |C| = 250 special orbit = [7, 3, 1, 1, 1, 1, 1, 1] special rep = [[1], [4, 1, 1, 1]] , dim = 160 cell rep = phi[[],[4, 2, 1, 1]]+phi[[1],[4, 1, 1, 1]] TII depth = 2 TII multiplicity polynomial = 70*X+90*X^2 TII subcells: tii[39,1] := {17, 99} tii[39,2] := {9, 119} tii[39,3] := {50, 109} tii[39,4] := {36, 126} tii[39,5] := {24, 142} tii[39,6] := {45, 149} tii[39,7] := {77, 133} tii[39,8] := {37, 171} tii[39,9] := {46, 164} tii[39,10] := {105, 155} tii[39,11] := {21, 178} tii[39,12] := {130, 176} tii[39,13] := {63, 150} tii[39,14] := {47, 165} tii[39,15] := {72, 173} tii[39,16] := {106, 156} tii[39,17] := {64, 193} tii[39,18] := {101, 194} tii[39,19] := {74, 185} tii[39,20] := {131, 179} tii[39,21] := {44, 199} tii[39,22] := {70, 212} tii[39,23] := {65, 227} tii[39,24] := {153, 196} tii[39,25] := {100, 204} tii[39,26] := {154, 200} tii[39,27] := {71, 217} tii[39,28] := {42, 231} tii[39,29] := {177, 215} tii[39,30] := {198, 230} tii[39,31] := {0} tii[39,32] := {1} tii[39,33] := {6, 69} tii[39,34] := {2, 62} tii[39,35] := {3} tii[39,36] := {13} tii[39,37] := {14} tii[39,38] := {5} tii[39,39] := {23, 125} tii[39,40] := {4, 94} tii[39,41] := {18, 148} tii[39,42] := {11} tii[39,43] := {29} tii[39,44] := {30} tii[39,45] := {7, 134} tii[39,46] := {26} tii[39,47] := {52} tii[39,48] := {54} tii[39,49] := {83} tii[39,50] := {86} tii[39,51] := {122} tii[39,52] := {15} tii[39,53] := {73, 172} tii[39,54] := {27} tii[39,55] := {12, 123} tii[39,56] := {43, 192} tii[39,57] := {53} tii[39,58] := {55} tii[39,59] := {38, 211} tii[39,60] := {10, 157} tii[39,61] := {48} tii[39,62] := {81} tii[39,63] := {84} tii[39,64] := {112} tii[39,65] := {115} tii[39,66] := {67, 195} tii[39,67] := {145} tii[39,68] := {19, 197} tii[39,69] := {75} tii[39,70] := {110} tii[39,71] := {113} tii[39,72] := {136} tii[39,73] := {139} tii[39,74] := {56, 208} tii[39,75] := {167} tii[39,76] := {159} tii[39,77] := {162} tii[39,78] := {102, 205} tii[39,79] := {187} tii[39,80] := {201} tii[39,81] := {31} tii[39,82] := {49} tii[39,83] := {28, 146} tii[39,84] := {82} tii[39,85] := {85} tii[39,86] := {25, 180} tii[39,87] := {76} tii[39,88] := {111} tii[39,89] := {114} tii[39,90] := {137} tii[39,91] := {140} tii[39,92] := {97, 214} tii[39,93] := {168} tii[39,94] := {22, 216} tii[39,95] := {104} tii[39,96] := {135} tii[39,97] := {138} tii[39,98] := {160} tii[39,99] := {163} tii[39,100] := {89, 225} tii[39,101] := {116, 229} tii[39,102] := {188} tii[39,103] := {181} tii[39,104] := {183} tii[39,105] := {127, 222} tii[39,106] := {98, 240} tii[39,107] := {206} tii[39,108] := {124, 246} tii[39,109] := {218} tii[39,110] := {129} tii[39,111] := {158} tii[39,112] := {161} tii[39,113] := {182} tii[39,114] := {184} tii[39,115] := {117, 238} tii[39,116] := {207} tii[39,117] := {202} tii[39,118] := {203} tii[39,119] := {152, 235} tii[39,120] := {87, 245} tii[39,121] := {224} tii[39,122] := {107, 249} tii[39,123] := {232} tii[39,124] := {220} tii[39,125] := {221} tii[39,126] := {175, 244} tii[39,127] := {237} tii[39,128] := {151, 248} tii[39,129] := {241} tii[39,130] := {247} tii[39,131] := {8, 34} tii[39,132] := {40, 174} tii[39,133] := {16, 60} tii[39,134] := {20, 170} tii[39,135] := {32, 92} tii[39,136] := {39, 147} tii[39,137] := {88, 213} tii[39,138] := {35, 93} tii[39,139] := {68, 228} tii[39,140] := {33, 191} tii[39,141] := {58, 120} tii[39,142] := {96, 239} tii[39,143] := {51, 169} tii[39,144] := {41, 223} tii[39,145] := {90, 143} tii[39,146] := {66, 234} tii[39,147] := {78, 189} tii[39,148] := {95, 219} tii[39,149] := {61, 121} tii[39,150] := {59, 210} tii[39,151] := {91, 144} tii[39,152] := {80, 190} tii[39,153] := {57, 236} tii[39,154] := {118, 166} tii[39,155] := {79, 243} tii[39,156] := {108, 209} tii[39,157] := {103, 233} tii[39,158] := {141, 186} tii[39,159] := {132, 226} tii[39,160] := {128, 242} cell#2 , |C| = 35 special orbit = [7, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[], [4, 1, 1, 1, 1]] , dim = 35 cell rep = phi[[],[4, 1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 35*X TII subcells: tii[38,1] := {16} tii[38,2] := {9} tii[38,3] := {15} tii[38,4] := {4} tii[38,5] := {8} tii[38,6] := {14} tii[38,7] := {1} tii[38,8] := {3} tii[38,9] := {7} tii[38,10] := {13} tii[38,11] := {0} tii[38,12] := {2} tii[38,13] := {5} tii[38,14] := {11} tii[38,15] := {19} tii[38,16] := {25} tii[38,17] := {18} tii[38,18] := {24} tii[38,19] := {29} tii[38,20] := {10} tii[38,21] := {17} tii[38,22] := {22} tii[38,23] := {23} tii[38,24] := {28} tii[38,25] := {32} tii[38,26] := {6} tii[38,27] := {12} tii[38,28] := {20} tii[38,29] := {21} tii[38,30] := {26} tii[38,31] := {30} tii[38,32] := {27} tii[38,33] := {31} tii[38,34] := {33} tii[38,35] := {34} cell#3 , |C| = 280 special orbit = [5, 3, 3, 1, 1, 1, 1, 1] special rep = [[1], [3, 2, 1, 1]] , dim = 280 cell rep = phi[[1],[3, 2, 1, 1]] TII depth = 4 TII multiplicity polynomial = 280*X TII subcells: tii[27,1] := {43} tii[27,2] := {119} tii[27,3] := {121} tii[27,4] := {73} tii[27,5] := {132} tii[27,6] := {57} tii[27,7] := {156} tii[27,8] := {109} tii[27,9] := {191} tii[27,10] := {193} tii[27,11] := {128} tii[27,12] := {223} tii[27,13] := {161} tii[27,14] := {113} tii[27,15] := {196} tii[27,16] := {171} tii[27,17] := {90} tii[27,18] := {198} tii[27,19] := {150} tii[27,20] := {224} tii[27,21] := {207} tii[27,22] := {131} tii[27,23] := {225} tii[27,24] := {226} tii[27,25] := {167} tii[27,26] := {235} tii[27,27] := {169} tii[27,28] := {248} tii[27,29] := {187} tii[27,30] := {249} tii[27,31] := {250} tii[27,32] := {205} tii[27,33] := {263} tii[27,34] := {236} tii[27,35] := {264} tii[27,36] := {272} tii[27,37] := {1} tii[27,38] := {12} tii[27,39] := {11} tii[27,40] := {81} tii[27,41] := {4} tii[27,42] := {24} tii[27,43] := {26} tii[27,44] := {92} tii[27,45] := {52} tii[27,46] := {7} tii[27,47] := {34} tii[27,48] := {17} tii[27,49] := {19} tii[27,50] := {117} tii[27,51] := {45} tii[27,52] := {56} tii[27,53] := {59} tii[27,54] := {64} tii[27,55] := {158} tii[27,56] := {10} tii[27,57] := {192} tii[27,58] := {84} tii[27,59] := {46} tii[27,60] := {170} tii[27,61] := {89} tii[27,62] := {48} tii[27,63] := {15} tii[27,64] := {36} tii[27,65] := {39} tii[27,66] := {154} tii[27,67] := {204} tii[27,68] := {88} tii[27,69] := {155} tii[27,70] := {129} tii[27,71] := {33} tii[27,72] := {75} tii[27,73] := {60} tii[27,74] := {93} tii[27,75] := {65} tii[27,76] := {99} tii[27,77] := {97} tii[27,78] := {103} tii[27,79] := {147} tii[27,80] := {222} tii[27,81] := {168} tii[27,82] := {111} tii[27,83] := {133} tii[27,84] := {139} tii[27,85] := {174} tii[27,86] := {179} tii[27,87] := {110} tii[27,88] := {217} tii[27,89] := {252} tii[27,90] := {23} tii[27,91] := {124} tii[27,92] := {77} tii[27,93] := {79} tii[27,94] := {32} tii[27,95] := {61} tii[27,96] := {66} tii[27,97] := {195} tii[27,98] := {194} tii[27,99] := {115} tii[27,100] := {130} tii[27,101] := {55} tii[27,102] := {134} tii[27,103] := {95} tii[27,104] := {140} tii[27,105] := {101} tii[27,106] := {138} tii[27,107] := {144} tii[27,108] := {184} tii[27,109] := {247} tii[27,110] := {206} tii[27,111] := {87} tii[27,112] := {152} tii[27,113] := {135} tii[27,114] := {172} tii[27,115] := {141} tii[27,116] := {177} tii[27,117] := {211} tii[27,118] := {176} tii[27,119] := {215} tii[27,120] := {181} tii[27,121] := {254} tii[27,122] := {151} tii[27,123] := {245} tii[27,124] := {218} tii[27,125] := {210} tii[27,126] := {214} tii[27,127] := {260} tii[27,128] := {127} tii[27,129] := {267} tii[27,130] := {244} tii[27,131] := {256} tii[27,132] := {189} tii[27,133] := {208} tii[27,134] := {212} tii[27,135] := {239} tii[27,136] := {241} tii[27,137] := {188} tii[27,138] := {262} tii[27,139] := {258} tii[27,140] := {259} tii[27,141] := {274} tii[27,142] := {275} tii[27,143] := {203} tii[27,144] := {271} tii[27,145] := {190} tii[27,146] := {276} tii[27,147] := {278} tii[27,148] := {279} tii[27,149] := {0} tii[27,150] := {30} tii[27,151] := {3} tii[27,152] := {8} tii[27,153] := {9} tii[27,154] := {18} tii[27,155] := {20} tii[27,156] := {31} tii[27,157] := {118} tii[27,158] := {16} tii[27,159] := {35} tii[27,160] := {38} tii[27,161] := {37} tii[27,162] := {62} tii[27,163] := {40} tii[27,164] := {67} tii[27,165] := {13} tii[27,166] := {53} tii[27,167] := {42} tii[27,168] := {108} tii[27,169] := {96} tii[27,170] := {102} tii[27,171] := {82} tii[27,172] := {44} tii[27,173] := {80} tii[27,174] := {148} tii[27,175] := {165} tii[27,176] := {54} tii[27,177] := {94} tii[27,178] := {100} tii[27,179] := {137} tii[27,180] := {63} tii[27,181] := {143} tii[27,182] := {68} tii[27,183] := {230} tii[27,184] := {72} tii[27,185] := {27} tii[27,186] := {183} tii[27,187] := {85} tii[27,188] := {173} tii[27,189] := {136} tii[27,190] := {178} tii[27,191] := {142} tii[27,192] := {74} tii[27,193] := {242} tii[27,194] := {201} tii[27,195] := {86} tii[27,196] := {122} tii[27,197] := {120} tii[27,198] := {216} tii[27,199] := {106} tii[27,200] := {41} tii[27,201] := {185} tii[27,202] := {237} tii[27,203] := {186} tii[27,204] := {47} tii[27,205] := {202} tii[27,206] := {209} tii[27,207] := {213} tii[27,208] := {251} tii[27,209] := {157} tii[27,210] := {126} tii[27,211] := {159} tii[27,212] := {243} tii[27,213] := {112} tii[27,214] := {257} tii[27,215] := {231} tii[27,216] := {229} tii[27,217] := {265} tii[27,218] := {98} tii[27,219] := {104} tii[27,220] := {107} tii[27,221] := {49} tii[27,222] := {125} tii[27,223] := {175} tii[27,224] := {180} tii[27,225] := {233} tii[27,226] := {162} tii[27,227] := {114} tii[27,228] := {146} tii[27,229] := {69} tii[27,230] := {160} tii[27,231] := {219} tii[27,232] := {221} tii[27,233] := {78} tii[27,234] := {234} tii[27,235] := {238} tii[27,236] := {240} tii[27,237] := {266} tii[27,238] := {166} tii[27,239] := {197} tii[27,240] := {182} tii[27,241] := {105} tii[27,242] := {199} tii[27,243] := {261} tii[27,244] := {153} tii[27,245] := {246} tii[27,246] := {91} tii[27,247] := {255} tii[27,248] := {253} tii[27,249] := {270} tii[27,250] := {116} tii[27,251] := {273} tii[27,252] := {227} tii[27,253] := {228} tii[27,254] := {268} tii[27,255] := {269} tii[27,256] := {277} tii[27,257] := {2} tii[27,258] := {5} tii[27,259] := {6} tii[27,260] := {22} tii[27,261] := {29} tii[27,262] := {164} tii[27,263] := {14} tii[27,264] := {71} tii[27,265] := {21} tii[27,266] := {149} tii[27,267] := {25} tii[27,268] := {51} tii[27,269] := {163} tii[27,270] := {145} tii[27,271] := {28} tii[27,272] := {70} tii[27,273] := {220} tii[27,274] := {58} tii[27,275] := {83} tii[27,276] := {200} tii[27,277] := {76} tii[27,278] := {50} tii[27,279] := {123} tii[27,280] := {232} cell#4 , |C| = 35 special orbit = [7, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[], [4, 1, 1, 1, 1]] , dim = 35 cell rep = phi[[],[4, 1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 35*X TII subcells: tii[38,1] := {4} tii[38,2] := {13} tii[38,3] := {5} tii[38,4] := {22} tii[38,5] := {11} tii[38,6] := {6} tii[38,7] := {31} tii[38,8] := {20} tii[38,9] := {10} tii[38,10] := {7} tii[38,11] := {21} tii[38,12] := {12} tii[38,13] := {3} tii[38,14] := {1} tii[38,15] := {0} tii[38,16] := {17} tii[38,17] := {25} tii[38,18] := {18} tii[38,19] := {29} tii[38,20] := {33} tii[38,21] := {24} tii[38,22] := {32} tii[38,23] := {19} tii[38,24] := {30} tii[38,25] := {34} tii[38,26] := {26} tii[38,27] := {14} tii[38,28] := {23} tii[38,29] := {9} tii[38,30] := {16} tii[38,31] := {28} tii[38,32] := {2} tii[38,33] := {8} tii[38,34] := {15} tii[38,35] := {27} cell#5 , |C| = 35 special orbit = [7, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[], [4, 1, 1, 1, 1]] , dim = 35 cell rep = phi[[],[4, 1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 35*X TII subcells: tii[38,1] := {0} tii[38,2] := {1} tii[38,3] := {2} tii[38,4] := {4} tii[38,5] := {6} tii[38,6] := {10} tii[38,7] := {7} tii[38,8] := {11} tii[38,9] := {16} tii[38,10] := {21} tii[38,11] := {3} tii[38,12] := {5} tii[38,13] := {9} tii[38,14] := {15} tii[38,15] := {14} tii[38,16] := {8} tii[38,17] := {13} tii[38,18] := {18} tii[38,19] := {23} tii[38,20] := {19} tii[38,21] := {25} tii[38,22] := {29} tii[38,23] := {30} tii[38,24] := {33} tii[38,25] := {34} tii[38,26] := {12} tii[38,27] := {17} tii[38,28] := {22} tii[38,29] := {24} tii[38,30] := {28} tii[38,31] := {32} tii[38,32] := {20} tii[38,33] := {27} tii[38,34] := {31} tii[38,35] := {26} cell#6 , |C| = 184 special orbit = [5, 3, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[1], [3, 1, 1, 1, 1]] , dim = 120 cell rep = phi[[],[3, 2, 1, 1, 1]]+phi[[1],[3, 1, 1, 1, 1]] TII depth = 3 TII multiplicity polynomial = 56*X+64*X^2 TII subcells: tii[24,1] := {8, 73} tii[24,2] := {32, 67} tii[24,3] := {16, 90} tii[24,4] := {48, 82} tii[24,5] := {7, 99} tii[24,6] := {64, 96} tii[24,7] := {28, 105} tii[24,8] := {65, 100} tii[24,9] := {15, 115} tii[24,10] := {6, 129} tii[24,11] := {80, 112} tii[24,12] := {97, 128} tii[24,13] := {43, 122} tii[24,14] := {81, 116} tii[24,15] := {27, 132} tii[24,16] := {98, 130} tii[24,17] := {14, 145} tii[24,18] := {5, 158} tii[24,19] := {114, 143} tii[24,20] := {131, 157} tii[24,21] := {4} tii[24,22] := {3, 58} tii[24,23] := {9} tii[24,24] := {21} tii[24,25] := {22} tii[24,26] := {2, 83} tii[24,27] := {17} tii[24,28] := {36} tii[24,29] := {37} tii[24,30] := {52} tii[24,31] := {54} tii[24,32] := {75} tii[24,33] := {31} tii[24,34] := {1, 113} tii[24,35] := {51} tii[24,36] := {53} tii[24,37] := {69} tii[24,38] := {71} tii[24,39] := {25, 126} tii[24,40] := {92} tii[24,41] := {85} tii[24,42] := {88} tii[24,43] := {44, 123} tii[24,44] := {107} tii[24,45] := {117} tii[24,46] := {0, 144} tii[24,47] := {47} tii[24,48] := {68} tii[24,49] := {70} tii[24,50] := {86} tii[24,51] := {89} tii[24,52] := {39, 141} tii[24,53] := {108} tii[24,54] := {101} tii[24,55] := {103} tii[24,56] := {61, 137} tii[24,57] := {24, 153} tii[24,58] := {124} tii[24,59] := {34, 162} tii[24,60] := {133} tii[24,61] := {118} tii[24,62] := {120} tii[24,63] := {78, 152} tii[24,64] := {139} tii[24,65] := {59, 160} tii[24,66] := {146} tii[24,67] := {159} tii[24,68] := {63} tii[24,69] := {84} tii[24,70] := {87} tii[24,71] := {102} tii[24,72] := {104} tii[24,73] := {55, 156} tii[24,74] := {125} tii[24,75] := {119} tii[24,76] := {121} tii[24,77] := {79, 154} tii[24,78] := {38, 166} tii[24,79] := {140} tii[24,80] := {49, 173} tii[24,81] := {147} tii[24,82] := {135} tii[24,83] := {136} tii[24,84] := {23, 175} tii[24,85] := {95, 164} tii[24,86] := {155} tii[24,87] := {77, 170} tii[24,88] := {33, 180} tii[24,89] := {161} tii[24,90] := {45, 183} tii[24,91] := {168} tii[24,92] := {150} tii[24,93] := {151} tii[24,94] := {111, 174} tii[24,95] := {167} tii[24,96] := {94, 179} tii[24,97] := {172} tii[24,98] := {76, 182} tii[24,99] := {176} tii[24,100] := {181} tii[24,101] := {13, 41} tii[24,102] := {12, 110} tii[24,103] := {26, 57} tii[24,104] := {20, 93} tii[24,105] := {11, 138} tii[24,106] := {40, 74} tii[24,107] := {19, 149} tii[24,108] := {35, 109} tii[24,109] := {30, 134} tii[24,110] := {10, 165} tii[24,111] := {56, 91} tii[24,112] := {18, 171} tii[24,113] := {50, 127} tii[24,114] := {29, 178} tii[24,115] := {46, 148} tii[24,116] := {42, 169} tii[24,117] := {72, 106} tii[24,118] := {66, 142} tii[24,119] := {62, 163} tii[24,120] := {60, 177} cell#7 , |C| = 21 special orbit = [5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[], [3, 1, 1, 1, 1, 1]] , dim = 21 cell rep = phi[[],[3, 1, 1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 21*X TII subcells: tii[23,1] := {15} tii[23,2] := {10} tii[23,3] := {6} tii[23,4] := {3} tii[23,5] := {1} tii[23,6] := {0} tii[23,7] := {18} tii[23,8] := {12} tii[23,9] := {17} tii[23,10] := {7} tii[23,11] := {11} tii[23,12] := {16} tii[23,13] := {5} tii[23,14] := {9} tii[23,15] := {14} tii[23,16] := {20} tii[23,17] := {2} tii[23,18] := {4} tii[23,19] := {8} tii[23,20] := {13} tii[23,21] := {19} cell#8 , |C| = 184 special orbit = [5, 3, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[1], [3, 1, 1, 1, 1]] , dim = 120 cell rep = phi[[],[3, 2, 1, 1, 1]]+phi[[1],[3, 1, 1, 1, 1]] TII depth = 3 TII multiplicity polynomial = 56*X+64*X^2 TII subcells: tii[24,1] := {21, 47} tii[24,2] := {12, 57} tii[24,3] := {43, 74} tii[24,4] := {32, 84} tii[24,5] := {53, 101} tii[24,6] := {55, 109} tii[24,7] := {67, 102} tii[24,8] := {56, 114} tii[24,9] := {79, 127} tii[24,10] := {113, 151} tii[24,11] := {82, 135} tii[24,12] := {112, 157} tii[24,13] := {73, 95} tii[24,14] := {31, 83} tii[24,15] := {100, 110} tii[24,16] := {54, 108} tii[24,17] := {125, 137} tii[24,18] := {99, 158} tii[24,19] := {80, 133} tii[24,20] := {111, 150} tii[24,21] := {0} tii[24,22] := {7, 24} tii[24,23] := {1} tii[24,24] := {4} tii[24,25] := {5} tii[24,26] := {30, 72} tii[24,27] := {3} tii[24,28] := {15} tii[24,29] := {16} tii[24,30] := {36} tii[24,31] := {39} tii[24,32] := {66} tii[24,33] := {11} tii[24,34] := {81, 126} tii[24,35] := {35} tii[24,36] := {38} tii[24,37] := {60} tii[24,38] := {63} tii[24,39] := {44, 132} tii[24,40] := {93} tii[24,41] := {86} tii[24,42] := {89} tii[24,43] := {27, 146} tii[24,44] := {121} tii[24,45] := {139} tii[24,46] := {71, 136} tii[24,47] := {29} tii[24,48] := {58} tii[24,49] := {61} tii[24,50] := {87} tii[24,51] := {90} tii[24,52] := {68, 156} tii[24,53] := {122} tii[24,54] := {117} tii[24,55] := {119} tii[24,56] := {52, 164} tii[24,57] := {76, 171} tii[24,58] := {148} tii[24,59] := {69, 179} tii[24,60] := {160} tii[24,61] := {142} tii[24,62] := {144} tii[24,63] := {78, 177} tii[24,64] := {166} tii[24,65] := {49, 182} tii[24,66] := {175} tii[24,67] := {180} tii[24,68] := {10} tii[24,69] := {34} tii[24,70] := {37} tii[24,71] := {59} tii[24,72] := {62} tii[24,73] := {96, 131} tii[24,74] := {92} tii[24,75] := {85} tii[24,76] := {88} tii[24,77] := {26, 145} tii[24,78] := {106, 154} tii[24,79] := {120} tii[24,80] := {97, 168} tii[24,81] := {138} tii[24,82] := {116} tii[24,83] := {118} tii[24,84] := {130, 134} tii[24,85] := {50, 163} tii[24,86] := {147} tii[24,87] := {25, 173} tii[24,88] := {105, 153} tii[24,89] := {159} tii[24,90] := {98, 140} tii[24,91] := {172} tii[24,92] := {141} tii[24,93] := {143} tii[24,94] := {77, 170} tii[24,95] := {165} tii[24,96] := {48, 178} tii[24,97] := {174} tii[24,98] := {42, 167} tii[24,99] := {181} tii[24,100] := {183} tii[24,101] := {2, 19} tii[24,102] := {22, 104} tii[24,103] := {6, 41} tii[24,104] := {8, 94} tii[24,105] := {51, 155} tii[24,106] := {18, 65} tii[24,107] := {45, 169} tii[24,108] := {13, 124} tii[24,109] := {23, 162} tii[24,110] := {103, 107} tii[24,111] := {40, 91} tii[24,112] := {75, 129} tii[24,113] := {33, 149} tii[24,114] := {70, 115} tii[24,115] := {28, 176} tii[24,116] := {46, 128} tii[24,117] := {17, 64} tii[24,118] := {14, 123} tii[24,119] := {9, 161} tii[24,120] := {20, 152} cell#9 , |C| = 112 special orbit = [3, 3, 3, 1, 1, 1, 1, 1, 1, 1] special rep = [[1], [2, 2, 1, 1, 1]] , dim = 112 cell rep = phi[[1],[2, 2, 1, 1, 1]] TII depth = 4 TII multiplicity polynomial = 112*X TII subcells: tii[11,1] := {18} tii[11,2] := {27} tii[11,3] := {28} tii[11,4] := {41} tii[11,5] := {42} tii[11,6] := {43} tii[11,7] := {54} tii[11,8] := {55} tii[11,9] := {70} tii[11,10] := {56} tii[11,11] := {57} tii[11,12] := {71} tii[11,13] := {72} tii[11,14] := {84} tii[11,15] := {85} tii[11,16] := {95} tii[11,17] := {1} tii[11,18] := {17} tii[11,19] := {4} tii[11,20] := {7} tii[11,21] := {8} tii[11,22] := {40} tii[11,23] := {9} tii[11,24] := {12} tii[11,25] := {14} tii[11,26] := {22} tii[11,27] := {24} tii[11,28] := {39} tii[11,29] := {59} tii[11,30] := {69} tii[11,31] := {16} tii[11,32] := {21} tii[11,33] := {23} tii[11,34] := {35} tii[11,35] := {38} tii[11,36] := {53} tii[11,37] := {48} tii[11,38] := {50} tii[11,39] := {75} tii[11,40] := {76} tii[11,41] := {67} tii[11,42] := {79} tii[11,43] := {89} tii[11,44] := {97} tii[11,45] := {26} tii[11,46] := {33} tii[11,47] := {36} tii[11,48] := {49} tii[11,49] := {51} tii[11,50] := {68} tii[11,51] := {64} tii[11,52] := {66} tii[11,53] := {90} tii[11,54] := {91} tii[11,55] := {83} tii[11,56] := {93} tii[11,57] := {80} tii[11,58] := {81} tii[11,59] := {100} tii[11,60] := {101} tii[11,61] := {94} tii[11,62] := {105} tii[11,63] := {106} tii[11,64] := {103} tii[11,65] := {108} tii[11,66] := {107} tii[11,67] := {110} tii[11,68] := {111} tii[11,69] := {2} tii[11,70] := {3} tii[11,71] := {6} tii[11,72] := {13} tii[11,73] := {15} tii[11,74] := {11} tii[11,75] := {10} tii[11,76] := {25} tii[11,77] := {32} tii[11,78] := {34} tii[11,79] := {37} tii[11,80] := {58} tii[11,81] := {19} tii[11,82] := {20} tii[11,83] := {52} tii[11,84] := {47} tii[11,85] := {62} tii[11,86] := {46} tii[11,87] := {74} tii[11,88] := {63} tii[11,89] := {65} tii[11,90] := {88} tii[11,91] := {29} tii[11,92] := {30} tii[11,93] := {82} tii[11,94] := {96} tii[11,95] := {60} tii[11,96] := {92} tii[11,97] := {61} tii[11,98] := {102} tii[11,99] := {87} tii[11,100] := {86} tii[11,101] := {104} tii[11,102] := {44} tii[11,103] := {45} tii[11,104] := {77} tii[11,105] := {78} tii[11,106] := {98} tii[11,107] := {99} tii[11,108] := {109} tii[11,109] := {0} tii[11,110] := {5} tii[11,111] := {31} tii[11,112] := {73} cell#10 , |C| = 21 special orbit = [5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[], [3, 1, 1, 1, 1, 1]] , dim = 21 cell rep = phi[[],[3, 1, 1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 21*X TII subcells: tii[23,1] := {0} tii[23,2] := {2} tii[23,3] := {4} tii[23,4] := {7} tii[23,5] := {3} tii[23,6] := {1} tii[23,7] := {6} tii[23,8] := {10} tii[23,9] := {15} tii[23,10] := {16} tii[23,11] := {19} tii[23,12] := {20} tii[23,13] := {9} tii[23,14] := {14} tii[23,15] := {18} tii[23,16] := {17} tii[23,17] := {5} tii[23,18] := {8} tii[23,19] := {13} tii[23,20] := {11} tii[23,21] := {12} cell#11 , |C| = 68 special orbit = [3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[1], [2, 1, 1, 1, 1, 1]] , dim = 48 cell rep = phi[[],[2, 2, 1, 1, 1, 1]]+phi[[1],[2, 1, 1, 1, 1, 1]] TII depth = 3 TII multiplicity polynomial = 28*X+20*X^2 TII subcells: tii[8,1] := {9, 23} tii[8,2] := {16, 28} tii[8,3] := {22, 34} tii[8,4] := {29, 41} tii[8,5] := {35, 48} tii[8,6] := {2} tii[8,7] := {10} tii[8,8] := {11} tii[8,9] := {17} tii[8,10] := {18} tii[8,11] := {26} tii[8,12] := {24} tii[8,13] := {25} tii[8,14] := {8, 39} tii[8,15] := {32} tii[8,16] := {36} tii[8,17] := {30} tii[8,18] := {31} tii[8,19] := {15, 46} tii[8,20] := {40} tii[8,21] := {7, 50} tii[8,22] := {42} tii[8,23] := {49} tii[8,24] := {37} tii[8,25] := {38} tii[8,26] := {21, 52} tii[8,27] := {47} tii[8,28] := {14, 58} tii[8,29] := {51} tii[8,30] := {6, 63} tii[8,31] := {56} tii[8,32] := {62} tii[8,33] := {44} tii[8,34] := {45} tii[8,35] := {27, 55} tii[8,36] := {53} tii[8,37] := {20, 61} tii[8,38] := {59} tii[8,39] := {13, 65} tii[8,40] := {64} tii[8,41] := {12, 60} tii[8,42] := {66} tii[8,43] := {67} tii[8,44] := {4, 19} tii[8,45] := {3, 33} tii[8,46] := {1, 43} tii[8,47] := {0, 57} tii[8,48] := {5, 54} cell#12 , |C| = 21 special orbit = [5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[], [3, 1, 1, 1, 1, 1]] , dim = 21 cell rep = phi[[],[3, 1, 1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 21*X TII subcells: tii[23,1] := {0} tii[23,2] := {1} tii[23,3] := {2} tii[23,4] := {4} tii[23,5] := {7} tii[23,6] := {6} tii[23,7] := {3} tii[23,8] := {5} tii[23,9] := {8} tii[23,10] := {9} tii[23,11] := {11} tii[23,12] := {14} tii[23,13] := {12} tii[23,14] := {15} tii[23,15] := {18} tii[23,16] := {20} tii[23,17] := {10} tii[23,18] := {13} tii[23,19] := {17} tii[23,20] := {19} tii[23,21] := {16} cell#13 , |C| = 7 special orbit = [3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[], [2, 1, 1, 1, 1, 1, 1]] , dim = 7 cell rep = phi[[],[2, 1, 1, 1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 7*X TII subcells: tii[7,1] := {0} tii[7,2] := {1} tii[7,3] := {2} tii[7,4] := {3} tii[7,5] := {6} tii[7,6] := {4} tii[7,7] := {5}