TII subcells for the Spin(8,8) x PSO(12,4) block of Spin16 # cell#0 , |C| = 1 special orbit = [15, 1] special rep = [[], [8]] , dim = 1 cell rep = phi[[],[8]] TII depth = 1 TII multiplicity polynomial = X TII subcells: tii[60,1] := {0} cell#1 , |C| = 1 special orbit = [15, 1] special rep = [[], [8]] , dim = 1 cell rep = phi[[],[8]] TII depth = 1 TII multiplicity polynomial = X TII subcells: tii[60,1] := {0} cell#2 , |C| = 8 special orbit = [13, 3] special rep = [[1], [7]] , dim = 8 cell rep = phi[[1],[7]] TII depth = 1 TII multiplicity polynomial = 8*X TII subcells: tii[59,1] := {1} tii[59,2] := {0} tii[59,3] := {2} tii[59,4] := {3} tii[59,5] := {4} tii[59,6] := {5} tii[59,7] := {6} tii[59,8] := {7} cell#3 , |C| = 8 special orbit = [13, 3] special rep = [[1], [7]] , dim = 8 cell rep = phi[[1],[7]] TII depth = 1 TII multiplicity polynomial = 8*X TII subcells: tii[59,1] := {1} tii[59,2] := {0} tii[59,3] := {2} tii[59,4] := {3} tii[59,5] := {4} tii[59,6] := {5} tii[59,7] := {6} tii[59,8] := {7} cell#4 , |C| = 7 special orbit = [13, 1, 1, 1] special rep = [[], [7, 1]] , dim = 7 cell rep = phi[[],[7, 1]] TII depth = 1 TII multiplicity polynomial = 7*X TII subcells: tii[58,1] := {5} tii[58,2] := {4} tii[58,3] := {2} tii[58,4] := {0} tii[58,5] := {1} tii[58,6] := {3} tii[58,7] := {6} cell#5 , |C| = 28 special orbit = [11, 5] special rep = [[2], [6]] , dim = 28 cell rep = phi[[2],[6]] TII depth = 2 TII multiplicity polynomial = 28*X TII subcells: tii[57,1] := {2} tii[57,2] := {7} tii[57,3] := {15} tii[57,4] := {19} tii[57,5] := {24} tii[57,6] := {25} tii[57,7] := {26} tii[57,8] := {27} tii[57,9] := {0} tii[57,10] := {1} tii[57,11] := {3} tii[57,12] := {5} tii[57,13] := {9} tii[57,14] := {10} tii[57,15] := {4} tii[57,16] := {6} tii[57,17] := {8} tii[57,18] := {13} tii[57,19] := {14} tii[57,20] := {11} tii[57,21] := {12} tii[57,22] := {17} tii[57,23] := {18} tii[57,24] := {16} tii[57,25] := {20} tii[57,26] := {21} tii[57,27] := {22} tii[57,28] := {23} cell#6 , |C| = 7 special orbit = [13, 1, 1, 1] special rep = [[], [7, 1]] , dim = 7 cell rep = phi[[],[7, 1]] TII depth = 1 TII multiplicity polynomial = 7*X TII subcells: tii[58,1] := {6} tii[58,2] := {5} tii[58,3] := {4} tii[58,4] := {3} tii[58,5] := {2} tii[58,6] := {1} tii[58,7] := {0} cell#7 , |C| = 68 special orbit = [11, 3, 1, 1] special rep = [[1], [6, 1]] , dim = 48 cell rep = phi[[],[6, 2]]+phi[[1],[6, 1]] TII depth = 3 TII multiplicity polynomial = 20*X^2+28*X TII subcells: tii[56,1] := {1, 67} tii[56,2] := {8, 64} tii[56,3] := {20, 63} tii[56,4] := {31, 61} tii[56,5] := {46, 60} tii[56,6] := {4} tii[56,7] := {0, 66} tii[56,8] := {10} tii[56,9] := {2, 65} tii[56,10] := {16} tii[56,11] := {6, 58} tii[56,12] := {22} tii[56,13] := {11, 51} tii[56,14] := {25} tii[56,15] := {34} tii[56,16] := {36} tii[56,17] := {5} tii[56,18] := {9} tii[56,19] := {3, 59} tii[56,20] := {7, 52} tii[56,21] := {13} tii[56,22] := {12, 45} tii[56,23] := {18} tii[56,24] := {27} tii[56,25] := {28} tii[56,26] := {15} tii[56,27] := {21} tii[56,28] := {14, 57} tii[56,29] := {19, 50} tii[56,30] := {24} tii[56,31] := {33} tii[56,32] := {35} tii[56,33] := {29} tii[56,34] := {26, 56} tii[56,35] := {32} tii[56,36] := {40} tii[56,37] := {41} tii[56,38] := {39} tii[56,39] := {47} tii[56,40] := {48} tii[56,41] := {53} tii[56,42] := {54} tii[56,43] := {62} tii[56,44] := {17, 44} tii[56,45] := {23, 37} tii[56,46] := {30, 43} tii[56,47] := {38, 49} tii[56,48] := {42, 55} cell#8 , |C| = 7 special orbit = [13, 1, 1, 1] special rep = [[], [7, 1]] , dim = 7 cell rep = phi[[],[7, 1]] TII depth = 1 TII multiplicity polynomial = 7*X TII subcells: tii[58,1] := {5} tii[58,2] := {4} tii[58,3] := {2} tii[58,4] := {0} tii[58,5] := {1} tii[58,6] := {3} tii[58,7] := {6} cell#9 , |C| = 7 special orbit = [13, 1, 1, 1] special rep = [[], [7, 1]] , dim = 7 cell rep = phi[[],[7, 1]] TII depth = 1 TII multiplicity polynomial = 7*X TII subcells: tii[58,1] := {6} tii[58,2] := {5} tii[58,3] := {4} tii[58,4] := {3} tii[58,5] := {2} tii[58,6] := {1} tii[58,7] := {0} cell#10 , |C| = 68 special orbit = [11, 3, 1, 1] special rep = [[1], [6, 1]] , dim = 48 cell rep = phi[[],[6, 2]]+phi[[1],[6, 1]] TII depth = 3 TII multiplicity polynomial = 20*X^2+28*X TII subcells: tii[56,1] := {1, 67} tii[56,2] := {8, 64} tii[56,3] := {20, 63} tii[56,4] := {31, 61} tii[56,5] := {46, 60} tii[56,6] := {4} tii[56,7] := {0, 66} tii[56,8] := {10} tii[56,9] := {2, 65} tii[56,10] := {16} tii[56,11] := {6, 58} tii[56,12] := {22} tii[56,13] := {11, 51} tii[56,14] := {25} tii[56,15] := {34} tii[56,16] := {36} tii[56,17] := {5} tii[56,18] := {9} tii[56,19] := {3, 59} tii[56,20] := {7, 52} tii[56,21] := {13} tii[56,22] := {12, 45} tii[56,23] := {18} tii[56,24] := {27} tii[56,25] := {28} tii[56,26] := {15} tii[56,27] := {21} tii[56,28] := {14, 57} tii[56,29] := {19, 50} tii[56,30] := {24} tii[56,31] := {33} tii[56,32] := {35} tii[56,33] := {29} tii[56,34] := {26, 56} tii[56,35] := {32} tii[56,36] := {40} tii[56,37] := {41} tii[56,38] := {39} tii[56,39] := {47} tii[56,40] := {48} tii[56,41] := {53} tii[56,42] := {54} tii[56,43] := {62} tii[56,44] := {17, 44} tii[56,45] := {23, 37} tii[56,46] := {30, 43} tii[56,47] := {38, 49} tii[56,48] := {42, 55} cell#11 , |C| = 68 special orbit = [11, 3, 1, 1] special rep = [[1], [6, 1]] , dim = 48 cell rep = phi[[],[6, 2]]+phi[[1],[6, 1]] TII depth = 3 TII multiplicity polynomial = 20*X^2+28*X TII subcells: tii[56,1] := {13, 64} tii[56,2] := {3, 43} tii[56,3] := {17, 18} tii[56,4] := {40, 41} tii[56,5] := {62, 63} tii[56,6] := {25} tii[56,7] := {5, 54} tii[56,8] := {20} tii[56,9] := {1, 44} tii[56,10] := {26} tii[56,11] := {4, 32} tii[56,12] := {39} tii[56,13] := {11, 42} tii[56,14] := {49} tii[56,15] := {59} tii[56,16] := {61} tii[56,17] := {10} tii[56,18] := {14} tii[56,19] := {0, 31} tii[56,20] := {2, 19} tii[56,21] := {24} tii[56,22] := {7, 30} tii[56,23] := {36} tii[56,24] := {51} tii[56,25] := {53} tii[56,26] := {6} tii[56,27] := {12} tii[56,28] := {8, 9} tii[56,29] := {15, 16} tii[56,30] := {22} tii[56,31] := {37} tii[56,32] := {38} tii[56,33] := {23} tii[56,34] := {28, 29} tii[56,35] := {35} tii[56,36] := {50} tii[56,37] := {52} tii[56,38] := {48} tii[56,39] := {58} tii[56,40] := {60} tii[56,41] := {65} tii[56,42] := {66} tii[56,43] := {67} tii[56,44] := {27, 57} tii[56,45] := {21, 47} tii[56,46] := {33, 34} tii[56,47] := {45, 46} tii[56,48] := {55, 56} cell#12 , |C| = 68 special orbit = [11, 3, 1, 1] special rep = [[1], [6, 1]] , dim = 48 cell rep = phi[[],[6, 2]]+phi[[1],[6, 1]] TII depth = 3 TII multiplicity polynomial = 20*X^2+28*X TII subcells: tii[56,1] := {13, 64} tii[56,2] := {3, 43} tii[56,3] := {17, 18} tii[56,4] := {40, 41} tii[56,5] := {62, 63} tii[56,6] := {25} tii[56,7] := {5, 54} tii[56,8] := {20} tii[56,9] := {1, 44} tii[56,10] := {26} tii[56,11] := {4, 32} tii[56,12] := {39} tii[56,13] := {11, 42} tii[56,14] := {49} tii[56,15] := {59} tii[56,16] := {61} tii[56,17] := {10} tii[56,18] := {14} tii[56,19] := {0, 31} tii[56,20] := {2, 19} tii[56,21] := {24} tii[56,22] := {7, 30} tii[56,23] := {36} tii[56,24] := {51} tii[56,25] := {53} tii[56,26] := {6} tii[56,27] := {12} tii[56,28] := {8, 9} tii[56,29] := {15, 16} tii[56,30] := {22} tii[56,31] := {37} tii[56,32] := {38} tii[56,33] := {23} tii[56,34] := {28, 29} tii[56,35] := {35} tii[56,36] := {50} tii[56,37] := {52} tii[56,38] := {48} tii[56,39] := {58} tii[56,40] := {60} tii[56,41] := {65} tii[56,42] := {66} tii[56,43] := {67} tii[56,44] := {27, 57} tii[56,45] := {21, 47} tii[56,46] := {33, 34} tii[56,47] := {45, 46} tii[56,48] := {55, 56} cell#13 , |C| = 168 special orbit = [9, 5, 1, 1] special rep = [[2], [5, 1]] , dim = 140 cell rep = phi[[],[5, 3]]+phi[[2],[5, 1]] TII depth = 3 TII multiplicity polynomial = 28*X^2+112*X TII subcells: tii[53,1] := {36, 37} tii[53,2] := {97, 98} tii[53,3] := {146, 147} tii[53,4] := {162} tii[53,5] := {31} tii[53,6] := {74} tii[53,7] := {7, 8} tii[53,8] := {32, 33} tii[53,9] := {105} tii[53,10] := {77, 78} tii[53,11] := {137} tii[53,12] := {139} tii[53,13] := {153} tii[53,14] := {156} tii[53,15] := {14} tii[53,16] := {20, 21} tii[53,17] := {50} tii[53,18] := {4} tii[53,19] := {83} tii[53,20] := {9, 10} tii[53,21] := {13} tii[53,22] := {53, 54} tii[53,23] := {99, 100} tii[53,24] := {18, 19} tii[53,25] := {123} tii[53,26] := {124} tii[53,27] := {25} tii[53,28] := {47} tii[53,29] := {141} tii[53,30] := {49} tii[53,31] := {144} tii[53,32] := {73} tii[53,33] := {75, 76} tii[53,34] := {104} tii[53,35] := {51} tii[53,36] := {55, 56} tii[53,37] := {117, 118} tii[53,38] := {136} tii[53,39] := {138} tii[53,40] := {63} tii[53,41] := {89} tii[53,42] := {152} tii[53,43] := {94} tii[53,44] := {155} tii[53,45] := {122} tii[53,46] := {133, 134} tii[53,47] := {149} tii[53,48] := {150} tii[53,49] := {106} tii[53,50] := {127} tii[53,51] := {160} tii[53,52] := {131} tii[53,53] := {161} tii[53,54] := {158} tii[53,55] := {159} tii[53,56] := {151} tii[53,57] := {163} tii[53,58] := {154} tii[53,59] := {164} tii[53,60] := {165} tii[53,61] := {166} tii[53,62] := {167} tii[53,63] := {15} tii[53,64] := {30} tii[53,65] := {45} tii[53,66] := {68} tii[53,67] := {72} tii[53,68] := {0} tii[53,69] := {3} tii[53,70] := {1, 2} tii[53,71] := {52} tii[53,72] := {5, 6} tii[53,73] := {11} tii[53,74] := {64} tii[53,75] := {26} tii[53,76] := {90} tii[53,77] := {27} tii[53,78] := {95} tii[53,79] := {12} tii[53,80] := {16, 17} tii[53,81] := {24} tii[53,82] := {86} tii[53,83] := {46} tii[53,84] := {110} tii[53,85] := {48} tii[53,86] := {115} tii[53,87] := {42} tii[53,88] := {126} tii[53,89] := {65} tii[53,90] := {130} tii[53,91] := {69} tii[53,92] := {91} tii[53,93] := {96} tii[53,94] := {103} tii[53,95] := {29} tii[53,96] := {44} tii[53,97] := {67} tii[53,98] := {71} tii[53,99] := {28} tii[53,100] := {34, 35} tii[53,101] := {62} tii[53,102] := {43} tii[53,103] := {66} tii[53,104] := {88} tii[53,105] := {70} tii[53,106] := {93} tii[53,107] := {61} tii[53,108] := {107} tii[53,109] := {87} tii[53,110] := {112} tii[53,111] := {92} tii[53,112] := {111} tii[53,113] := {116} tii[53,114] := {40, 41} tii[53,115] := {121} tii[53,116] := {85} tii[53,117] := {109} tii[53,118] := {114} tii[53,119] := {84} tii[53,120] := {125} tii[53,121] := {108} tii[53,122] := {129} tii[53,123] := {113} tii[53,124] := {128} tii[53,125] := {132} tii[53,126] := {81, 82} tii[53,127] := {135} tii[53,128] := {140} tii[53,129] := {143} tii[53,130] := {142} tii[53,131] := {145} tii[53,132] := {119, 120} tii[53,133] := {148} tii[53,134] := {157} tii[53,135] := {22, 23} tii[53,136] := {38, 39} tii[53,137] := {57, 58} tii[53,138] := {59, 60} tii[53,139] := {79, 80} tii[53,140] := {101, 102} cell#14 , |C| = 112 special orbit = [9, 3, 3, 1] special rep = [[1], [5, 2]] , dim = 112 cell rep = phi[[1],[5, 2]] TII depth = 4 TII multiplicity polynomial = 112*X TII subcells: tii[52,1] := {104} tii[52,2] := {58} tii[52,3] := {105} tii[52,4] := {111} tii[52,5] := {32} tii[52,6] := {10} tii[52,7] := {79} tii[52,8] := {38} tii[52,9] := {37} tii[52,10] := {84} tii[52,11] := {83} tii[52,12] := {56} tii[52,13] := {97} tii[52,14] := {2} tii[52,15] := {40} tii[52,16] := {18} tii[52,17] := {80} tii[52,18] := {57} tii[52,19] := {17} tii[52,20] := {63} tii[52,21] := {62} tii[52,22] := {61} tii[52,23] := {70} tii[52,24] := {90} tii[52,25] := {94} tii[52,26] := {9} tii[52,27] := {35} tii[52,28] := {36} tii[52,29] := {15} tii[52,30] := {82} tii[52,31] := {19} tii[52,32] := {81} tii[52,33] := {28} tii[52,34] := {51} tii[52,35] := {54} tii[52,36] := {59} tii[52,37] := {98} tii[52,38] := {99} tii[52,39] := {69} tii[52,40] := {89} tii[52,41] := {93} tii[52,42] := {106} tii[52,43] := {108} tii[52,44] := {109} tii[52,45] := {14} tii[52,46] := {5} tii[52,47] := {13} tii[52,48] := {23} tii[52,49] := {33} tii[52,50] := {60} tii[52,51] := {3} tii[52,52] := {39} tii[52,53] := {8} tii[52,54] := {49} tii[52,55] := {73} tii[52,56] := {77} tii[52,57] := {16} tii[52,58] := {21} tii[52,59] := {22} tii[52,60] := {29} tii[52,61] := {52} tii[52,62] := {55} tii[52,63] := {48} tii[52,64] := {72} tii[52,65] := {76} tii[52,66] := {92} tii[52,67] := {96} tii[52,68] := {101} tii[52,69] := {0} tii[52,70] := {1} tii[52,71] := {4} tii[52,72] := {7} tii[52,73] := {6} tii[52,74] := {12} tii[52,75] := {30} tii[52,76] := {31} tii[52,77] := {27} tii[52,78] := {50} tii[52,79] := {53} tii[52,80] := {74} tii[52,81] := {78} tii[52,82] := {87} tii[52,83] := {88} tii[52,84] := {20} tii[52,85] := {47} tii[52,86] := {71} tii[52,87] := {75} tii[52,88] := {91} tii[52,89] := {95} tii[52,90] := {43} tii[52,91] := {100} tii[52,92] := {102} tii[52,93] := {103} tii[52,94] := {107} tii[52,95] := {85} tii[52,96] := {110} tii[52,97] := {34} tii[52,98] := {68} tii[52,99] := {26} tii[52,100] := {45} tii[52,101] := {46} tii[52,102] := {66} tii[52,103] := {67} tii[52,104] := {11} tii[52,105] := {25} tii[52,106] := {24} tii[52,107] := {42} tii[52,108] := {41} tii[52,109] := {44} tii[52,110] := {65} tii[52,111] := {64} tii[52,112] := {86} cell#15 , |C| = 112 special orbit = [9, 3, 3, 1] special rep = [[1], [5, 2]] , dim = 112 cell rep = phi[[1],[5, 2]] TII depth = 4 TII multiplicity polynomial = 112*X TII subcells: tii[52,1] := {103} tii[52,2] := {107} tii[52,3] := {109} tii[52,4] := {111} tii[52,5] := {2} tii[52,6] := {8} tii[52,7] := {82} tii[52,8] := {20} tii[52,9] := {78} tii[52,10] := {45} tii[52,11] := {72} tii[52,12] := {5} tii[52,13] := {94} tii[52,14] := {16} tii[52,15] := {11} tii[52,16] := {30} tii[52,17] := {84} tii[52,18] := {18} tii[52,19] := {91} tii[52,20] := {57} tii[52,21] := {86} tii[52,22] := {68} tii[52,23] := {22} tii[52,24] := {35} tii[52,25] := {37} tii[52,26] := {26} tii[52,27] := {100} tii[52,28] := {42} tii[52,29] := {38} tii[52,30] := {71} tii[52,31] := {95} tii[52,32] := {97} tii[52,33] := {44} tii[52,34] := {59} tii[52,35] := {62} tii[52,36] := {55} tii[52,37] := {104} tii[52,38] := {85} tii[52,39] := {70} tii[52,40] := {87} tii[52,41] := {89} tii[52,42] := {96} tii[52,43] := {105} tii[52,44] := {106} tii[52,45] := {0} tii[52,46] := {1} tii[52,47] := {3} tii[52,48] := {6} tii[52,49] := {9} tii[52,50] := {69} tii[52,51] := {4} tii[52,52] := {54} tii[52,53] := {7} tii[52,54] := {13} tii[52,55] := {24} tii[52,56] := {25} tii[52,57] := {17} tii[52,58] := {67} tii[52,59] := {14} tii[52,60] := {21} tii[52,61] := {34} tii[52,62] := {36} tii[52,63] := {31} tii[52,64] := {46} tii[52,65] := {48} tii[52,66] := {60} tii[52,67] := {63} tii[52,68] := {81} tii[52,69] := {10} tii[52,70] := {15} tii[52,71] := {27} tii[52,72] := {23} tii[52,73] := {83} tii[52,74] := {32} tii[52,75] := {47} tii[52,76] := {49} tii[52,77] := {43} tii[52,78] := {58} tii[52,79] := {61} tii[52,80] := {74} tii[52,81] := {76} tii[52,82] := {52} tii[52,83] := {93} tii[52,84] := {33} tii[52,85] := {56} tii[52,86] := {73} tii[52,87] := {75} tii[52,88] := {88} tii[52,89] := {90} tii[52,90] := {80} tii[52,91] := {102} tii[52,92] := {98} tii[52,93] := {99} tii[52,94] := {108} tii[52,95] := {101} tii[52,96] := {110} tii[52,97] := {12} tii[52,98] := {40} tii[52,99] := {19} tii[52,100] := {51} tii[52,101] := {28} tii[52,102] := {65} tii[52,103] := {39} tii[52,104] := {29} tii[52,105] := {41} tii[52,106] := {66} tii[52,107] := {50} tii[52,108] := {79} tii[52,109] := {53} tii[52,110] := {64} tii[52,111] := {92} tii[52,112] := {77} cell#16 , |C| = 21 special orbit = [11, 1, 1, 1, 1, 1] special rep = [[], [6, 1, 1]] , dim = 21 cell rep = phi[[],[6, 1, 1]] TII depth = 1 TII multiplicity polynomial = 21*X TII subcells: tii[55,1] := {20} tii[55,2] := {19} tii[55,3] := {18} tii[55,4] := {16} tii[55,5] := {13} tii[55,6] := {17} tii[55,7] := {15} tii[55,8] := {14} tii[55,9] := {6} tii[55,10] := {12} tii[55,11] := {8} tii[55,12] := {3} tii[55,13] := {11} tii[55,14] := {7} tii[55,15] := {10} tii[55,16] := {4} tii[55,17] := {2} tii[55,18] := {0} tii[55,19] := {1} tii[55,20] := {5} tii[55,21] := {9} cell#17 , |C| = 184 special orbit = [9, 3, 1, 1, 1, 1] special rep = [[1], [5, 1, 1]] , dim = 120 cell rep = phi[[],[5, 2, 1]]+phi[[1],[5, 1, 1]] TII depth = 3 TII multiplicity polynomial = 64*X^2+56*X TII subcells: tii[50,1] := {9, 181} tii[50,2] := {32, 166} tii[50,3] := {59, 161} tii[50,4] := {104, 158} tii[50,5] := {3, 182} tii[50,6] := {17, 145} tii[50,7] := {2, 179} tii[50,8] := {42, 139} tii[50,9] := {6, 172} tii[50,10] := {79, 132} tii[50,11] := {12, 167} tii[50,12] := {31, 154} tii[50,13] := {58, 162} tii[50,14] := {25, 127} tii[50,15] := {103, 157} tii[50,16] := {38, 120} tii[50,17] := {76, 170} tii[50,18] := {131, 173} tii[50,19] := {73, 153} tii[50,20] := {156, 178} tii[50,21] := {20} tii[50,22] := {35} tii[50,23] := {7, 177} tii[50,24] := {51} tii[50,25] := {14, 168} tii[50,26] := {24, 149} tii[50,27] := {63} tii[50,28] := {83} tii[50,29] := {87} tii[50,30] := {0, 171} tii[50,31] := {21} tii[50,32] := {1, 155} tii[50,33] := {34} tii[50,34] := {19, 150} tii[50,35] := {4, 148} tii[50,36] := {30, 121} tii[50,37] := {44} tii[50,38] := {65} tii[50,39] := {67} tii[50,40] := {5, 130} tii[50,41] := {50} tii[50,42] := {11, 122} tii[50,43] := {46, 147} tii[50,44] := {62} tii[50,45] := {82} tii[50,46] := {86} tii[50,47] := {22, 129} tii[50,48] := {78} tii[50,49] := {106} tii[50,50] := {109} tii[50,51] := {135} tii[50,52] := {138} tii[50,53] := {165} tii[50,54] := {10} tii[50,55] := {18} tii[50,56] := {8, 123} tii[50,57] := {28} tii[50,58] := {16, 95} tii[50,59] := {47} tii[50,60] := {48} tii[50,61] := {13, 101} tii[50,62] := {33} tii[50,63] := {29, 119} tii[50,64] := {23, 96} tii[50,65] := {43} tii[50,66] := {64} tii[50,67] := {66} tii[50,68] := {37, 100} tii[50,69] := {60} tii[50,70] := {80} tii[50,71] := {84} tii[50,72] := {107} tii[50,73] := {110} tii[50,74] := {27, 143} tii[50,75] := {144} tii[50,76] := {49} tii[50,77] := {61} tii[50,78] := {45, 146} tii[50,79] := {81} tii[50,80] := {85} tii[50,81] := {54, 126} tii[50,82] := {77} tii[50,83] := {105} tii[50,84] := {108} tii[50,85] := {134} tii[50,86] := {137} tii[50,87] := {57, 91} tii[50,88] := {164} tii[50,89] := {102} tii[50,90] := {133} tii[50,91] := {136} tii[50,92] := {159} tii[50,93] := {160} tii[50,94] := {98, 142} tii[50,95] := {176} tii[50,96] := {174} tii[50,97] := {175} tii[50,98] := {151, 169} tii[50,99] := {180} tii[50,100] := {183} tii[50,101] := {41, 116} tii[50,102] := {15, 115} tii[50,103] := {53, 93} tii[50,104] := {26, 92} tii[50,105] := {72, 114} tii[50,106] := {39, 118} tii[50,107] := {89, 141} tii[50,108] := {55, 128} tii[50,109] := {36, 70} tii[50,110] := {40, 69} tii[50,111] := {52, 90} tii[50,112] := {56, 94} tii[50,113] := {68, 112} tii[50,114] := {74, 99} tii[50,115] := {71, 113} tii[50,116] := {75, 117} tii[50,117] := {88, 140} tii[50,118] := {97, 125} tii[50,119] := {111, 163} tii[50,120] := {124, 152} cell#18 , |C| = 112 special orbit = [9, 3, 3, 1] special rep = [[1], [5, 2]] , dim = 112 cell rep = phi[[1],[5, 2]] TII depth = 4 TII multiplicity polynomial = 112*X TII subcells: tii[52,1] := {104} tii[52,2] := {59} tii[52,3] := {106} tii[52,4] := {111} tii[52,5] := {32} tii[52,6] := {10} tii[52,7] := {79} tii[52,8] := {37} tii[52,9] := {38} tii[52,10] := {83} tii[52,11] := {84} tii[52,12] := {56} tii[52,13] := {97} tii[52,14] := {2} tii[52,15] := {40} tii[52,16] := {17} tii[52,17] := {80} tii[52,18] := {57} tii[52,19] := {18} tii[52,20] := {62} tii[52,21] := {63} tii[52,22] := {61} tii[52,23] := {70} tii[52,24] := {90} tii[52,25] := {94} tii[52,26] := {9} tii[52,27] := {36} tii[52,28] := {35} tii[52,29] := {15} tii[52,30] := {81} tii[52,31] := {20} tii[52,32] := {82} tii[52,33] := {28} tii[52,34] := {51} tii[52,35] := {54} tii[52,36] := {58} tii[52,37] := {99} tii[52,38] := {98} tii[52,39] := {69} tii[52,40] := {89} tii[52,41] := {93} tii[52,42] := {105} tii[52,43] := {108} tii[52,44] := {109} tii[52,45] := {14} tii[52,46] := {5} tii[52,47] := {13} tii[52,48] := {23} tii[52,49] := {33} tii[52,50] := {60} tii[52,51] := {3} tii[52,52] := {39} tii[52,53] := {8} tii[52,54] := {49} tii[52,55] := {73} tii[52,56] := {77} tii[52,57] := {16} tii[52,58] := {22} tii[52,59] := {21} tii[52,60] := {29} tii[52,61] := {52} tii[52,62] := {55} tii[52,63] := {48} tii[52,64] := {72} tii[52,65] := {76} tii[52,66] := {92} tii[52,67] := {96} tii[52,68] := {101} tii[52,69] := {0} tii[52,70] := {1} tii[52,71] := {4} tii[52,72] := {6} tii[52,73] := {7} tii[52,74] := {12} tii[52,75] := {30} tii[52,76] := {31} tii[52,77] := {27} tii[52,78] := {50} tii[52,79] := {53} tii[52,80] := {74} tii[52,81] := {78} tii[52,82] := {87} tii[52,83] := {88} tii[52,84] := {19} tii[52,85] := {47} tii[52,86] := {71} tii[52,87] := {75} tii[52,88] := {91} tii[52,89] := {95} tii[52,90] := {44} tii[52,91] := {100} tii[52,92] := {102} tii[52,93] := {103} tii[52,94] := {107} tii[52,95] := {86} tii[52,96] := {110} tii[52,97] := {34} tii[52,98] := {68} tii[52,99] := {26} tii[52,100] := {46} tii[52,101] := {45} tii[52,102] := {67} tii[52,103] := {66} tii[52,104] := {11} tii[52,105] := {24} tii[52,106] := {25} tii[52,107] := {41} tii[52,108] := {42} tii[52,109] := {43} tii[52,110] := {64} tii[52,111] := {65} tii[52,112] := {85} cell#19 , |C| = 112 special orbit = [9, 3, 3, 1] special rep = [[1], [5, 2]] , dim = 112 cell rep = phi[[1],[5, 2]] TII depth = 4 TII multiplicity polynomial = 112*X TII subcells: tii[52,1] := {103} tii[52,2] := {107} tii[52,3] := {109} tii[52,4] := {111} tii[52,5] := {2} tii[52,6] := {8} tii[52,7] := {82} tii[52,8] := {20} tii[52,9] := {78} tii[52,10] := {45} tii[52,11] := {72} tii[52,12] := {5} tii[52,13] := {94} tii[52,14] := {16} tii[52,15] := {11} tii[52,16] := {30} tii[52,17] := {84} tii[52,18] := {18} tii[52,19] := {91} tii[52,20] := {57} tii[52,21] := {86} tii[52,22] := {68} tii[52,23] := {22} tii[52,24] := {35} tii[52,25] := {37} tii[52,26] := {26} tii[52,27] := {100} tii[52,28] := {42} tii[52,29] := {38} tii[52,30] := {71} tii[52,31] := {95} tii[52,32] := {97} tii[52,33] := {44} tii[52,34] := {59} tii[52,35] := {62} tii[52,36] := {55} tii[52,37] := {104} tii[52,38] := {85} tii[52,39] := {70} tii[52,40] := {87} tii[52,41] := {89} tii[52,42] := {96} tii[52,43] := {105} tii[52,44] := {106} tii[52,45] := {0} tii[52,46] := {1} tii[52,47] := {3} tii[52,48] := {6} tii[52,49] := {9} tii[52,50] := {69} tii[52,51] := {4} tii[52,52] := {54} tii[52,53] := {7} tii[52,54] := {13} tii[52,55] := {24} tii[52,56] := {25} tii[52,57] := {17} tii[52,58] := {67} tii[52,59] := {14} tii[52,60] := {21} tii[52,61] := {34} tii[52,62] := {36} tii[52,63] := {31} tii[52,64] := {46} tii[52,65] := {48} tii[52,66] := {60} tii[52,67] := {63} tii[52,68] := {81} tii[52,69] := {10} tii[52,70] := {15} tii[52,71] := {27} tii[52,72] := {23} tii[52,73] := {83} tii[52,74] := {32} tii[52,75] := {47} tii[52,76] := {49} tii[52,77] := {43} tii[52,78] := {58} tii[52,79] := {61} tii[52,80] := {74} tii[52,81] := {76} tii[52,82] := {52} tii[52,83] := {93} tii[52,84] := {33} tii[52,85] := {56} tii[52,86] := {73} tii[52,87] := {75} tii[52,88] := {88} tii[52,89] := {90} tii[52,90] := {80} tii[52,91] := {102} tii[52,92] := {98} tii[52,93] := {99} tii[52,94] := {108} tii[52,95] := {101} tii[52,96] := {110} tii[52,97] := {12} tii[52,98] := {40} tii[52,99] := {19} tii[52,100] := {51} tii[52,101] := {28} tii[52,102] := {65} tii[52,103] := {39} tii[52,104] := {29} tii[52,105] := {41} tii[52,106] := {66} tii[52,107] := {50} tii[52,108] := {79} tii[52,109] := {53} tii[52,110] := {64} tii[52,111] := {92} tii[52,112] := {77} cell#20 , |C| = 21 special orbit = [11, 1, 1, 1, 1, 1] special rep = [[], [6, 1, 1]] , dim = 21 cell rep = phi[[],[6, 1, 1]] TII depth = 1 TII multiplicity polynomial = 21*X TII subcells: tii[55,1] := {20} tii[55,2] := {19} tii[55,3] := {18} tii[55,4] := {16} tii[55,5] := {13} tii[55,6] := {17} tii[55,7] := {15} tii[55,8] := {14} tii[55,9] := {6} tii[55,10] := {12} tii[55,11] := {8} tii[55,12] := {3} tii[55,13] := {11} tii[55,14] := {7} tii[55,15] := {10} tii[55,16] := {4} tii[55,17] := {2} tii[55,18] := {0} tii[55,19] := {1} tii[55,20] := {5} tii[55,21] := {9} cell#21 , |C| = 184 special orbit = [9, 3, 1, 1, 1, 1] special rep = [[1], [5, 1, 1]] , dim = 120 cell rep = phi[[],[5, 2, 1]]+phi[[1],[5, 1, 1]] TII depth = 3 TII multiplicity polynomial = 64*X^2+56*X TII subcells: tii[50,1] := {9, 181} tii[50,2] := {32, 166} tii[50,3] := {59, 161} tii[50,4] := {104, 158} tii[50,5] := {3, 182} tii[50,6] := {17, 145} tii[50,7] := {2, 179} tii[50,8] := {42, 139} tii[50,9] := {6, 172} tii[50,10] := {79, 132} tii[50,11] := {12, 167} tii[50,12] := {31, 154} tii[50,13] := {58, 162} tii[50,14] := {25, 127} tii[50,15] := {103, 157} tii[50,16] := {38, 120} tii[50,17] := {76, 170} tii[50,18] := {131, 173} tii[50,19] := {73, 153} tii[50,20] := {156, 178} tii[50,21] := {20} tii[50,22] := {35} tii[50,23] := {7, 177} tii[50,24] := {51} tii[50,25] := {14, 168} tii[50,26] := {24, 149} tii[50,27] := {63} tii[50,28] := {83} tii[50,29] := {87} tii[50,30] := {0, 171} tii[50,31] := {21} tii[50,32] := {1, 155} tii[50,33] := {34} tii[50,34] := {19, 150} tii[50,35] := {4, 148} tii[50,36] := {30, 121} tii[50,37] := {44} tii[50,38] := {65} tii[50,39] := {67} tii[50,40] := {5, 130} tii[50,41] := {50} tii[50,42] := {11, 122} tii[50,43] := {46, 147} tii[50,44] := {62} tii[50,45] := {82} tii[50,46] := {86} tii[50,47] := {22, 129} tii[50,48] := {78} tii[50,49] := {106} tii[50,50] := {109} tii[50,51] := {135} tii[50,52] := {138} tii[50,53] := {165} tii[50,54] := {10} tii[50,55] := {18} tii[50,56] := {8, 123} tii[50,57] := {28} tii[50,58] := {16, 95} tii[50,59] := {47} tii[50,60] := {48} tii[50,61] := {13, 101} tii[50,62] := {33} tii[50,63] := {29, 119} tii[50,64] := {23, 96} tii[50,65] := {43} tii[50,66] := {64} tii[50,67] := {66} tii[50,68] := {37, 100} tii[50,69] := {60} tii[50,70] := {80} tii[50,71] := {84} tii[50,72] := {107} tii[50,73] := {110} tii[50,74] := {27, 143} tii[50,75] := {144} tii[50,76] := {49} tii[50,77] := {61} tii[50,78] := {45, 146} tii[50,79] := {81} tii[50,80] := {85} tii[50,81] := {54, 126} tii[50,82] := {77} tii[50,83] := {105} tii[50,84] := {108} tii[50,85] := {134} tii[50,86] := {137} tii[50,87] := {57, 91} tii[50,88] := {164} tii[50,89] := {102} tii[50,90] := {133} tii[50,91] := {136} tii[50,92] := {159} tii[50,93] := {160} tii[50,94] := {98, 142} tii[50,95] := {176} tii[50,96] := {174} tii[50,97] := {175} tii[50,98] := {151, 169} tii[50,99] := {180} tii[50,100] := {183} tii[50,101] := {41, 116} tii[50,102] := {15, 115} tii[50,103] := {53, 93} tii[50,104] := {26, 92} tii[50,105] := {72, 114} tii[50,106] := {39, 118} tii[50,107] := {89, 141} tii[50,108] := {55, 128} tii[50,109] := {36, 70} tii[50,110] := {40, 69} tii[50,111] := {52, 90} tii[50,112] := {56, 94} tii[50,113] := {68, 112} tii[50,114] := {74, 99} tii[50,115] := {71, 113} tii[50,116] := {75, 117} tii[50,117] := {88, 140} tii[50,118] := {97, 125} tii[50,119] := {111, 163} tii[50,120] := {124, 152} cell#22 , |C| = 68 special orbit = [11, 3, 1, 1] special rep = [[1], [6, 1]] , dim = 48 cell rep = phi[[],[6, 2]]+phi[[1],[6, 1]] TII depth = 3 TII multiplicity polynomial = 20*X^2+28*X TII subcells: tii[56,1] := {15, 67} tii[56,2] := {19, 65} tii[56,3] := {18, 61} tii[56,4] := {17, 55} tii[56,5] := {16, 45} tii[56,6] := {21} tii[56,7] := {10, 66} tii[56,8] := {28} tii[56,9] := {9, 64} tii[56,10] := {35} tii[56,11] := {5, 62} tii[56,12] := {41} tii[56,13] := {2, 59} tii[56,14] := {46} tii[56,15] := {51} tii[56,16] := {52} tii[56,17] := {20} tii[56,18] := {27} tii[56,19] := {14, 63} tii[56,20] := {8, 60} tii[56,21] := {34} tii[56,22] := {4, 57} tii[56,23] := {40} tii[56,24] := {47} tii[56,25] := {48} tii[56,26] := {26} tii[56,27] := {32} tii[56,28] := {13, 58} tii[56,29] := {7, 54} tii[56,30] := {36} tii[56,31] := {42} tii[56,32] := {43} tii[56,33] := {25} tii[56,34] := {12, 50} tii[56,35] := {29} tii[56,36] := {37} tii[56,37] := {38} tii[56,38] := {22} tii[56,39] := {30} tii[56,40] := {31} tii[56,41] := {23} tii[56,42] := {24} tii[56,43] := {33} tii[56,44] := {0, 56} tii[56,45] := {1, 53} tii[56,46] := {3, 49} tii[56,47] := {6, 44} tii[56,48] := {11, 39} cell#23 , |C| = 140 special orbit = [9, 3, 2, 2] special rep = [[1, 1], [5, 1]] , dim = 140 cell rep = phi[[1, 1],[5, 1]] TII depth = 6 TII multiplicity polynomial = 140*X TII subcells: tii[51,1] := {63} tii[51,2] := {61} tii[51,3] := {56} tii[51,4] := {51} tii[51,5] := {81} tii[51,6] := {79} tii[51,7] := {98} tii[51,8] := {74} tii[51,9] := {113} tii[51,10] := {66} tii[51,11] := {119} tii[51,12] := {133} tii[51,13] := {138} tii[51,14] := {97} tii[51,15] := {93} tii[51,16] := {112} tii[51,17] := {84} tii[51,18] := {118} tii[51,19] := {132} tii[51,20] := {137} tii[51,21] := {111} tii[51,22] := {102} tii[51,23] := {117} tii[51,24] := {131} tii[51,25] := {136} tii[51,26] := {116} tii[51,27] := {130} tii[51,28] := {135} tii[51,29] := {134} tii[51,30] := {139} tii[51,31] := {0} tii[51,32] := {1} tii[51,33] := {49} tii[51,34] := {2} tii[51,35] := {36} tii[51,36] := {26} tii[51,37] := {4} tii[51,38] := {8} tii[51,39] := {9} tii[51,40] := {78} tii[51,41] := {3} tii[51,42] := {91} tii[51,43] := {5} tii[51,44] := {48} tii[51,45] := {35} tii[51,46] := {99} tii[51,47] := {7} tii[51,48] := {120} tii[51,49] := {14} tii[51,50] := {124} tii[51,51] := {15} tii[51,52] := {73} tii[51,53] := {10} tii[51,54] := {46} tii[51,55] := {82} tii[51,56] := {12} tii[51,57] := {104} tii[51,58] := {20} tii[51,59] := {108} tii[51,60] := {22} tii[51,61] := {65} tii[51,62] := {18} tii[51,63] := {86} tii[51,64] := {29} tii[51,65] := {89} tii[51,66] := {31} tii[51,67] := {69} tii[51,68] := {39} tii[51,69] := {72} tii[51,70] := {42} tii[51,71] := {58} tii[51,72] := {59} tii[51,73] := {6} tii[51,74] := {11} tii[51,75] := {64} tii[51,76] := {13} tii[51,77] := {47} tii[51,78] := {21} tii[51,79] := {23} tii[51,80] := {92} tii[51,81] := {16} tii[51,82] := {62} tii[51,83] := {19} tii[51,84] := {100} tii[51,85] := {30} tii[51,86] := {121} tii[51,87] := {32} tii[51,88] := {125} tii[51,89] := {83} tii[51,90] := {27} tii[51,91] := {38} tii[51,92] := {105} tii[51,93] := {41} tii[51,94] := {109} tii[51,95] := {53} tii[51,96] := {87} tii[51,97] := {55} tii[51,98] := {90} tii[51,99] := {76} tii[51,100] := {77} tii[51,101] := {24} tii[51,102] := {28} tii[51,103] := {80} tii[51,104] := {40} tii[51,105] := {43} tii[51,106] := {101} tii[51,107] := {37} tii[51,108] := {52} tii[51,109] := {122} tii[51,110] := {54} tii[51,111] := {126} tii[51,112] := {68} tii[51,113] := {106} tii[51,114] := {71} tii[51,115] := {110} tii[51,116] := {95} tii[51,117] := {96} tii[51,118] := {50} tii[51,119] := {67} tii[51,120] := {70} tii[51,121] := {85} tii[51,122] := {123} tii[51,123] := {88} tii[51,124] := {127} tii[51,125] := {114} tii[51,126] := {115} tii[51,127] := {103} tii[51,128] := {107} tii[51,129] := {128} tii[51,130] := {129} tii[51,131] := {17} tii[51,132] := {25} tii[51,133] := {33} tii[51,134] := {44} tii[51,135] := {34} tii[51,136] := {45} tii[51,137] := {57} tii[51,138] := {60} tii[51,139] := {75} tii[51,140] := {94} cell#24 , |C| = 364 special orbit = [7, 5, 3, 1] special rep = [[2], [4, 2]] , dim = 252 cell rep = phi[[1],[4, 3]]+phi[[2],[4, 2]] TII depth = 3 TII multiplicity polynomial = 112*X^2+140*X TII subcells: tii[45,1] := {293, 296} tii[45,2] := {351, 352} tii[45,3] := {363} tii[45,4] := {53, 54} tii[45,5] := {202, 203} tii[45,6] := {171, 174} tii[45,7] := {271, 272} tii[45,8] := {297} tii[45,9] := {52} tii[45,10] := {97, 98} tii[45,11] := {37, 38} tii[45,12] := {135} tii[45,13] := {220, 223} tii[45,14] := {249, 250} tii[45,15] := {125, 128} tii[45,16] := {126, 127} tii[45,17] := {320} tii[45,18] := {232} tii[45,19] := {234} tii[45,20] := {304, 305} tii[45,21] := {276} tii[45,22] := {281} tii[45,23] := {149, 150} tii[45,24] := {230} tii[45,25] := {261, 264} tii[45,26] := {287, 288} tii[45,27] := {119, 120} tii[45,28] := {225, 226} tii[45,29] := {326, 327} tii[45,30] := {224, 227} tii[45,31] := {300} tii[45,32] := {302} tii[45,33] := {336} tii[45,34] := {151, 152} tii[45,35] := {208, 209} tii[45,36] := {329} tii[45,37] := {214, 215} tii[45,38] := {332} tii[45,39] := {314, 315} tii[45,40] := {343, 344} tii[45,41] := {347} tii[45,42] := {341} tii[45,43] := {342} tii[45,44] := {294, 295} tii[45,45] := {353} tii[45,46] := {316, 317} tii[45,47] := {354} tii[45,48] := {318, 319} tii[45,49] := {355} tii[45,50] := {359} tii[45,51] := {360} tii[45,52] := {7, 8} tii[45,53] := {61, 62} tii[45,54] := {23} tii[45,55] := {85} tii[45,56] := {25, 26} tii[45,57] := {13, 14} tii[45,58] := {6} tii[45,59] := {74, 75} tii[45,60] := {73, 76} tii[45,61] := {101, 102} tii[45,62] := {186} tii[45,63] := {187} tii[45,64] := {9, 10} tii[45,65] := {20} tii[45,66] := {238} tii[45,67] := {49} tii[45,68] := {243} tii[45,69] := {51} tii[45,70] := {134} tii[45,71] := {35, 36} tii[45,72] := {153, 154} tii[45,73] := {121, 124} tii[45,74] := {122, 123} tii[45,75] := {231} tii[45,76] := {233} tii[45,77] := {86} tii[45,78] := {57, 58} tii[45,79] := {138} tii[45,80] := {103, 104} tii[45,81] := {275} tii[45,82] := {143} tii[45,83] := {109, 110} tii[45,84] := {280} tii[45,85] := {268} tii[45,86] := {270} tii[45,87] := {172, 173} tii[45,88] := {236} tii[45,89] := {206, 207} tii[45,90] := {308} tii[45,91] := {241} tii[45,92] := {212, 213} tii[45,93] := {311} tii[45,94] := {321} tii[45,95] := {322} tii[45,96] := {340} tii[45,97] := {24} tii[45,98] := {55, 56} tii[45,99] := {155, 156} tii[45,100] := {29, 30} tii[45,101] := {47} tii[45,102] := {91} tii[45,103] := {95} tii[45,104] := {184} tii[45,105] := {71, 72} tii[45,106] := {175, 178} tii[45,107] := {15, 16} tii[45,108] := {204, 205} tii[45,109] := {176, 177} tii[45,110] := {99, 100} tii[45,111] := {88} tii[45,112] := {267} tii[45,113] := {269} tii[45,114] := {136} tii[45,115] := {157, 158} tii[45,116] := {140} tii[45,117] := {190} tii[45,118] := {307} tii[45,119] := {163, 164} tii[45,120] := {145} tii[45,121] := {195} tii[45,122] := {310} tii[45,123] := {59, 60} tii[45,124] := {301} tii[45,125] := {303} tii[45,126] := {221, 222} tii[45,127] := {189} tii[45,128] := {105, 106} tii[45,129] := {274} tii[45,130] := {330} tii[45,131] := {253, 254} tii[45,132] := {194} tii[45,133] := {111, 112} tii[45,134] := {279} tii[45,135] := {333} tii[45,136] := {257, 258} tii[45,137] := {161, 162} tii[45,138] := {337} tii[45,139] := {167, 168} tii[45,140] := {338} tii[45,141] := {200, 201} tii[45,142] := {350} tii[45,143] := {251, 252} tii[45,144] := {185} tii[45,145] := {237} tii[45,146] := {242} tii[45,147] := {324} tii[45,148] := {325} tii[45,149] := {262, 263} tii[45,150] := {273} tii[45,151] := {289, 290} tii[45,152] := {345} tii[45,153] := {306} tii[45,154] := {278} tii[45,155] := {291, 292} tii[45,156] := {346} tii[45,157] := {309} tii[45,158] := {255, 256} tii[45,159] := {348} tii[45,160] := {259, 260} tii[45,161] := {349} tii[45,162] := {285, 286} tii[45,163] := {179, 182} tii[45,164] := {358} tii[45,165] := {328} tii[45,166] := {331} tii[45,167] := {356} tii[45,168] := {357} tii[45,169] := {334, 335} tii[45,170] := {361} tii[45,171] := {362} tii[45,172] := {0} tii[45,173] := {1, 2} tii[45,174] := {5} tii[45,175] := {21} tii[45,176] := {22} tii[45,177] := {19} tii[45,178] := {48} tii[45,179] := {50} tii[45,180] := {92} tii[45,181] := {96} tii[45,182] := {133} tii[45,183] := {46} tii[45,184] := {3, 4} tii[45,185] := {90} tii[45,186] := {94} tii[45,187] := {45} tii[45,188] := {27, 28} tii[45,189] := {137} tii[45,190] := {63, 64} tii[45,191] := {89} tii[45,192] := {142} tii[45,193] := {65, 66} tii[45,194] := {93} tii[45,195] := {107, 108} tii[45,196] := {141} tii[45,197] := {113, 114} tii[45,198] := {146} tii[45,199] := {147, 148} tii[45,200] := {33, 34} tii[45,201] := {183} tii[45,202] := {188} tii[45,203] := {193} tii[45,204] := {191} tii[45,205] := {159, 160} tii[45,206] := {196} tii[45,207] := {165, 166} tii[45,208] := {115, 116} tii[45,209] := {198, 199} tii[45,210] := {77, 80} tii[45,211] := {228} tii[45,212] := {245, 246} tii[45,213] := {265} tii[45,214] := {87} tii[45,215] := {139} tii[45,216] := {144} tii[45,217] := {192} tii[45,218] := {197} tii[45,219] := {69, 70} tii[45,220] := {229} tii[45,221] := {235} tii[45,222] := {240} tii[45,223] := {239} tii[45,224] := {210, 211} tii[45,225] := {244} tii[45,226] := {216, 217} tii[45,227] := {129, 132} tii[45,228] := {43, 44} tii[45,229] := {247, 248} tii[45,230] := {266} tii[45,231] := {169, 170} tii[45,232] := {81, 84} tii[45,233] := {298} tii[45,234] := {283, 284} tii[45,235] := {82, 83} tii[45,236] := {277} tii[45,237] := {282} tii[45,238] := {218, 219} tii[45,239] := {299} tii[45,240] := {312, 313} tii[45,241] := {323} tii[45,242] := {180, 181} tii[45,243] := {339} tii[45,244] := {11, 12} tii[45,245] := {31, 32} tii[45,246] := {17, 18} tii[45,247] := {67, 68} tii[45,248] := {39, 42} tii[45,249] := {40, 41} tii[45,250] := {78, 79} tii[45,251] := {117, 118} tii[45,252] := {130, 131} cell#25 , |C| = 280 special orbit = [7, 3, 3, 1, 1, 1] special rep = [[1], [4, 2, 1]] , dim = 280 cell rep = phi[[1],[4, 2, 1]] TII depth = 4 TII multiplicity polynomial = 280*X TII subcells: tii[41,1] := {220} tii[41,2] := {233} tii[41,3] := {257} tii[41,4] := {13} tii[41,5] := {244} tii[41,6] := {40} tii[41,7] := {189} tii[41,8] := {254} tii[41,9] := {96} tii[41,10] := {173} tii[41,11] := {268} tii[41,12] := {252} tii[41,13] := {89} tii[41,14] := {267} tii[41,15] := {231} tii[41,16] := {171} tii[41,17] := {237} tii[41,18] := {275} tii[41,19] := {203} tii[41,20] := {273} tii[41,21] := {234} tii[41,22] := {278} tii[41,23] := {265} tii[41,24] := {279} tii[41,25] := {6} tii[41,26] := {23} tii[41,27] := {150} tii[41,28] := {67} tii[41,29] := {135} tii[41,30] := {5} tii[41,31] := {14} tii[41,32] := {188} tii[41,33] := {22} tii[41,34] := {39} tii[41,35] := {3} tii[41,36] := {29} tii[41,37] := {151} tii[41,38] := {66} tii[41,39] := {134} tii[41,40] := {95} tii[41,41] := {8} tii[41,42] := {159} tii[41,43] := {172} tii[41,44] := {43} tii[41,45] := {70} tii[41,46] := {74} tii[41,47] := {38} tii[41,48] := {59} tii[41,49] := {164} tii[41,50] := {207} tii[41,51] := {94} tii[41,52] := {131} tii[41,53] := {33} tii[41,54] := {174} tii[41,55] := {124} tii[41,56] := {91} tii[41,57] := {136} tii[41,58] := {142} tii[41,59] := {130} tii[41,60] := {199} tii[41,61] := {168} tii[41,62] := {211} tii[41,63] := {216} tii[41,64] := {28} tii[41,65] := {9} tii[41,66] := {50} tii[41,67] := {221} tii[41,68] := {61} tii[41,69] := {19} tii[41,70] := {133} tii[41,71] := {208} tii[41,72] := {197} tii[41,73] := {65} tii[41,74] := {100} tii[41,75] := {106} tii[41,76] := {60} tii[41,77] := {201} tii[41,78] := {30} tii[41,79] := {90} tii[41,80] := {236} tii[41,81] := {166} tii[41,82] := {170} tii[41,83] := {55} tii[41,84] := {26} tii[41,85] := {160} tii[41,86] := {132} tii[41,87] := {209} tii[41,88] := {44} tii[41,89] := {128} tii[41,90] := {175} tii[41,91] := {71} tii[41,92] := {181} tii[41,93] := {75} tii[41,94] := {169} tii[41,95] := {126} tii[41,96] := {64} tii[41,97] := {229} tii[41,98] := {204} tii[41,99] := {99} tii[41,100] := {238} tii[41,101] := {105} tii[41,102] := {241} tii[41,103] := {141} tii[41,104] := {147} tii[41,105] := {196} tii[41,106] := {127} tii[41,107] := {83} tii[41,108] := {256} tii[41,109] := {206} tii[41,110] := {167} tii[41,111] := {210} tii[41,112] := {215} tii[41,113] := {205} tii[41,114] := {250} tii[41,115] := {129} tii[41,116] := {235} tii[41,117] := {176} tii[41,118] := {258} tii[41,119] := {182} tii[41,120] := {260} tii[41,121] := {214} tii[41,122] := {219} tii[41,123] := {193} tii[41,124] := {248} tii[41,125] := {255} tii[41,126] := {269} tii[41,127] := {270} tii[41,128] := {259} tii[41,129] := {261} tii[41,130] := {251} tii[41,131] := {272} tii[41,132] := {277} tii[41,133] := {1} tii[41,134] := {4} tii[41,135] := {0} tii[41,136] := {16} tii[41,137] := {2} tii[41,138] := {119} tii[41,139] := {12} tii[41,140] := {25} tii[41,141] := {47} tii[41,142] := {49} tii[41,143] := {7} tii[41,144] := {42} tii[41,145] := {69} tii[41,146] := {73} tii[41,147] := {102} tii[41,148] := {108} tii[41,149] := {158} tii[41,150] := {15} tii[41,151] := {11} tii[41,152] := {27} tii[41,153] := {24} tii[41,154] := {118} tii[41,155] := {46} tii[41,156] := {48} tii[41,157] := {18} tii[41,158] := {88} tii[41,159] := {41} tii[41,160] := {63} tii[41,161] := {68} tii[41,162] := {98} tii[41,163] := {72} tii[41,164] := {104} tii[41,165] := {101} tii[41,166] := {140} tii[41,167] := {107} tii[41,168] := {146} tii[41,169] := {21} tii[41,170] := {115} tii[41,171] := {157} tii[41,172] := {195} tii[41,173] := {62} tii[41,174] := {97} tii[41,175] := {103} tii[41,176] := {139} tii[41,177] := {178} tii[41,178] := {145} tii[41,179] := {184} tii[41,180] := {114} tii[41,181] := {57} tii[41,182] := {224} tii[41,183] := {194} tii[41,184] := {190} tii[41,185] := {177} tii[41,186] := {183} tii[41,187] := {163} tii[41,188] := {246} tii[41,189] := {120} tii[41,190] := {227} tii[41,191] := {232} tii[41,192] := {45} tii[41,193] := {34} tii[41,194] := {93} tii[41,195] := {138} tii[41,196] := {144} tii[41,197] := {180} tii[41,198] := {186} tii[41,199] := {37} tii[41,200] := {156} tii[41,201] := {226} tii[41,202] := {92} tii[41,203] := {137} tii[41,204] := {143} tii[41,205] := {213} tii[41,206] := {179} tii[41,207] := {218} tii[41,208] := {185} tii[41,209] := {155} tii[41,210] := {86} tii[41,211] := {53} tii[41,212] := {116} tii[41,213] := {247} tii[41,214] := {222} tii[41,215] := {225} tii[41,216] := {212} tii[41,217] := {217} tii[41,218] := {117} tii[41,219] := {200} tii[41,220] := {262} tii[41,221] := {161} tii[41,222] := {249} tii[41,223] := {78} tii[41,224] := {154} tii[41,225] := {125} tii[41,226] := {253} tii[41,227] := {240} tii[41,228] := {243} tii[41,229] := {122} tii[41,230] := {263} tii[41,231] := {245} tii[41,232] := {239} tii[41,233] := {242} tii[41,234] := {230} tii[41,235] := {271} tii[41,236] := {198} tii[41,237] := {148} tii[41,238] := {223} tii[41,239] := {264} tii[41,240] := {202} tii[41,241] := {266} tii[41,242] := {228} tii[41,243] := {276} tii[41,244] := {274} tii[41,245] := {17} tii[41,246] := {10} tii[41,247] := {80} tii[41,248] := {32} tii[41,249] := {20} tii[41,250] := {113} tii[41,251] := {52} tii[41,252] := {35} tii[41,253] := {54} tii[41,254] := {31} tii[41,255] := {79} tii[41,256] := {81} tii[41,257] := {51} tii[41,258] := {112} tii[41,259] := {77} tii[41,260] := {36} tii[41,261] := {153} tii[41,262] := {87} tii[41,263] := {56} tii[41,264] := {76} tii[41,265] := {152} tii[41,266] := {109} tii[41,267] := {123} tii[41,268] := {84} tii[41,269] := {82} tii[41,270] := {58} tii[41,271] := {192} tii[41,272] := {111} tii[41,273] := {85} tii[41,274] := {110} tii[41,275] := {149} tii[41,276] := {191} tii[41,277] := {165} tii[41,278] := {121} tii[41,279] := {187} tii[41,280] := {162} cell#26 , |C| = 280 special orbit = [7, 3, 3, 1, 1, 1] special rep = [[1], [4, 2, 1]] , dim = 280 cell rep = phi[[1],[4, 2, 1]] TII depth = 4 TII multiplicity polynomial = 280*X TII subcells: tii[41,1] := {220} tii[41,2] := {233} tii[41,3] := {257} tii[41,4] := {13} tii[41,5] := {244} tii[41,6] := {40} tii[41,7] := {189} tii[41,8] := {254} tii[41,9] := {96} tii[41,10] := {173} tii[41,11] := {268} tii[41,12] := {252} tii[41,13] := {89} tii[41,14] := {267} tii[41,15] := {231} tii[41,16] := {171} tii[41,17] := {237} tii[41,18] := {275} tii[41,19] := {203} tii[41,20] := {273} tii[41,21] := {234} tii[41,22] := {278} tii[41,23] := {265} tii[41,24] := {279} tii[41,25] := {6} tii[41,26] := {23} tii[41,27] := {150} tii[41,28] := {67} tii[41,29] := {135} tii[41,30] := {5} tii[41,31] := {14} tii[41,32] := {188} tii[41,33] := {22} tii[41,34] := {39} tii[41,35] := {3} tii[41,36] := {29} tii[41,37] := {151} tii[41,38] := {66} tii[41,39] := {134} tii[41,40] := {95} tii[41,41] := {8} tii[41,42] := {159} tii[41,43] := {172} tii[41,44] := {43} tii[41,45] := {70} tii[41,46] := {74} tii[41,47] := {38} tii[41,48] := {59} tii[41,49] := {164} tii[41,50] := {207} tii[41,51] := {94} tii[41,52] := {131} tii[41,53] := {33} tii[41,54] := {174} tii[41,55] := {124} tii[41,56] := {91} tii[41,57] := {136} tii[41,58] := {142} tii[41,59] := {130} tii[41,60] := {199} tii[41,61] := {168} tii[41,62] := {211} tii[41,63] := {216} tii[41,64] := {28} tii[41,65] := {9} tii[41,66] := {50} tii[41,67] := {221} tii[41,68] := {61} tii[41,69] := {19} tii[41,70] := {133} tii[41,71] := {208} tii[41,72] := {197} tii[41,73] := {65} tii[41,74] := {100} tii[41,75] := {106} tii[41,76] := {60} tii[41,77] := {201} tii[41,78] := {30} tii[41,79] := {90} tii[41,80] := {236} tii[41,81] := {166} tii[41,82] := {170} tii[41,83] := {55} tii[41,84] := {26} tii[41,85] := {160} tii[41,86] := {132} tii[41,87] := {209} tii[41,88] := {44} tii[41,89] := {128} tii[41,90] := {175} tii[41,91] := {71} tii[41,92] := {181} tii[41,93] := {75} tii[41,94] := {169} tii[41,95] := {126} tii[41,96] := {64} tii[41,97] := {229} tii[41,98] := {204} tii[41,99] := {99} tii[41,100] := {238} tii[41,101] := {105} tii[41,102] := {241} tii[41,103] := {141} tii[41,104] := {147} tii[41,105] := {196} tii[41,106] := {127} tii[41,107] := {83} tii[41,108] := {256} tii[41,109] := {206} tii[41,110] := {167} tii[41,111] := {210} tii[41,112] := {215} tii[41,113] := {205} tii[41,114] := {250} tii[41,115] := {129} tii[41,116] := {235} tii[41,117] := {176} tii[41,118] := {258} tii[41,119] := {182} tii[41,120] := {260} tii[41,121] := {214} tii[41,122] := {219} tii[41,123] := {193} tii[41,124] := {248} tii[41,125] := {255} tii[41,126] := {269} tii[41,127] := {270} tii[41,128] := {259} tii[41,129] := {261} tii[41,130] := {251} tii[41,131] := {272} tii[41,132] := {277} tii[41,133] := {1} tii[41,134] := {4} tii[41,135] := {0} tii[41,136] := {16} tii[41,137] := {2} tii[41,138] := {119} tii[41,139] := {12} tii[41,140] := {25} tii[41,141] := {47} tii[41,142] := {49} tii[41,143] := {7} tii[41,144] := {42} tii[41,145] := {69} tii[41,146] := {73} tii[41,147] := {102} tii[41,148] := {108} tii[41,149] := {158} tii[41,150] := {15} tii[41,151] := {11} tii[41,152] := {27} tii[41,153] := {24} tii[41,154] := {118} tii[41,155] := {46} tii[41,156] := {48} tii[41,157] := {18} tii[41,158] := {88} tii[41,159] := {41} tii[41,160] := {63} tii[41,161] := {68} tii[41,162] := {98} tii[41,163] := {72} tii[41,164] := {104} tii[41,165] := {101} tii[41,166] := {140} tii[41,167] := {107} tii[41,168] := {146} tii[41,169] := {21} tii[41,170] := {115} tii[41,171] := {157} tii[41,172] := {195} tii[41,173] := {62} tii[41,174] := {97} tii[41,175] := {103} tii[41,176] := {139} tii[41,177] := {178} tii[41,178] := {145} tii[41,179] := {184} tii[41,180] := {114} tii[41,181] := {57} tii[41,182] := {224} tii[41,183] := {194} tii[41,184] := {190} tii[41,185] := {177} tii[41,186] := {183} tii[41,187] := {163} tii[41,188] := {246} tii[41,189] := {120} tii[41,190] := {227} tii[41,191] := {232} tii[41,192] := {45} tii[41,193] := {34} tii[41,194] := {93} tii[41,195] := {138} tii[41,196] := {144} tii[41,197] := {180} tii[41,198] := {186} tii[41,199] := {37} tii[41,200] := {156} tii[41,201] := {226} tii[41,202] := {92} tii[41,203] := {137} tii[41,204] := {143} tii[41,205] := {213} tii[41,206] := {179} tii[41,207] := {218} tii[41,208] := {185} tii[41,209] := {155} tii[41,210] := {86} tii[41,211] := {53} tii[41,212] := {116} tii[41,213] := {247} tii[41,214] := {222} tii[41,215] := {225} tii[41,216] := {212} tii[41,217] := {217} tii[41,218] := {117} tii[41,219] := {200} tii[41,220] := {262} tii[41,221] := {161} tii[41,222] := {249} tii[41,223] := {78} tii[41,224] := {154} tii[41,225] := {125} tii[41,226] := {253} tii[41,227] := {240} tii[41,228] := {243} tii[41,229] := {122} tii[41,230] := {263} tii[41,231] := {245} tii[41,232] := {239} tii[41,233] := {242} tii[41,234] := {230} tii[41,235] := {271} tii[41,236] := {198} tii[41,237] := {148} tii[41,238] := {223} tii[41,239] := {264} tii[41,240] := {202} tii[41,241] := {266} tii[41,242] := {228} tii[41,243] := {276} tii[41,244] := {274} tii[41,245] := {17} tii[41,246] := {10} tii[41,247] := {80} tii[41,248] := {32} tii[41,249] := {20} tii[41,250] := {113} tii[41,251] := {52} tii[41,252] := {35} tii[41,253] := {54} tii[41,254] := {31} tii[41,255] := {79} tii[41,256] := {81} tii[41,257] := {51} tii[41,258] := {112} tii[41,259] := {77} tii[41,260] := {36} tii[41,261] := {153} tii[41,262] := {87} tii[41,263] := {56} tii[41,264] := {76} tii[41,265] := {152} tii[41,266] := {109} tii[41,267] := {123} tii[41,268] := {84} tii[41,269] := {82} tii[41,270] := {58} tii[41,271] := {192} tii[41,272] := {111} tii[41,273] := {85} tii[41,274] := {110} tii[41,275] := {149} tii[41,276] := {191} tii[41,277] := {165} tii[41,278] := {121} tii[41,279] := {187} tii[41,280] := {162} cell#27 , |C| = 184 special orbit = [9, 3, 1, 1, 1, 1] special rep = [[1], [5, 1, 1]] , dim = 120 cell rep = phi[[],[5, 2, 1]]+phi[[1],[5, 1, 1]] TII depth = 3 TII multiplicity polynomial = 64*X^2+56*X TII subcells: tii[50,1] := {54, 183} tii[50,2] := {64, 178} tii[50,3] := {61, 167} tii[50,4] := {56, 137} tii[50,5] := {39, 182} tii[50,6] := {48, 173} tii[50,7] := {26, 180} tii[50,8] := {44, 157} tii[50,9] := {22, 174} tii[50,10] := {41, 123} tii[50,11] := {8, 165} tii[50,12] := {52, 179} tii[50,13] := {62, 162} tii[50,14] := {38, 175} tii[50,15] := {55, 138} tii[50,16] := {33, 164} tii[50,17] := {66, 172} tii[50,18] := {71, 146} tii[50,19] := {51, 166} tii[50,20] := {84, 161} tii[50,21] := {70} tii[50,22] := {89} tii[50,23] := {40, 181} tii[50,24] := {113} tii[50,25] := {35, 177} tii[50,26] := {20, 170} tii[50,27] := {125} tii[50,28] := {142} tii[50,29] := {143} tii[50,30] := {14, 176} tii[50,31] := {69} tii[50,32] := {10, 168} tii[50,33] := {88} tii[50,34] := {49, 171} tii[50,35] := {3, 154} tii[50,36] := {32, 160} tii[50,37] := {104} tii[50,38] := {126} tii[50,39] := {127} tii[50,40] := {13, 158} tii[50,41] := {81} tii[50,42] := {9, 140} tii[50,43] := {46, 153} tii[50,44] := {90} tii[50,45] := {114} tii[50,46] := {115} tii[50,47] := {12, 124} tii[50,48] := {72} tii[50,49] := {92} tii[50,50] := {96} tii[50,51] := {76} tii[50,52] := {79} tii[50,53] := {100} tii[50,54] := {53} tii[50,55] := {68} tii[50,56] := {34, 163} tii[50,57] := {87} tii[50,58] := {19, 148} tii[50,59] := {108} tii[50,60] := {112} tii[50,61] := {25, 169} tii[50,62] := {63} tii[50,63] := {31, 139} tii[50,64] := {21, 155} tii[50,65] := {74} tii[50,66] := {94} tii[50,67] := {98} tii[50,68] := {24, 141} tii[50,69] := {57} tii[50,70] := {77} tii[50,71] := {80} tii[50,72] := {58} tii[50,73] := {59} tii[50,74] := {2, 151} tii[50,75] := {82} tii[50,76] := {67} tii[50,77] := {86} tii[50,78] := {47, 147} tii[50,79] := {107} tii[50,80] := {111} tii[50,81] := {37, 156} tii[50,82] := {73} tii[50,83] := {93} tii[50,84] := {97} tii[50,85] := {75} tii[50,86] := {78} tii[50,87] := {16, 150} tii[50,88] := {99} tii[50,89] := {85} tii[50,90] := {106} tii[50,91] := {110} tii[50,92] := {91} tii[50,93] := {95} tii[50,94] := {45, 149} tii[50,95] := {116} tii[50,96] := {105} tii[50,97] := {109} tii[50,98] := {65, 152} tii[50,99] := {128} tii[50,100] := {145} tii[50,101] := {6, 159} tii[50,102] := {0, 133} tii[50,103] := {17, 144} tii[50,104] := {1, 120} tii[50,105] := {29, 132} tii[50,106] := {7, 102} tii[50,107] := {43, 117} tii[50,108] := {11, 83} tii[50,109] := {5, 131} tii[50,110] := {4, 134} tii[50,111] := {15, 119} tii[50,112] := {18, 121} tii[50,113] := {27, 101} tii[50,114] := {23, 103} tii[50,115] := {28, 130} tii[50,116] := {30, 135} tii[50,117] := {42, 118} tii[50,118] := {36, 122} tii[50,119] := {60, 129} tii[50,120] := {50, 136} cell#28 , |C| = 336 special orbit = [7, 3, 2, 2, 1, 1] special rep = [[1, 1], [4, 1, 1]] , dim = 280 cell rep = phi[[],[4, 2, 2]]+phi[[1, 1],[4, 1, 1]] TII depth = 5 TII multiplicity polynomial = 56*X^2+224*X TII subcells: tii[40,1] := {86, 335} tii[40,2] := {104, 316} tii[40,3] := {88, 279} tii[40,4] := {166, 334} tii[40,5] := {170, 313} tii[40,6] := {246, 333} tii[40,7] := {79} tii[40,8] := {72} tii[40,9] := {62} tii[40,10] := {56, 331} tii[40,11] := {112} tii[40,12] := {71, 294} tii[40,13] := {106} tii[40,14] := {35, 322} tii[40,15] := {147} tii[40,16] := {61, 244} tii[40,17] := {92} tii[40,18] := {31, 304} tii[40,19] := {171} tii[40,20] := {222} tii[40,21] := {230} tii[40,22] := {82, 317} tii[40,23] := {145} tii[40,24] := {89, 258} tii[40,25] := {127} tii[40,26] := {55, 305} tii[40,27] := {169} tii[40,28] := {220} tii[40,29] := {228} tii[40,30] := {114, 293} tii[40,31] := {168} tii[40,32] := {218} tii[40,33] := {227} tii[40,34] := {225} tii[40,35] := {233} tii[40,36] := {122} tii[40,37] := {59, 329} tii[40,38] := {167} tii[40,39] := {148} tii[40,40] := {52, 314} tii[40,41] := {128} tii[40,42] := {203} tii[40,43] := {250} tii[40,44] := {253} tii[40,45] := {118, 330} tii[40,46] := {190} tii[40,47] := {119} tii[40,48] := {173} tii[40,49] := {85, 321} tii[40,50] := {78, 292} tii[40,51] := {123, 291} tii[40,52] := {216} tii[40,53] := {158} tii[40,54] := {263} tii[40,55] := {206} tii[40,56] := {268} tii[40,57] := {209} tii[40,58] := {156, 315} tii[40,59] := {215} tii[40,60] := {124} tii[40,61] := {261} tii[40,62] := {177} tii[40,63] := {267} tii[40,64] := {185} tii[40,65] := {265} tii[40,66] := {132} tii[40,67] := {270} tii[40,68] := {140} tii[40,69] := {196} tii[40,70] := {211} tii[40,71] := {121, 327} tii[40,72] := {217} tii[40,73] := {247} tii[40,74] := {284} tii[40,75] := {286} tii[40,76] := {201, 328} tii[40,77] := {260} tii[40,78] := {202} tii[40,79] := {295} tii[40,80] := {249} tii[40,81] := {297} tii[40,82] := {252} tii[40,83] := {296} tii[40,84] := {221} tii[40,85] := {298} tii[40,86] := {229} tii[40,87] := {273} tii[40,88] := {282} tii[40,89] := {308} tii[40,90] := {309} tii[40,91] := {318} tii[40,92] := {283} tii[40,93] := {319} tii[40,94] := {285} tii[40,95] := {310} tii[40,96] := {323} tii[40,97] := {324} tii[40,98] := {332} tii[40,99] := {0} tii[40,100] := {1} tii[40,101] := {53} tii[40,102] := {32} tii[40,103] := {2} tii[40,104] := {5} tii[40,105] := {6} tii[40,106] := {20, 307} tii[40,107] := {105} tii[40,108] := {3} tii[40,109] := {17, 280} tii[40,110] := {51} tii[40,111] := {125} tii[40,112] := {4} tii[40,113] := {178} tii[40,114] := {11} tii[40,115] := {186} tii[40,116] := {12} tii[40,117] := {19, 245} tii[40,118] := {91} tii[40,119] := {9} tii[40,120] := {135} tii[40,121] := {23} tii[40,122] := {143} tii[40,123] := {25} tii[40,124] := {97} tii[40,125] := {39} tii[40,126] := {102} tii[40,127] := {42} tii[40,128] := {74} tii[40,129] := {75} tii[40,130] := {7} tii[40,131] := {83} tii[40,132] := {10} tii[40,133] := {50, 259} tii[40,134] := {80} tii[40,135] := {116} tii[40,136] := {24} tii[40,137] := {161} tii[40,138] := {26} tii[40,139] := {164} tii[40,140] := {34, 281} tii[40,141] := {126} tii[40,142] := {90} tii[40,143] := {21} tii[40,144] := {134} tii[40,145] := {38} tii[40,146] := {179} tii[40,147] := {142} tii[40,148] := {41} tii[40,149] := {187} tii[40,150] := {96} tii[40,151] := {65} tii[40,152] := {136} tii[40,153] := {101} tii[40,154] := {68} tii[40,155] := {144} tii[40,156] := {14, 275} tii[40,157] := {154} tii[40,158] := {109} tii[40,159] := {110} tii[40,160] := {36} tii[40,161] := {115} tii[40,162] := {63} tii[40,163] := {160} tii[40,164] := {66} tii[40,165] := {163} tii[40,166] := {94} tii[40,167] := {133} tii[40,168] := {180} tii[40,169] := {99} tii[40,170] := {141} tii[40,171] := {188} tii[40,172] := {47, 274} tii[40,173] := {150} tii[40,174] := {152} tii[40,175] := {197} tii[40,176] := {131} tii[40,177] := {159} tii[40,178] := {139} tii[40,179] := {162} tii[40,180] := {81, 277} tii[40,181] := {193} tii[40,182] := {195} tii[40,183] := {212} tii[40,184] := {257} tii[40,185] := {13} tii[40,186] := {113} tii[40,187] := {22} tii[40,188] := {40} tii[40,189] := {43} tii[40,190] := {172} tii[40,191] := {58, 306} tii[40,192] := {37} tii[40,193] := {223} tii[40,194] := {64} tii[40,195] := {231} tii[40,196] := {67} tii[40,197] := {181} tii[40,198] := {95} tii[40,199] := {189} tii[40,200] := {100} tii[40,201] := {29, 289} tii[40,202] := {151} tii[40,203] := {153} tii[40,204] := {60} tii[40,205] := {157} tii[40,206] := {93} tii[40,207] := {205} tii[40,208] := {98} tii[40,209] := {208} tii[40,210] := {130} tii[40,211] := {224} tii[40,212] := {176} tii[40,213] := {138} tii[40,214] := {232} tii[40,215] := {184} tii[40,216] := {76, 301} tii[40,217] := {46, 256} tii[40,218] := {192} tii[40,219] := {194} tii[40,220] := {238} tii[40,221] := {175} tii[40,222] := {204} tii[40,223] := {183} tii[40,224] := {207} tii[40,225] := {117, 302} tii[40,226] := {235} tii[40,227] := {237} tii[40,228] := {254} tii[40,229] := {69, 239} tii[40,230] := {290} tii[40,231] := {87} tii[40,232] := {129} tii[40,233] := {137} tii[40,234] := {264} tii[40,235] := {174} tii[40,236] := {269} tii[40,237] := {182} tii[40,238] := {111, 311} tii[40,239] := {234} tii[40,240] := {236} tii[40,241] := {219} tii[40,242] := {248} tii[40,243] := {226} tii[40,244] := {251} tii[40,245] := {165, 320} tii[40,246] := {271} tii[40,247] := {272} tii[40,248] := {146, 288} tii[40,249] := {287} tii[40,250] := {312} tii[40,251] := {262} tii[40,252] := {266} tii[40,253] := {210, 325} tii[40,254] := {299} tii[40,255] := {300} tii[40,256] := {326} tii[40,257] := {15} tii[40,258] := {8, 240} tii[40,259] := {28} tii[40,260] := {16, 199} tii[40,261] := {45} tii[40,262] := {18, 155} tii[40,263] := {27, 214} tii[40,264] := {48} tii[40,265] := {44, 198} tii[40,266] := {73} tii[40,267] := {30, 241} tii[40,268] := {33, 200} tii[40,269] := {70, 213} tii[40,270] := {107} tii[40,271] := {54, 243} tii[40,272] := {77} tii[40,273] := {49, 276} tii[40,274] := {108} tii[40,275] := {57, 242} tii[40,276] := {103, 255} tii[40,277] := {149} tii[40,278] := {84, 278} tii[40,279] := {191} tii[40,280] := {120, 303} cell#29 , |C| = 21 special orbit = [11, 1, 1, 1, 1, 1] special rep = [[], [6, 1, 1]] , dim = 21 cell rep = phi[[],[6, 1, 1]] TII depth = 1 TII multiplicity polynomial = 21*X TII subcells: tii[55,1] := {12} tii[55,2] := {6} tii[55,3] := {11} tii[55,4] := {16} tii[55,5] := {18} tii[55,6] := {0} tii[55,7] := {5} tii[55,8] := {10} tii[55,9] := {15} tii[55,10] := {3} tii[55,11] := {8} tii[55,12] := {13} tii[55,13] := {2} tii[55,14] := {7} tii[55,15] := {1} tii[55,16] := {20} tii[55,17] := {19} tii[55,18] := {17} tii[55,19] := {14} tii[55,20] := {9} tii[55,21] := {4} cell#30 , |C| = 21 special orbit = [11, 1, 1, 1, 1, 1] special rep = [[], [6, 1, 1]] , dim = 21 cell rep = phi[[],[6, 1, 1]] TII depth = 1 TII multiplicity polynomial = 21*X TII subcells: tii[55,1] := {12} tii[55,2] := {6} tii[55,3] := {11} tii[55,4] := {16} tii[55,5] := {18} tii[55,6] := {0} tii[55,7] := {5} tii[55,8] := {10} tii[55,9] := {15} tii[55,10] := {3} tii[55,11] := {8} tii[55,12] := {13} tii[55,13] := {2} tii[55,14] := {7} tii[55,15] := {1} tii[55,16] := {20} tii[55,17] := {19} tii[55,18] := {17} tii[55,19] := {14} tii[55,20] := {9} tii[55,21] := {4} cell#31 , |C| = 184 special orbit = [9, 3, 1, 1, 1, 1] special rep = [[1], [5, 1, 1]] , dim = 120 cell rep = phi[[],[5, 2, 1]]+phi[[1],[5, 1, 1]] TII depth = 3 TII multiplicity polynomial = 64*X^2+56*X TII subcells: tii[50,1] := {46, 47} tii[50,2] := {98, 99} tii[50,3] := {146, 147} tii[50,4] := {176, 177} tii[50,5] := {35, 36} tii[50,6] := {81, 82} tii[50,7] := {16, 17} tii[50,8] := {134, 135} tii[50,9] := {33, 34} tii[50,10] := {171, 172} tii[50,11] := {53, 54} tii[50,12] := {55, 56} tii[50,13] := {103, 104} tii[50,14] := {31, 32} tii[50,15] := {157, 158} tii[50,16] := {51, 52} tii[50,17] := {75, 76} tii[50,18] := {136, 137} tii[50,19] := {49, 50} tii[50,20] := {107, 108} tii[50,21] := {22} tii[50,22] := {43} tii[50,23] := {23, 24} tii[50,24] := {67} tii[50,25] := {44, 45} tii[50,26] := {69, 70} tii[50,27] := {91} tii[50,28] := {116} tii[50,29] := {117} tii[50,30] := {4, 5} tii[50,31] := {68} tii[50,32] := {14, 15} tii[50,33] := {92} tii[50,34] := {73, 74} tii[50,35] := {29, 30} tii[50,36] := {96, 97} tii[50,37] := {115} tii[50,38] := {143} tii[50,39] := {144} tii[50,40] := {2, 3} tii[50,41] := {118} tii[50,42] := {10, 11} tii[50,43] := {122, 123} tii[50,44] := {142} tii[50,45] := {162} tii[50,46] := {163} tii[50,47] := {0, 1} tii[50,48] := {161} tii[50,49] := {173} tii[50,50] := {174} tii[50,51] := {180} tii[50,52] := {181} tii[50,53] := {183} tii[50,54] := {48} tii[50,55] := {72} tii[50,56] := {57, 58} tii[50,57] := {95} tii[50,58] := {79, 80} tii[50,59] := {126} tii[50,60] := {130} tii[50,61] := {12, 13} tii[50,62] := {100} tii[50,63] := {105, 106} tii[50,64] := {27, 28} tii[50,65] := {121} tii[50,66] := {150} tii[50,67] := {153} tii[50,68] := {8, 9} tii[50,69] := {148} tii[50,70] := {165} tii[50,71] := {167} tii[50,72] := {178} tii[50,73] := {179} tii[50,74] := {89, 90} tii[50,75] := {182} tii[50,76] := {71} tii[50,77] := {94} tii[50,78] := {77, 78} tii[50,79] := {125} tii[50,80] := {129} tii[50,81] := {25, 26} tii[50,82] := {120} tii[50,83] := {149} tii[50,84] := {152} tii[50,85] := {166} tii[50,86] := {168} tii[50,87] := {87, 88} tii[50,88] := {175} tii[50,89] := {93} tii[50,90] := {124} tii[50,91] := {128} tii[50,92] := {151} tii[50,93] := {154} tii[50,94] := {85, 86} tii[50,95] := {164} tii[50,96] := {127} tii[50,97] := {131} tii[50,98] := {83, 84} tii[50,99] := {145} tii[50,100] := {119} tii[50,101] := {101, 102} tii[50,102] := {65, 66} tii[50,103] := {132, 133} tii[50,104] := {41, 42} tii[50,105] := {155, 156} tii[50,106] := {20, 21} tii[50,107] := {169, 170} tii[50,108] := {6, 7} tii[50,109] := {113, 114} tii[50,110] := {63, 64} tii[50,111] := {140, 141} tii[50,112] := {39, 40} tii[50,113] := {159, 160} tii[50,114] := {18, 19} tii[50,115] := {111, 112} tii[50,116] := {61, 62} tii[50,117] := {138, 139} tii[50,118] := {37, 38} tii[50,119] := {109, 110} tii[50,120] := {59, 60} cell#32 , |C| = 35 special orbit = [9, 1, 1, 1, 1, 1, 1, 1] special rep = [[], [5, 1, 1, 1]] , dim = 35 cell rep = phi[[],[5, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 35*X TII subcells: tii[49,1] := {26} tii[49,2] := {18} tii[49,3] := {25} tii[49,4] := {32} tii[49,5] := {6} tii[49,6] := {17} tii[49,7] := {24} tii[49,8] := {10} tii[49,9] := {19} tii[49,10] := {7} tii[49,11] := {0} tii[49,12] := {5} tii[49,13] := {16} tii[49,14] := {2} tii[49,15] := {9} tii[49,16] := {1} tii[49,17] := {4} tii[49,18] := {15} tii[49,19] := {8} tii[49,20] := {14} tii[49,21] := {34} tii[49,22] := {33} tii[49,23] := {31} tii[49,24] := {21} tii[49,25] := {12} tii[49,26] := {30} tii[49,27] := {23} tii[49,28] := {13} tii[49,29] := {3} tii[49,30] := {29} tii[49,31] := {22} tii[49,32] := {11} tii[49,33] := {28} tii[49,34] := {20} tii[49,35] := {27} cell#33 , |C| = 35 special orbit = [9, 1, 1, 1, 1, 1, 1, 1] special rep = [[], [5, 1, 1, 1]] , dim = 35 cell rep = phi[[],[5, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 35*X TII subcells: tii[49,1] := {26} tii[49,2] := {18} tii[49,3] := {25} tii[49,4] := {32} tii[49,5] := {6} tii[49,6] := {17} tii[49,7] := {24} tii[49,8] := {10} tii[49,9] := {19} tii[49,10] := {7} tii[49,11] := {0} tii[49,12] := {5} tii[49,13] := {16} tii[49,14] := {2} tii[49,15] := {9} tii[49,16] := {1} tii[49,17] := {4} tii[49,18] := {15} tii[49,19] := {8} tii[49,20] := {14} tii[49,21] := {34} tii[49,22] := {33} tii[49,23] := {31} tii[49,24] := {21} tii[49,25] := {12} tii[49,26] := {30} tii[49,27] := {23} tii[49,28] := {13} tii[49,29] := {3} tii[49,30] := {29} tii[49,31] := {22} tii[49,32] := {11} tii[49,33] := {28} tii[49,34] := {20} tii[49,35] := {27} cell#34 , |C| = 250 special orbit = [7, 3, 1, 1, 1, 1, 1, 1] special rep = [[1], [4, 1, 1, 1]] , dim = 160 cell rep = phi[[],[4, 2, 1, 1]]+phi[[1],[4, 1, 1, 1]] TII depth = 2 TII multiplicity polynomial = 90*X^2+70*X TII subcells: tii[39,1] := {79, 81} tii[39,2] := {149, 152} tii[39,3] := {222, 226} tii[39,4] := {57, 58} tii[39,5] := {128, 129} tii[39,6] := {24, 25} tii[39,7] := {208, 209} tii[39,8] := {53, 54} tii[39,9] := {89, 90} tii[39,10] := {171, 172} tii[39,11] := {51, 52} tii[39,12] := {130, 131} tii[39,13] := {78, 80} tii[39,14] := {148, 151} tii[39,15] := {41, 43} tii[39,16] := {221, 225} tii[39,17] := {73, 76} tii[39,18] := {16, 17} tii[39,19] := {126, 127} tii[39,20] := {206, 207} tii[39,21] := {91, 92} tii[39,22] := {38, 40} tii[39,23] := {20, 21} tii[39,24] := {169, 170} tii[39,25] := {147, 150} tii[39,26] := {220, 224} tii[39,27] := {112, 115} tii[39,28] := {72, 75} tii[39,29] := {204, 205} tii[39,30] := {219, 223} tii[39,31] := {36} tii[39,32] := {71} tii[39,33] := {42, 44} tii[39,34] := {74, 77} tii[39,35] := {107} tii[39,36] := {144} tii[39,37] := {145} tii[39,38] := {109} tii[39,39] := {6, 7} tii[39,40] := {114, 117} tii[39,41] := {22, 23} tii[39,42] := {143} tii[39,43] := {183} tii[39,44] := {185} tii[39,45] := {2, 3} tii[39,46] := {181} tii[39,47] := {212} tii[39,48] := {215} tii[39,49] := {236} tii[39,50] := {240} tii[39,51] := {249} tii[39,52] := {82} tii[39,53] := {0, 1} tii[39,54] := {111} tii[39,55] := {93, 94} tii[39,56] := {13, 15} tii[39,57] := {156} tii[39,58] := {159} tii[39,59] := {4, 5} tii[39,60] := {18, 19} tii[39,61] := {154} tii[39,62] := {189} tii[39,63] := {193} tii[39,64] := {229} tii[39,65] := {232} tii[39,66] := {103, 104} tii[39,67] := {244} tii[39,68] := {12, 14} tii[39,69] := {110} tii[39,70] := {155} tii[39,71] := {158} tii[39,72] := {191} tii[39,73] := {195} tii[39,74] := {97, 98} tii[39,75] := {218} tii[39,76] := {157} tii[39,77] := {160} tii[39,78] := {95, 96} tii[39,79] := {187} tii[39,80] := {146} tii[39,81] := {108} tii[39,82] := {142} tii[39,83] := {113, 116} tii[39,84] := {182} tii[39,85] := {184} tii[39,86] := {55, 56} tii[39,87] := {180} tii[39,88] := {211} tii[39,89] := {214} tii[39,90] := {235} tii[39,91] := {239} tii[39,92] := {120, 124} tii[39,93] := {248} tii[39,94] := {37, 39} tii[39,95] := {153} tii[39,96] := {188} tii[39,97] := {192} tii[39,98] := {228} tii[39,99] := {231} tii[39,100] := {136, 137} tii[39,101] := {85, 88} tii[39,102] := {243} tii[39,103] := {190} tii[39,104] := {194} tii[39,105] := {132, 133} tii[39,106] := {67, 68} tii[39,107] := {217} tii[39,108] := {28, 29} tii[39,109] := {186} tii[39,110] := {179} tii[39,111] := {210} tii[39,112] := {213} tii[39,113] := {234} tii[39,114] := {238} tii[39,115] := {162, 166} tii[39,116] := {246} tii[39,117] := {227} tii[39,118] := {230} tii[39,119] := {173, 174} tii[39,120] := {119, 123} tii[39,121] := {242} tii[39,122] := {101, 102} tii[39,123] := {216} tii[39,124] := {233} tii[39,125] := {237} tii[39,126] := {196, 200} tii[39,127] := {245} tii[39,128] := {161, 165} tii[39,129] := {241} tii[39,130] := {247} tii[39,131] := {121, 125} tii[39,132] := {69, 70} tii[39,133] := {164, 168} tii[39,134] := {32, 33} tii[39,135] := {199, 203} tii[39,136] := {10, 11} tii[39,137] := {47, 50} tii[39,138] := {138, 139} tii[39,139] := {34, 35} tii[39,140] := {65, 66} tii[39,141] := {177, 178} tii[39,142] := {8, 9} tii[39,143] := {26, 27} tii[39,144] := {46, 49} tii[39,145] := {134, 135} tii[39,146] := {30, 31} tii[39,147] := {59, 60} tii[39,148] := {45, 48} tii[39,149] := {163, 167} tii[39,150] := {105, 106} tii[39,151] := {198, 202} tii[39,152] := {61, 62} tii[39,153] := {84, 87} tii[39,154] := {175, 176} tii[39,155] := {63, 64} tii[39,156] := {99, 100} tii[39,157] := {83, 86} tii[39,158] := {197, 201} tii[39,159] := {140, 141} tii[39,160] := {118, 122} cell#35 , |C| = 35 special orbit = [9, 1, 1, 1, 1, 1, 1, 1] special rep = [[], [5, 1, 1, 1]] , dim = 35 cell rep = phi[[],[5, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 35*X TII subcells: tii[49,1] := {34} tii[49,2] := {25} tii[49,3] := {15} tii[49,4] := {6} tii[49,5] := {33} tii[49,6] := {24} tii[49,7] := {14} tii[49,8] := {32} tii[49,9] := {23} tii[49,10] := {31} tii[49,11] := {29} tii[49,12] := {21} tii[49,13] := {11} tii[49,14] := {28} tii[49,15] := {20} tii[49,16] := {27} tii[49,17] := {18} tii[49,18] := {12} tii[49,19] := {17} tii[49,20] := {8} tii[49,21] := {0} tii[49,22] := {5} tii[49,23] := {13} tii[49,24] := {22} tii[49,25] := {30} tii[49,26] := {3} tii[49,27] := {9} tii[49,28] := {19} tii[49,29] := {26} tii[49,30] := {2} tii[49,31] := {10} tii[49,32] := {16} tii[49,33] := {4} tii[49,34] := {7} tii[49,35] := {1} cell#36 , |C| = 35 special orbit = [7, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[], [4, 1, 1, 1, 1]] , dim = 35 cell rep = phi[[],[4, 1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 35*X TII subcells: tii[38,1] := {34} tii[38,2] := {19} tii[38,3] := {6} tii[38,4] := {33} tii[38,5] := {17} tii[38,6] := {31} tii[38,7] := {24} tii[38,8] := {12} tii[38,9] := {23} tii[38,10] := {9} tii[38,11] := {32} tii[38,12] := {16} tii[38,13] := {30} tii[38,14] := {21} tii[38,15] := {28} tii[38,16] := {0} tii[38,17] := {5} tii[38,18] := {15} tii[38,19] := {29} tii[38,20] := {2} tii[38,21] := {11} tii[38,22] := {22} tii[38,23] := {3} tii[38,24] := {8} tii[38,25] := {1} tii[38,26] := {4} tii[38,27] := {14} tii[38,28] := {27} tii[38,29] := {10} tii[38,30] := {20} tii[38,31] := {7} tii[38,32] := {13} tii[38,33] := {26} tii[38,34] := {18} tii[38,35] := {25}