TII subcells for the Spin(14,2) x PSO(8,8) block of Spin16 # cell#0 , |C| = 21 special orbit = [5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[], [3, 1, 1, 1, 1, 1]] , dim = 21 cell rep = phi[[],[3, 1, 1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 21*X TII subcells: tii[23,1] := {0} tii[23,2] := {10} tii[23,3] := {14} tii[23,4] := {17} tii[23,5] := {19} tii[23,6] := {20} tii[23,7] := {1} tii[23,8] := {9} tii[23,9] := {2} tii[23,10] := {13} tii[23,11] := {8} tii[23,12] := {3} tii[23,13] := {16} tii[23,14] := {12} tii[23,15] := {7} tii[23,16] := {4} tii[23,17] := {18} tii[23,18] := {15} tii[23,19] := {11} tii[23,20] := {6} tii[23,21] := {5} cell#1 , |C| = 21 special orbit = [5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[], [3, 1, 1, 1, 1, 1]] , dim = 21 cell rep = phi[[],[3, 1, 1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 21*X TII subcells: tii[23,1] := {0} tii[23,2] := {10} tii[23,3] := {14} tii[23,4] := {17} tii[23,5] := {19} tii[23,6] := {20} tii[23,7] := {1} tii[23,8] := {9} tii[23,9] := {2} tii[23,10] := {13} tii[23,11] := {8} tii[23,12] := {3} tii[23,13] := {16} tii[23,14] := {12} tii[23,15] := {7} tii[23,16] := {4} tii[23,17] := {18} tii[23,18] := {15} tii[23,19] := {11} tii[23,20] := {6} tii[23,21] := {5} cell#2 , |C| = 76 special orbit = [3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[1], [2, 1, 1, 1, 1, 1]] , dim = 48 cell rep = phi[[1],[2, 1, 1, 1, 1, 1]]+phi[[2],[1, 1, 1, 1, 1, 1]] TII depth = 3 TII multiplicity polynomial = 20*X+28*X^2 TII subcells: tii[8,1] := {11} tii[8,2] := {18} tii[8,3] := {26} tii[8,4] := {36} tii[8,5] := {47} tii[8,6] := {0, 1} tii[8,7] := {2, 3} tii[8,8] := {4, 5} tii[8,9] := {7, 8} tii[8,10] := {9, 10} tii[8,11] := {16, 17} tii[8,12] := {12, 13} tii[8,13] := {14, 15} tii[8,14] := {27} tii[8,15] := {24, 25} tii[8,16] := {28, 29} tii[8,17] := {20, 21} tii[8,18] := {22, 23} tii[8,19] := {38} tii[8,20] := {34, 35} tii[8,21] := {48} tii[8,22] := {39, 40} tii[8,23] := {50, 51} tii[8,24] := {30, 31} tii[8,25] := {32, 33} tii[8,26] := {49} tii[8,27] := {45, 46} tii[8,28] := {57} tii[8,29] := {52, 53} tii[8,30] := {63} tii[8,31] := {59, 60} tii[8,32] := {65, 66} tii[8,33] := {41, 42} tii[8,34] := {43, 44} tii[8,35] := {58} tii[8,36] := {54, 55} tii[8,37] := {64} tii[8,38] := {61, 62} tii[8,39] := {70} tii[8,40] := {67, 68} tii[8,41] := {73} tii[8,42] := {71, 72} tii[8,43] := {74, 75} tii[8,44] := {6} tii[8,45] := {19} tii[8,46] := {37} tii[8,47] := {56} tii[8,48] := {69} cell#3 , |C| = 7 special orbit = [3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[], [2, 1, 1, 1, 1, 1, 1]] , dim = 7 cell rep = phi[[],[2, 1, 1, 1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 7*X TII subcells: tii[7,1] := {6} tii[7,2] := {5} tii[7,3] := {4} tii[7,4] := {3} tii[7,5] := {2} tii[7,6] := {1} tii[7,7] := {0} cell#4 , |C| = 7 special orbit = [3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[], [2, 1, 1, 1, 1, 1, 1]] , dim = 7 cell rep = phi[[],[2, 1, 1, 1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 7*X TII subcells: tii[7,1] := {6} tii[7,2] := {5} tii[7,3] := {4} tii[7,4] := {3} tii[7,5] := {2} tii[7,6] := {1} tii[7,7] := {0} cell#5 , |C| = 7 special orbit = [3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[], [2, 1, 1, 1, 1, 1, 1]] , dim = 7 cell rep = phi[[],[2, 1, 1, 1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 7*X TII subcells: tii[7,1] := {0} tii[7,2] := {1} tii[7,3] := {2} tii[7,4] := {3} tii[7,5] := {5} tii[7,6] := {6} tii[7,7] := {4} cell#6 , |C| = 8 special orbit = [2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[1], [1, 1, 1, 1, 1, 1, 1]] , dim = 8 cell rep = phi[[1],[1, 1, 1, 1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 8*X TII subcells: tii[2,1] := {0} tii[2,2] := {1} tii[2,3] := {2} tii[2,4] := {3} tii[2,5] := {4} tii[2,6] := {5} tii[2,7] := {6} tii[2,8] := {7} cell#7 , |C| = 8 special orbit = [2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[1], [1, 1, 1, 1, 1, 1, 1]] , dim = 8 cell rep = phi[[1],[1, 1, 1, 1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 8*X TII subcells: tii[2,1] := {0} tii[2,2] := {1} tii[2,3] := {2} tii[2,4] := {3} tii[2,5] := {4} tii[2,6] := {5} tii[2,7] := {6} tii[2,8] := {7} cell#8 , |C| = 1 special orbit = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[], [1, 1, 1, 1, 1, 1, 1, 1]] , dim = 1 cell rep = phi[[],[1, 1, 1, 1, 1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = X TII subcells: tii[1,1] := {0}