TII subcells for the Spin(8,8) x PSO(14,2) block of Spin16 # cell#0 , |C| = 1 special orbit = [15, 1] special rep = [[], [8]] , dim = 1 cell rep = phi[[],[8]] TII depth = 1 TII multiplicity polynomial = X TII subcells: tii[60,1] := {0} cell#1 , |C| = 1 special orbit = [15, 1] special rep = [[], [8]] , dim = 1 cell rep = phi[[],[8]] TII depth = 1 TII multiplicity polynomial = X TII subcells: tii[60,1] := {0} cell#2 , |C| = 8 special orbit = [13, 3] special rep = [[1], [7]] , dim = 8 cell rep = phi[[1],[7]] TII depth = 1 TII multiplicity polynomial = 8*X TII subcells: tii[59,1] := {0} tii[59,2] := {1} tii[59,3] := {2} tii[59,4] := {3} tii[59,5] := {4} tii[59,6] := {5} tii[59,7] := {6} tii[59,8] := {7} cell#3 , |C| = 7 special orbit = [13, 1, 1, 1] special rep = [[], [7, 1]] , dim = 7 cell rep = phi[[],[7, 1]] TII depth = 1 TII multiplicity polynomial = 7*X TII subcells: tii[58,1] := {2} tii[58,2] := {0} tii[58,3] := {1} tii[58,4] := {3} tii[58,5] := {4} tii[58,6] := {5} tii[58,7] := {6} cell#4 , |C| = 7 special orbit = [13, 1, 1, 1] special rep = [[], [7, 1]] , dim = 7 cell rep = phi[[],[7, 1]] TII depth = 1 TII multiplicity polynomial = 7*X TII subcells: tii[58,1] := {2} tii[58,2] := {0} tii[58,3] := {1} tii[58,4] := {3} tii[58,5] := {4} tii[58,6] := {5} tii[58,7] := {6} cell#5 , |C| = 68 special orbit = [11, 3, 1, 1] special rep = [[1], [6, 1]] , dim = 48 cell rep = phi[[],[6, 2]]+phi[[1],[6, 1]] TII depth = 3 TII multiplicity polynomial = 20*X^2+28*X TII subcells: tii[56,1] := {6, 7} tii[56,2] := {20, 21} tii[56,3] := {37, 38} tii[56,4] := {52, 53} tii[56,5] := {63, 64} tii[56,6] := {0} tii[56,7] := {1, 2} tii[56,8] := {3} tii[56,9] := {4, 5} tii[56,10] := {8} tii[56,11] := {10, 11} tii[56,12] := {14} tii[56,13] := {16, 17} tii[56,14] := {22} tii[56,15] := {32} tii[56,16] := {33} tii[56,17] := {9} tii[56,18] := {15} tii[56,19] := {12, 13} tii[56,20] := {18, 19} tii[56,21] := {23} tii[56,22] := {25, 26} tii[56,23] := {31} tii[56,24] := {42} tii[56,25] := {43} tii[56,26] := {24} tii[56,27] := {34} tii[56,28] := {27, 28} tii[56,29] := {35, 36} tii[56,30] := {41} tii[56,31] := {50} tii[56,32] := {51} tii[56,33] := {44} tii[56,34] := {45, 46} tii[56,35] := {49} tii[56,36] := {57} tii[56,37] := {58} tii[56,38] := {56} tii[56,39] := {61} tii[56,40] := {62} tii[56,41] := {65} tii[56,42] := {66} tii[56,43] := {67} tii[56,44] := {29, 30} tii[56,45] := {39, 40} tii[56,46] := {47, 48} tii[56,47] := {54, 55} tii[56,48] := {59, 60} cell#6 , |C| = 7 special orbit = [13, 1, 1, 1] special rep = [[], [7, 1]] , dim = 7 cell rep = phi[[],[7, 1]] TII depth = 1 TII multiplicity polynomial = 7*X TII subcells: tii[58,1] := {6} tii[58,2] := {5} tii[58,3] := {4} tii[58,4] := {3} tii[58,5] := {2} tii[58,6] := {1} tii[58,7] := {0} cell#7 , |C| = 21 special orbit = [11, 1, 1, 1, 1, 1] special rep = [[], [6, 1, 1]] , dim = 21 cell rep = phi[[],[6, 1, 1]] TII depth = 1 TII multiplicity polynomial = 21*X TII subcells: tii[55,1] := {20} tii[55,2] := {14} tii[55,3] := {9} tii[55,4] := {5} tii[55,5] := {2} tii[55,6] := {19} tii[55,7] := {13} tii[55,8] := {8} tii[55,9] := {4} tii[55,10] := {18} tii[55,11] := {12} tii[55,12] := {7} tii[55,13] := {17} tii[55,14] := {11} tii[55,15] := {16} tii[55,16] := {0} tii[55,17] := {1} tii[55,18] := {3} tii[55,19] := {6} tii[55,20] := {10} tii[55,21] := {15}