TII subcells for the Spin(9,7) x PSO(11,5) block of Spin16 # cell#0 , |C| = 1 special orbit = [15, 1] special rep = [[], [8]] , dim = 1 cell rep = phi[[],[8]] TII depth = 1 TII multiplicity polynomial = X TII subcells: tii[60,1] := {0} cell#1 , |C| = 7 special orbit = [13, 1, 1, 1] special rep = [[], [7, 1]] , dim = 7 cell rep = phi[[],[7, 1]] TII depth = 1 TII multiplicity polynomial = 7*X TII subcells: tii[58,1] := {2} tii[58,2] := {0} tii[58,3] := {3} tii[58,4] := {1} tii[58,5] := {4} tii[58,6] := {5} tii[58,7] := {6} cell#2 , |C| = 8 special orbit = [13, 3] special rep = [[1], [7]] , dim = 8 cell rep = phi[[1],[7]] TII depth = 1 TII multiplicity polynomial = 8*X TII subcells: tii[59,1] := {1} tii[59,2] := {2} tii[59,3] := {0} tii[59,4] := {3} tii[59,5] := {4} tii[59,6] := {5} tii[59,7] := {6} tii[59,8] := {7} cell#3 , |C| = 28 special orbit = [11, 5] special rep = [[2], [6]] , dim = 28 cell rep = phi[[2],[6]] TII depth = 2 TII multiplicity polynomial = 28*X TII subcells: tii[57,1] := {1} tii[57,2] := {6} tii[57,3] := {15} tii[57,4] := {19} tii[57,5] := {24} tii[57,6] := {25} tii[57,7] := {26} tii[57,8] := {27} tii[57,9] := {0} tii[57,10] := {2} tii[57,11] := {4} tii[57,12] := {7} tii[57,13] := {10} tii[57,14] := {11} tii[57,15] := {3} tii[57,16] := {5} tii[57,17] := {8} tii[57,18] := {13} tii[57,19] := {14} tii[57,20] := {9} tii[57,21] := {12} tii[57,22] := {17} tii[57,23] := {18} tii[57,24] := {16} tii[57,25] := {20} tii[57,26] := {21} tii[57,27] := {22} tii[57,28] := {23} cell#4 , |C| = 7 special orbit = [13, 1, 1, 1] special rep = [[], [7, 1]] , dim = 7 cell rep = phi[[],[7, 1]] TII depth = 1 TII multiplicity polynomial = 7*X TII subcells: tii[58,1] := {6} tii[58,2] := {5} tii[58,3] := {3} tii[58,4] := {2} tii[58,5] := {0} tii[58,6] := {1} tii[58,7] := {4} cell#5 , |C| = 7 special orbit = [13, 1, 1, 1] special rep = [[], [7, 1]] , dim = 7 cell rep = phi[[],[7, 1]] TII depth = 1 TII multiplicity polynomial = 7*X TII subcells: tii[58,1] := {6} tii[58,2] := {5} tii[58,3] := {4} tii[58,4] := {3} tii[58,5] := {2} tii[58,6] := {1} tii[58,7] := {0} cell#6 , |C| = 68 special orbit = [11, 3, 1, 1] special rep = [[1], [6, 1]] , dim = 48 cell rep = phi[[],[6, 2]]+phi[[1],[6, 1]] TII depth = 3 TII multiplicity polynomial = 20*X^2+28*X TII subcells: tii[56,1] := {11, 67} tii[56,2] := {2, 64} tii[56,3] := {14, 59} tii[56,4] := {26, 57} tii[56,5] := {41, 56} tii[56,6] := {7} tii[56,7] := {4, 66} tii[56,8] := {16} tii[56,9] := {1, 65} tii[56,10] := {23} tii[56,11] := {5, 63} tii[56,12] := {31} tii[56,13] := {12, 60} tii[56,14] := {34} tii[56,15] := {43} tii[56,16] := {45} tii[56,17] := {8} tii[56,18] := {17} tii[56,19] := {0, 62} tii[56,20] := {3, 61} tii[56,21] := {22} tii[56,22] := {10, 54} tii[56,23] := {28} tii[56,24] := {36} tii[56,25] := {38} tii[56,26] := {9} tii[56,27] := {15} tii[56,28] := {6, 55} tii[56,29] := {13, 48} tii[56,30] := {19} tii[56,31] := {29} tii[56,32] := {30} tii[56,33] := {21} tii[56,34] := {20, 53} tii[56,35] := {27} tii[56,36] := {35} tii[56,37] := {37} tii[56,38] := {33} tii[56,39] := {42} tii[56,40] := {44} tii[56,41] := {49} tii[56,42] := {50} tii[56,43] := {58} tii[56,44] := {24, 52} tii[56,45] := {18, 47} tii[56,46] := {25, 40} tii[56,47] := {32, 46} tii[56,48] := {39, 51} cell#7 , |C| = 68 special orbit = [11, 3, 1, 1] special rep = [[1], [6, 1]] , dim = 48 cell rep = phi[[],[6, 2]]+phi[[1],[6, 1]] TII depth = 3 TII multiplicity polynomial = 20*X^2+28*X TII subcells: tii[56,1] := {36, 67} tii[56,2] := {19, 61} tii[56,3] := {16, 65} tii[56,4] := {32, 63} tii[56,5] := {47, 62} tii[56,6] := {8} tii[56,7] := {26, 66} tii[56,8] := {1} tii[56,9] := {17, 60} tii[56,10] := {4} tii[56,11] := {6, 53} tii[56,12] := {12} tii[56,13] := {14, 46} tii[56,14] := {21} tii[56,15] := {30} tii[56,16] := {31} tii[56,17] := {0} tii[56,18] := {2} tii[56,19] := {11, 54} tii[56,20] := {3, 52} tii[56,21] := {5} tii[56,22] := {10, 45} tii[56,23] := {13} tii[56,24] := {24} tii[56,25] := {25} tii[56,26] := {9} tii[56,27] := {18} tii[56,28] := {7, 59} tii[56,29] := {15, 51} tii[56,30] := {22} tii[56,31] := {34} tii[56,32] := {35} tii[56,33] := {27} tii[56,34] := {23, 58} tii[56,35] := {33} tii[56,36] := {41} tii[56,37] := {42} tii[56,38] := {40} tii[56,39] := {48} tii[56,40] := {49} tii[56,41] := {55} tii[56,42] := {56} tii[56,43] := {64} tii[56,44] := {28, 39} tii[56,45] := {20, 37} tii[56,46] := {29, 44} tii[56,47] := {38, 50} tii[56,48] := {43, 57} cell#8 , |C| = 21 special orbit = [11, 1, 1, 1, 1, 1] special rep = [[], [6, 1, 1]] , dim = 21 cell rep = phi[[],[6, 1, 1]] TII depth = 1 TII multiplicity polynomial = 21*X TII subcells: tii[55,1] := {15} tii[55,2] := {11} tii[55,3] := {16} tii[55,4] := {12} tii[55,5] := {17} tii[55,6] := {6} tii[55,7] := {9} tii[55,8] := {7} tii[55,9] := {10} tii[55,10] := {3} tii[55,11] := {2} tii[55,12] := {5} tii[55,13] := {0} tii[55,14] := {1} tii[55,15] := {4} tii[55,16] := {20} tii[55,17] := {19} tii[55,18] := {14} tii[55,19] := {8} tii[55,20] := {13} tii[55,21] := {18} cell#9 , |C| = 168 special orbit = [9, 5, 1, 1] special rep = [[2], [5, 1]] , dim = 140 cell rep = phi[[],[5, 3]]+phi[[2],[5, 1]] TII depth = 3 TII multiplicity polynomial = 28*X^2+112*X TII subcells: tii[53,1] := {29, 146} tii[53,2] := {72, 154} tii[53,3] := {133, 156} tii[53,4] := {162} tii[53,5] := {8} tii[53,6] := {30} tii[53,7] := {4, 112} tii[53,8] := {20, 108} tii[53,9] := {52} tii[53,10] := {57, 98} tii[53,11] := {95} tii[53,12] := {96} tii[53,13] := {122} tii[53,14] := {126} tii[53,15] := {18} tii[53,16] := {14, 131} tii[53,17] := {47} tii[53,18] := {9} tii[53,19] := {73} tii[53,20] := {7, 114} tii[53,21] := {17} tii[53,22] := {35, 128} tii[53,23] := {76, 119} tii[53,24] := {13, 91} tii[53,25] := {116} tii[53,26] := {117} tii[53,27] := {23} tii[53,28] := {43} tii[53,29] := {138} tii[53,30] := {46} tii[53,31] := {141} tii[53,32] := {66} tii[53,33] := {53, 143} tii[53,34] := {93} tii[53,35] := {48} tii[53,36] := {40, 132} tii[53,37] := {97, 136} tii[53,38] := {134} tii[53,39] := {135} tii[53,40] := {56} tii[53,41] := {80} tii[53,42] := {151} tii[53,43] := {85} tii[53,44] := {153} tii[53,45] := {115} tii[53,46] := {118, 149} tii[53,47] := {147} tii[53,48] := {148} tii[53,49] := {94} tii[53,50] := {121} tii[53,51] := {159} tii[53,52] := {125} tii[53,53] := {160} tii[53,54] := {157} tii[53,55] := {158} tii[53,56] := {150} tii[53,57] := {163} tii[53,58] := {152} tii[53,59] := {164} tii[53,60] := {165} tii[53,61] := {166} tii[53,62] := {167} tii[53,63] := {1} tii[53,64] := {6} tii[53,65] := {11} tii[53,66] := {26} tii[53,67] := {28} tii[53,68] := {2} tii[53,69] := {5} tii[53,70] := {0, 92} tii[53,71] := {16} tii[53,72] := {3, 71} tii[53,73] := {10} tii[53,74] := {22} tii[53,75] := {25} tii[53,76] := {42} tii[53,77] := {27} tii[53,78] := {45} tii[53,79] := {15} tii[53,80] := {12, 90} tii[53,81] := {21} tii[53,82] := {37} tii[53,83] := {41} tii[53,84] := {59} tii[53,85] := {44} tii[53,86] := {63} tii[53,87] := {36} tii[53,88] := {77} tii[53,89] := {58} tii[53,90] := {82} tii[53,91] := {62} tii[53,92] := {81} tii[53,93] := {86} tii[53,94] := {111} tii[53,95] := {32} tii[53,96] := {39} tii[53,97] := {61} tii[53,98] := {65} tii[53,99] := {31} tii[53,100] := {24, 113} tii[53,101] := {55} tii[53,102] := {38} tii[53,103] := {60} tii[53,104] := {79} tii[53,105] := {64} tii[53,106] := {84} tii[53,107] := {54} tii[53,108] := {99} tii[53,109] := {78} tii[53,110] := {103} tii[53,111] := {83} tii[53,112] := {102} tii[53,113] := {106} tii[53,114] := {34, 69} tii[53,115] := {130} tii[53,116] := {75} tii[53,117] := {101} tii[53,118] := {105} tii[53,119] := {74} tii[53,120] := {120} tii[53,121] := {100} tii[53,122] := {124} tii[53,123] := {104} tii[53,124] := {123} tii[53,125] := {127} tii[53,126] := {70, 110} tii[53,127] := {145} tii[53,128] := {137} tii[53,129] := {140} tii[53,130] := {139} tii[53,131] := {142} tii[53,132] := {107, 144} tii[53,133] := {155} tii[53,134] := {161} tii[53,135] := {19, 50} tii[53,136] := {33, 68} tii[53,137] := {49, 88} tii[53,138] := {51, 89} tii[53,139] := {67, 109} tii[53,140] := {87, 129} cell#10 , |C| = 21 special orbit = [11, 1, 1, 1, 1, 1] special rep = [[], [6, 1, 1]] , dim = 21 cell rep = phi[[],[6, 1, 1]] TII depth = 1 TII multiplicity polynomial = 21*X TII subcells: tii[55,1] := {10} tii[55,2] := {7} tii[55,3] := {13} tii[55,4] := {16} tii[55,5] := {18} tii[55,6] := {1} tii[55,7] := {6} tii[55,8] := {12} tii[55,9] := {15} tii[55,10] := {0} tii[55,11] := {5} tii[55,12] := {11} tii[55,13] := {3} tii[55,14] := {8} tii[55,15] := {2} tii[55,16] := {20} tii[55,17] := {19} tii[55,18] := {17} tii[55,19] := {14} tii[55,20] := {9} tii[55,21] := {4} cell#11 , |C| = 184 special orbit = [9, 3, 1, 1, 1, 1] special rep = [[1], [5, 1, 1]] , dim = 120 cell rep = phi[[],[5, 2, 1]]+phi[[1],[5, 1, 1]] TII depth = 3 TII multiplicity polynomial = 64*X^2+56*X TII subcells: tii[50,1] := {12, 161} tii[50,2] := {35, 144} tii[50,3] := {61, 138} tii[50,4] := {97, 133} tii[50,5] := {5, 173} tii[50,6] := {21, 126} tii[50,7] := {1, 168} tii[50,8] := {43, 122} tii[50,9] := {3, 176} tii[50,10] := {80, 115} tii[50,11] := {8, 181} tii[50,12] := {34, 143} tii[50,13] := {60, 137} tii[50,14] := {20, 154} tii[50,15] := {96, 132} tii[50,16] := {31, 164} tii[50,17] := {77, 153} tii[50,18] := {114, 147} tii[50,19] := {59, 163} tii[50,20] := {131, 162} tii[50,21] := {16} tii[50,22] := {28} tii[50,23] := {4, 146} tii[50,24] := {42} tii[50,25] := {10, 130} tii[50,26] := {18, 112} tii[50,27] := {58} tii[50,28] := {75} tii[50,29] := {76} tii[50,30] := {0, 157} tii[50,31] := {24} tii[50,32] := {2, 166} tii[50,33] := {37} tii[50,34] := {23, 129} tii[50,35] := {6, 175} tii[50,36] := {33, 110} tii[50,37] := {46} tii[50,38] := {67} tii[50,39] := {69} tii[50,40] := {7, 155} tii[50,41] := {52} tii[50,42] := {14, 165} tii[50,43] := {48, 128} tii[50,44] := {64} tii[50,45] := {84} tii[50,46] := {87} tii[50,47] := {26, 149} tii[50,48] := {79} tii[50,49] := {100} tii[50,50] := {103} tii[50,51] := {118} tii[50,52] := {121} tii[50,53] := {142} tii[50,54] := {13} tii[50,55] := {22} tii[50,56] := {11, 111} tii[50,57] := {30} tii[50,58] := {19, 93} tii[50,59] := {49} tii[50,60] := {50} tii[50,61] := {9, 139} tii[50,62] := {36} tii[50,63] := {32, 109} tii[50,64] := {17, 150} tii[50,65] := {45} tii[50,66] := {66} tii[50,67] := {68} tii[50,68] := {29, 134} tii[50,69] := {62} tii[50,70] := {82} tii[50,71] := {85} tii[50,72] := {101} tii[50,73] := {104} tii[50,74] := {25, 183} tii[50,75] := {125} tii[50,76] := {51} tii[50,77] := {63} tii[50,78] := {47, 127} tii[50,79] := {83} tii[50,80] := {86} tii[50,81] := {44, 148} tii[50,82] := {78} tii[50,83] := {99} tii[50,84] := {102} tii[50,85] := {117} tii[50,86] := {120} tii[50,87] := {54, 179} tii[50,88] := {141} tii[50,89] := {95} tii[50,90] := {116} tii[50,91] := {119} tii[50,92] := {135} tii[50,93] := {136} tii[50,94] := {88, 178} tii[50,95] := {156} tii[50,96] := {151} tii[50,97] := {152} tii[50,98] := {113, 177} tii[50,99] := {167} tii[50,100] := {174} tii[50,101] := {39, 94} tii[50,102] := {15, 182} tii[50,103] := {56, 92} tii[50,104] := {27, 180} tii[50,105] := {74, 108} tii[50,106] := {41, 171} tii[50,107] := {90, 124} tii[50,108] := {57, 159} tii[50,109] := {40, 72} tii[50,110] := {38, 172} tii[50,111] := {55, 91} tii[50,112] := {53, 160} tii[50,113] := {70, 106} tii[50,114] := {65, 145} tii[50,115] := {73, 107} tii[50,116] := {71, 170} tii[50,117] := {89, 123} tii[50,118] := {81, 158} tii[50,119] := {105, 140} tii[50,120] := {98, 169} cell#12 , |C| = 68 special orbit = [11, 3, 1, 1] special rep = [[1], [6, 1]] , dim = 48 cell rep = phi[[],[6, 2]]+phi[[1],[6, 1]] TII depth = 3 TII multiplicity polynomial = 20*X^2+28*X TII subcells: tii[56,1] := {24, 67} tii[56,2] := {17, 64} tii[56,3] := {5, 47} tii[56,4] := {20, 21} tii[56,5] := {50, 51} tii[56,6] := {36} tii[56,7] := {13, 66} tii[56,8] := {45} tii[56,9] := {6, 65} tii[56,10] := {35} tii[56,11] := {1, 59} tii[56,12] := {46} tii[56,13] := {4, 49} tii[56,14] := {53} tii[56,15] := {62} tii[56,16] := {63} tii[56,17] := {31} tii[56,18] := {23} tii[56,19] := {8, 58} tii[56,20] := {2, 48} tii[56,21] := {32} tii[56,22] := {7, 34} tii[56,23] := {40} tii[56,24] := {54} tii[56,25] := {56} tii[56,26] := {12} tii[56,27] := {18} tii[56,28] := {0, 33} tii[56,29] := {3, 22} tii[56,30] := {28} tii[56,31] := {42} tii[56,32] := {44} tii[56,33] := {9} tii[56,34] := {10, 11} tii[56,35] := {16} tii[56,36] := {29} tii[56,37] := {30} tii[56,38] := {27} tii[56,39] := {41} tii[56,40] := {43} tii[56,41] := {55} tii[56,42] := {57} tii[56,43] := {61} tii[56,44] := {15, 60} tii[56,45] := {19, 52} tii[56,46] := {14, 39} tii[56,47] := {25, 26} tii[56,48] := {37, 38} cell#13 , |C| = 68 special orbit = [11, 3, 1, 1] special rep = [[1], [6, 1]] , dim = 48 cell rep = phi[[],[6, 2]]+phi[[1],[6, 1]] TII depth = 3 TII multiplicity polynomial = 20*X^2+28*X TII subcells: tii[56,1] := {19, 67} tii[56,2] := {15, 64} tii[56,3] := {18, 61} tii[56,4] := {17, 55} tii[56,5] := {16, 45} tii[56,6] := {26} tii[56,7] := {14, 66} tii[56,8] := {29} tii[56,9] := {9, 65} tii[56,10] := {36} tii[56,11] := {5, 62} tii[56,12] := {43} tii[56,13] := {2, 59} tii[56,14] := {46} tii[56,15] := {51} tii[56,16] := {52} tii[56,17] := {21} tii[56,18] := {28} tii[56,19] := {10, 63} tii[56,20] := {8, 60} tii[56,21] := {35} tii[56,22] := {4, 57} tii[56,23] := {40} tii[56,24] := {47} tii[56,25] := {48} tii[56,26] := {20} tii[56,27] := {27} tii[56,28] := {13, 58} tii[56,29] := {7, 54} tii[56,30] := {34} tii[56,31] := {41} tii[56,32] := {42} tii[56,33] := {25} tii[56,34] := {12, 50} tii[56,35] := {30} tii[56,36] := {37} tii[56,37] := {38} tii[56,38] := {22} tii[56,39] := {31} tii[56,40] := {32} tii[56,41] := {23} tii[56,42] := {24} tii[56,43] := {33} tii[56,44] := {0, 56} tii[56,45] := {1, 53} tii[56,46] := {3, 49} tii[56,47] := {6, 44} tii[56,48] := {11, 39} cell#14 , |C| = 168 special orbit = [9, 5, 1, 1] special rep = [[2], [5, 1]] , dim = 140 cell rep = phi[[],[5, 3]]+phi[[2],[5, 1]] TII depth = 3 TII multiplicity polynomial = 28*X^2+112*X TII subcells: tii[53,1] := {15, 109} tii[53,2] := {77, 78} tii[53,3] := {138, 139} tii[53,4] := {160} tii[53,5] := {57} tii[53,6] := {101} tii[53,7] := {3, 63} tii[53,8] := {18, 19} tii[53,9] := {127} tii[53,10] := {65, 66} tii[53,11] := {152} tii[53,12] := {154} tii[53,13] := {161} tii[53,14] := {163} tii[53,15] := {34} tii[53,16] := {5, 88} tii[53,17] := {75} tii[53,18] := {21} tii[53,19] := {112} tii[53,20] := {1, 64} tii[53,21] := {35} tii[53,22] := {26, 27} tii[53,23] := {80, 81} tii[53,24] := {4, 39} tii[53,25] := {142} tii[53,26] := {144} tii[53,27] := {52} tii[53,28] := {82} tii[53,29] := {157} tii[53,30] := {84} tii[53,31] := {159} tii[53,32] := {48} tii[53,33] := {50, 51} tii[53,34] := {89} tii[53,35] := {25} tii[53,36] := {30, 31} tii[53,37] := {103, 104} tii[53,38] := {128} tii[53,39] := {129} tii[53,40] := {45} tii[53,41] := {72} tii[53,42] := {147} tii[53,43] := {74} tii[53,44] := {150} tii[53,45] := {111} tii[53,46] := {124, 125} tii[53,47] := {141} tii[53,48] := {143} tii[53,49] := {90} tii[53,50] := {115} tii[53,51] := {156} tii[53,52] := {120} tii[53,53] := {158} tii[53,54] := {153} tii[53,55] := {155} tii[53,56] := {146} tii[53,57] := {162} tii[53,58] := {149} tii[53,59] := {164} tii[53,60] := {165} tii[53,61] := {166} tii[53,62] := {167} tii[53,63] := {40} tii[53,64] := {58} tii[53,65] := {79} tii[53,66] := {105} tii[53,67] := {106} tii[53,68] := {9} tii[53,69] := {16} tii[53,70] := {0, 38} tii[53,71] := {76} tii[53,72] := {2, 20} tii[53,73] := {29} tii[53,74] := {92} tii[53,75] := {54} tii[53,76] := {117} tii[53,77] := {56} tii[53,78] := {122} tii[53,79] := {6} tii[53,80] := {7, 8} tii[53,81] := {12} tii[53,82] := {113} tii[53,83] := {32} tii[53,84] := {132} tii[53,85] := {33} tii[53,86] := {136} tii[53,87] := {28} tii[53,88] := {145} tii[53,89] := {53} tii[53,90] := {148} tii[53,91] := {55} tii[53,92] := {83} tii[53,93] := {85} tii[53,94] := {102} tii[53,95] := {49} tii[53,96] := {70} tii[53,97] := {95} tii[53,98] := {99} tii[53,99] := {11} tii[53,100] := {13, 14} tii[53,101] := {91} tii[53,102] := {24} tii[53,103] := {46} tii[53,104] := {116} tii[53,105] := {47} tii[53,106] := {121} tii[53,107] := {44} tii[53,108] := {131} tii[53,109] := {71} tii[53,110] := {135} tii[53,111] := {73} tii[53,112] := {96} tii[53,113] := {100} tii[53,114] := {17, 67} tii[53,115] := {110} tii[53,116] := {69} tii[53,117] := {94} tii[53,118] := {98} tii[53,119] := {68} tii[53,120] := {114} tii[53,121] := {93} tii[53,122] := {119} tii[53,123] := {97} tii[53,124] := {118} tii[53,125] := {123} tii[53,126] := {61, 62} tii[53,127] := {126} tii[53,128] := {130} tii[53,129] := {134} tii[53,130] := {133} tii[53,131] := {137} tii[53,132] := {107, 108} tii[53,133] := {140} tii[53,134] := {151} tii[53,135] := {10, 43} tii[53,136] := {22, 23} tii[53,137] := {41, 42} tii[53,138] := {36, 37} tii[53,139] := {59, 60} tii[53,140] := {86, 87} cell#15 , |C| = 112 special orbit = [9, 3, 3, 1] special rep = [[1], [5, 2]] , dim = 112 cell rep = phi[[1],[5, 2]] TII depth = 4 TII multiplicity polynomial = 112*X TII subcells: tii[52,1] := {103} tii[52,2] := {107} tii[52,3] := {109} tii[52,4] := {111} tii[52,5] := {1} tii[52,6] := {8} tii[52,7] := {82} tii[52,8] := {20} tii[52,9] := {78} tii[52,10] := {45} tii[52,11] := {72} tii[52,12] := {4} tii[52,13] := {94} tii[52,14] := {16} tii[52,15] := {11} tii[52,16] := {30} tii[52,17] := {84} tii[52,18] := {18} tii[52,19] := {91} tii[52,20] := {57} tii[52,21] := {86} tii[52,22] := {68} tii[52,23] := {22} tii[52,24] := {35} tii[52,25] := {37} tii[52,26] := {26} tii[52,27] := {100} tii[52,28] := {42} tii[52,29] := {38} tii[52,30] := {71} tii[52,31] := {95} tii[52,32] := {97} tii[52,33] := {44} tii[52,34] := {59} tii[52,35] := {62} tii[52,36] := {55} tii[52,37] := {104} tii[52,38] := {85} tii[52,39] := {70} tii[52,40] := {87} tii[52,41] := {89} tii[52,42] := {96} tii[52,43] := {105} tii[52,44] := {106} tii[52,45] := {0} tii[52,46] := {2} tii[52,47] := {6} tii[52,48] := {5} tii[52,49] := {9} tii[52,50] := {69} tii[52,51] := {3} tii[52,52] := {54} tii[52,53] := {7} tii[52,54] := {13} tii[52,55] := {24} tii[52,56] := {25} tii[52,57] := {17} tii[52,58] := {67} tii[52,59] := {14} tii[52,60] := {21} tii[52,61] := {34} tii[52,62] := {36} tii[52,63] := {31} tii[52,64] := {46} tii[52,65] := {48} tii[52,66] := {60} tii[52,67] := {63} tii[52,68] := {81} tii[52,69] := {10} tii[52,70] := {15} tii[52,71] := {27} tii[52,72] := {23} tii[52,73] := {83} tii[52,74] := {32} tii[52,75] := {47} tii[52,76] := {49} tii[52,77] := {43} tii[52,78] := {58} tii[52,79] := {61} tii[52,80] := {74} tii[52,81] := {76} tii[52,82] := {52} tii[52,83] := {93} tii[52,84] := {33} tii[52,85] := {56} tii[52,86] := {73} tii[52,87] := {75} tii[52,88] := {88} tii[52,89] := {90} tii[52,90] := {80} tii[52,91] := {102} tii[52,92] := {98} tii[52,93] := {99} tii[52,94] := {108} tii[52,95] := {101} tii[52,96] := {110} tii[52,97] := {12} tii[52,98] := {40} tii[52,99] := {19} tii[52,100] := {51} tii[52,101] := {28} tii[52,102] := {65} tii[52,103] := {39} tii[52,104] := {29} tii[52,105] := {41} tii[52,106] := {66} tii[52,107] := {50} tii[52,108] := {79} tii[52,109] := {53} tii[52,110] := {64} tii[52,111] := {92} tii[52,112] := {77} cell#16 , |C| = 112 special orbit = [9, 3, 3, 1] special rep = [[1], [5, 2]] , dim = 112 cell rep = phi[[1],[5, 2]] TII depth = 4 TII multiplicity polynomial = 112*X TII subcells: tii[52,1] := {102} tii[52,2] := {63} tii[52,3] := {105} tii[52,4] := {111} tii[52,5] := {37} tii[52,6] := {5} tii[52,7] := {74} tii[52,8] := {30} tii[52,9] := {29} tii[52,10] := {78} tii[52,11] := {77} tii[52,12] := {59} tii[52,13] := {93} tii[52,14] := {3} tii[52,15] := {36} tii[52,16] := {22} tii[52,17] := {75} tii[52,18] := {51} tii[52,19] := {21} tii[52,20] := {66} tii[52,21] := {65} tii[52,22] := {54} tii[52,23] := {69} tii[52,24] := {88} tii[52,25] := {90} tii[52,26] := {10} tii[52,27] := {41} tii[52,28] := {42} tii[52,29] := {19} tii[52,30] := {85} tii[52,31] := {23} tii[52,32] := {84} tii[52,33] := {32} tii[52,34] := {56} tii[52,35] := {58} tii[52,36] := {64} tii[52,37] := {98} tii[52,38] := {99} tii[52,39] := {76} tii[52,40] := {94} tii[52,41] := {96} tii[52,42] := {106} tii[52,43] := {108} tii[52,44] := {109} tii[52,45] := {18} tii[52,46] := {7} tii[52,47] := {16} tii[52,48] := {17} tii[52,49] := {28} tii[52,50] := {52} tii[52,51] := {1} tii[52,52] := {33} tii[52,53] := {4} tii[52,54] := {48} tii[52,55] := {71} tii[52,56] := {73} tii[52,57] := {12} tii[52,58] := {14} tii[52,59] := {15} tii[52,60] := {27} tii[52,61] := {49} tii[52,62] := {50} tii[52,63] := {47} tii[52,64] := {70} tii[52,65] := {72} tii[52,66] := {89} tii[52,67] := {91} tii[52,68] := {100} tii[52,69] := {0} tii[52,70] := {2} tii[52,71] := {6} tii[52,72] := {9} tii[52,73] := {8} tii[52,74] := {13} tii[52,75] := {34} tii[52,76] := {35} tii[52,77] := {31} tii[52,78] := {55} tii[52,79] := {57} tii[52,80] := {80} tii[52,81] := {82} tii[52,82] := {83} tii[52,83] := {92} tii[52,84] := {24} tii[52,85] := {53} tii[52,86] := {79} tii[52,87] := {81} tii[52,88] := {95} tii[52,89] := {97} tii[52,90] := {45} tii[52,91] := {101} tii[52,92] := {103} tii[52,93] := {104} tii[52,94] := {107} tii[52,95] := {86} tii[52,96] := {110} tii[52,97] := {40} tii[52,98] := {62} tii[52,99] := {20} tii[52,100] := {38} tii[52,101] := {39} tii[52,102] := {60} tii[52,103] := {61} tii[52,104] := {11} tii[52,105] := {26} tii[52,106] := {25} tii[52,107] := {44} tii[52,108] := {43} tii[52,109] := {46} tii[52,110] := {68} tii[52,111] := {67} tii[52,112] := {87} cell#17 , |C| = 112 special orbit = [9, 3, 3, 1] special rep = [[1], [5, 2]] , dim = 112 cell rep = phi[[1],[5, 2]] TII depth = 4 TII multiplicity polynomial = 112*X TII subcells: tii[52,1] := {111} tii[52,2] := {101} tii[52,3] := {105} tii[52,4] := {109} tii[52,5] := {9} tii[52,6] := {11} tii[52,7] := {106} tii[52,8] := {26} tii[52,9] := {92} tii[52,10] := {55} tii[52,11] := {88} tii[52,12] := {19} tii[52,13] := {110} tii[52,14] := {4} tii[52,15] := {32} tii[52,16] := {15} tii[52,17] := {107} tii[52,18] := {48} tii[52,19] := {79} tii[52,20] := {41} tii[52,21] := {70} tii[52,22] := {104} tii[52,23] := {53} tii[52,24] := {72} tii[52,25] := {76} tii[52,26] := {10} tii[52,27] := {91} tii[52,28] := {25} tii[52,29] := {21} tii[52,30] := {54} tii[52,31] := {84} tii[52,32] := {87} tii[52,33] := {28} tii[52,34] := {43} tii[52,35] := {46} tii[52,36] := {37} tii[52,37] := {98} tii[52,38] := {69} tii[52,39] := {52} tii[52,40] := {71} tii[52,41] := {75} tii[52,42] := {86} tii[52,43] := {99} tii[52,44] := {100} tii[52,45] := {5} tii[52,46] := {0} tii[52,47] := {2} tii[52,48] := {20} tii[52,49] := {33} tii[52,50] := {102} tii[52,51] := {6} tii[52,52] := {97} tii[52,53] := {8} tii[52,54] := {40} tii[52,55] := {58} tii[52,56] := {62} tii[52,57] := {22} tii[52,58] := {85} tii[52,59] := {18} tii[52,60] := {29} tii[52,61] := {44} tii[52,62] := {47} tii[52,63] := {39} tii[52,64] := {57} tii[52,65] := {61} tii[52,66] := {74} tii[52,67] := {78} tii[52,68] := {96} tii[52,69] := {1} tii[52,70] := {3} tii[52,71] := {12} tii[52,72] := {7} tii[52,73] := {68} tii[52,74] := {16} tii[52,75] := {30} tii[52,76] := {31} tii[52,77] := {27} tii[52,78] := {42} tii[52,79] := {45} tii[52,80] := {59} tii[52,81] := {63} tii[52,82] := {94} tii[52,83] := {83} tii[52,84] := {17} tii[52,85] := {38} tii[52,86] := {56} tii[52,87] := {60} tii[52,88] := {73} tii[52,89] := {77} tii[52,90] := {66} tii[52,91] := {95} tii[52,92] := {89} tii[52,93] := {90} tii[52,94] := {103} tii[52,95] := {93} tii[52,96] := {108} tii[52,97] := {13} tii[52,98] := {82} tii[52,99] := {24} tii[52,100] := {67} tii[52,101] := {36} tii[52,102] := {81} tii[52,103] := {50} tii[52,104] := {14} tii[52,105] := {23} tii[52,106] := {51} tii[52,107] := {34} tii[52,108] := {65} tii[52,109] := {35} tii[52,110] := {49} tii[52,111] := {80} tii[52,112] := {64} cell#18 , |C| = 112 special orbit = [9, 3, 3, 1] special rep = [[1], [5, 2]] , dim = 112 cell rep = phi[[1],[5, 2]] TII depth = 4 TII multiplicity polynomial = 112*X TII subcells: tii[52,1] := {111} tii[52,2] := {105} tii[52,3] := {67} tii[52,4] := {102} tii[52,5] := {66} tii[52,6] := {54} tii[52,7] := {108} tii[52,8] := {21} tii[52,9] := {99} tii[52,10] := {71} tii[52,11] := {70} tii[52,12] := {87} tii[52,13] := {110} tii[52,14] := {31} tii[52,15] := {94} tii[52,16] := {7} tii[52,17] := {109} tii[52,18] := {86} tii[52,19] := {88} tii[52,20] := {48} tii[52,21] := {47} tii[52,22] := {107} tii[52,23] := {95} tii[52,24] := {103} tii[52,25] := {104} tii[52,26] := {53} tii[52,27] := {98} tii[52,28] := {1} tii[52,29] := {42} tii[52,30] := {24} tii[52,31] := {89} tii[52,32] := {23} tii[52,33] := {55} tii[52,34] := {79} tii[52,35] := {83} tii[52,36] := {6} tii[52,37] := {45} tii[52,38] := {46} tii[52,39] := {14} tii[52,40] := {35} tii[52,41] := {38} tii[52,42] := {68} tii[52,43] := {78} tii[52,44] := {82} tii[52,45] := {44} tii[52,46] := {22} tii[52,47] := {9} tii[52,48] := {76} tii[52,49] := {65} tii[52,50] := {106} tii[52,51] := {32} tii[52,52] := {100} tii[52,53] := {16} tii[52,54] := {77} tii[52,55] := {96} tii[52,56] := {97} tii[52,57] := {43} tii[52,58] := {90} tii[52,59] := {8} tii[52,60] := {56} tii[52,61] := {80} tii[52,62] := {84} tii[52,63] := {34} tii[52,64] := {58} tii[52,65] := {62} tii[52,66] := {81} tii[52,67] := {85} tii[52,68] := {93} tii[52,69] := {13} tii[52,70] := {5} tii[52,71] := {20} tii[52,72] := {2} tii[52,73] := {69} tii[52,74] := {33} tii[52,75] := {57} tii[52,76] := {61} tii[52,77] := {15} tii[52,78] := {36} tii[52,79] := {39} tii[52,80] := {60} tii[52,81] := {64} tii[52,82] := {101} tii[52,83] := {75} tii[52,84] := {0} tii[52,85] := {4} tii[52,86] := {17} tii[52,87] := {18} tii[52,88] := {37} tii[52,89] := {40} tii[52,90] := {72} tii[52,91] := {52} tii[52,92] := {59} tii[52,93] := {63} tii[52,94] := {74} tii[52,95] := {25} tii[52,96] := {92} tii[52,97] := {30} tii[52,98] := {91} tii[52,99] := {41} tii[52,100] := {73} tii[52,101] := {29} tii[52,102] := {50} tii[52,103] := {51} tii[52,104] := {19} tii[52,105] := {12} tii[52,106] := {49} tii[52,107] := {28} tii[52,108] := {27} tii[52,109] := {3} tii[52,110] := {11} tii[52,111] := {10} tii[52,112] := {26} cell#19 , |C| = 21 special orbit = [11, 1, 1, 1, 1, 1] special rep = [[], [6, 1, 1]] , dim = 21 cell rep = phi[[],[6, 1, 1]] TII depth = 1 TII multiplicity polynomial = 21*X TII subcells: tii[55,1] := {20} tii[55,2] := {19} tii[55,3] := {18} tii[55,4] := {16} tii[55,5] := {14} tii[55,6] := {17} tii[55,7] := {15} tii[55,8] := {13} tii[55,9] := {11} tii[55,10] := {12} tii[55,11] := {9} tii[55,12] := {8} tii[55,13] := {6} tii[55,14] := {3} tii[55,15] := {5} tii[55,16] := {10} tii[55,17] := {7} tii[55,18] := {1} tii[55,19] := {0} tii[55,20] := {2} tii[55,21] := {4} cell#20 , |C| = 184 special orbit = [9, 3, 1, 1, 1, 1] special rep = [[1], [5, 1, 1]] , dim = 120 cell rep = phi[[],[5, 2, 1]]+phi[[1],[5, 1, 1]] TII depth = 3 TII multiplicity polynomial = 64*X^2+56*X TII subcells: tii[50,1] := {62, 182} tii[50,2] := {30, 176} tii[50,3] := {63, 159} tii[50,4] := {112, 157} tii[50,5] := {41, 183} tii[50,6] := {16, 169} tii[50,7] := {24, 181} tii[50,8] := {44, 144} tii[50,9] := {15, 179} tii[50,10] := {87, 136} tii[50,11] := {27, 175} tii[50,12] := {6, 173} tii[50,13] := {25, 122} tii[50,14] := {3, 165} tii[50,15] := {68, 113} tii[50,16] := {8, 155} tii[50,17] := {43, 132} tii[50,18] := {86, 137} tii[50,19] := {36, 107} tii[50,20] := {110, 153} tii[50,21] := {52} tii[50,22] := {73} tii[50,23] := {42, 180} tii[50,24] := {98} tii[50,25] := {29, 177} tii[50,26] := {47, 172} tii[50,27] := {111} tii[50,28] := {139} tii[50,29] := {142} tii[50,30] := {11, 178} tii[50,31] := {53} tii[50,32] := {5, 174} tii[50,33] := {74} tii[50,34] := {21, 170} tii[50,35] := {13, 167} tii[50,36] := {37, 164} tii[50,37] := {85} tii[50,38] := {115} tii[50,39] := {119} tii[50,40] := {1, 166} tii[50,41] := {55} tii[50,42] := {4, 156} tii[50,43] := {48, 152} tii[50,44] := {67} tii[50,45] := {91} tii[50,46] := {96} tii[50,47] := {12, 135} tii[50,48] := {84} tii[50,49] := {114} tii[50,50] := {118} tii[50,51] := {140} tii[50,52] := {143} tii[50,53] := {162} tii[50,54] := {31} tii[50,55] := {54} tii[50,56] := {9, 158} tii[50,57] := {66} tii[50,58] := {20, 151} tii[50,59] := {90} tii[50,60] := {95} tii[50,61] := {0, 154} tii[50,62] := {32} tii[50,63] := {28, 130} tii[50,64] := {2, 133} tii[50,65] := {46} tii[50,66] := {70} tii[50,67] := {72} tii[50,68] := {7, 109} tii[50,69] := {65} tii[50,70] := {89} tii[50,71] := {94} tii[50,72] := {117} tii[50,73] := {121} tii[50,74] := {57, 171} tii[50,75] := {150} tii[50,76] := {17} tii[50,77] := {26} tii[50,78] := {14, 104} tii[50,79] := {50} tii[50,80] := {51} tii[50,81] := {19, 83} tii[50,82] := {45} tii[50,83] := {69} tii[50,84] := {71} tii[50,85] := {92} tii[50,86] := {97} tii[50,87] := {23, 146} tii[50,88] := {128} tii[50,89] := {64} tii[50,90] := {88} tii[50,91] := {93} tii[50,92] := {116} tii[50,93] := {120} tii[50,94] := {60, 101} tii[50,95] := {149} tii[50,96] := {138} tii[50,97] := {141} tii[50,98] := {105, 131} tii[50,99] := {163} tii[50,100] := {168} tii[50,101] := {79, 161} tii[50,102] := {34, 160} tii[50,103] := {61, 148} tii[50,104] := {18, 147} tii[50,105] := {80, 127} tii[50,106] := {33, 129} tii[50,107] := {99, 145} tii[50,108] := {49, 134} tii[50,109] := {40, 126} tii[50,110] := {10, 125} tii[50,111] := {58, 102} tii[50,112] := {22, 103} tii[50,113] := {76, 124} tii[50,114] := {38, 108} tii[50,115] := {35, 77} tii[50,116] := {39, 78} tii[50,117] := {56, 100} tii[50,118] := {59, 82} tii[50,119] := {75, 123} tii[50,120] := {81, 106} cell#21 , |C| = 364 special orbit = [7, 5, 3, 1] special rep = [[2], [4, 2]] , dim = 252 cell rep = phi[[1],[4, 3]]+phi[[2],[4, 2]] TII depth = 3 TII multiplicity polynomial = 112*X^2+140*X TII subcells: tii[45,1] := {223, 363} tii[45,2] := {335, 336} tii[45,3] := {362} tii[45,4] := {59, 267} tii[45,5] := {207, 208} tii[45,6] := {78, 352} tii[45,7] := {187, 281} tii[45,8] := {305} tii[45,9] := {151} tii[45,10] := {29, 303} tii[45,11] := {7, 297} tii[45,12] := {231} tii[45,13] := {125, 358} tii[45,14] := {152, 153} tii[45,15] := {47, 338} tii[45,16] := {46, 226} tii[45,17] := {270} tii[45,18] := {310} tii[45,19] := {312} tii[45,20] := {238, 239} tii[45,21] := {339} tii[45,22] := {341} tii[45,23] := {58, 328} tii[45,24] := {134} tii[45,25] := {174, 361} tii[45,26] := {205, 206} tii[45,27] := {42, 344} tii[45,28] := {126, 127} tii[45,29] := {279, 280} tii[45,30] := {128, 359} tii[45,31] := {232} tii[45,32] := {235} tii[45,33] := {304} tii[45,34] := {60, 327} tii[45,35] := {107, 345} tii[45,36] := {284} tii[45,37] := {113, 346} tii[45,38] := {289} tii[45,39] := {254, 255} tii[45,40] := {313, 314} tii[45,41] := {329} tii[45,42] := {309} tii[45,43] := {311} tii[45,44] := {221, 222} tii[45,45] := {340} tii[45,46] := {258, 259} tii[45,47] := {342} tii[45,48] := {262, 263} tii[45,49] := {347} tii[45,50] := {355} tii[45,51] := {356} tii[45,52] := {20, 176} tii[45,53] := {82, 83} tii[45,54] := {100} tii[45,55] := {183} tii[45,56] := {30, 225} tii[45,57] := {1, 256} tii[45,58] := {76} tii[45,59] := {21, 177} tii[45,60] := {22, 315} tii[45,61] := {104, 105} tii[45,62] := {273} tii[45,63] := {276} tii[45,64] := {15, 178} tii[45,65] := {101} tii[45,66] := {316} tii[45,67] := {161} tii[45,68] := {319} tii[45,69] := {167} tii[45,70] := {135} tii[45,71] := {6, 296} tii[45,72] := {157, 158} tii[45,73] := {45, 337} tii[45,74] := {44, 129} tii[45,75] := {233} tii[45,76] := {236} tii[45,77] := {91} tii[45,78] := {13, 266} tii[45,79] := {139} tii[45,80] := {33, 298} tii[45,81] := {285} tii[45,82] := {144} tii[45,83] := {36, 300} tii[45,84] := {290} tii[45,85] := {275} tii[45,86] := {278} tii[45,87] := {77, 175} tii[45,88] := {242} tii[45,89] := {106, 212} tii[45,90] := {318} tii[45,91] := {247} tii[45,92] := {112, 217} tii[45,93] := {321} tii[45,94] := {331} tii[45,95] := {333} tii[45,96] := {351} tii[45,97] := {122} tii[45,98] := {12, 269} tii[45,99] := {62, 63} tii[45,100] := {5, 227} tii[45,101] := {154} tii[45,102] := {213} tii[45,103] := {218} tii[45,104] := {89} tii[45,105] := {19, 324} tii[45,106] := {81, 353} tii[45,107] := {2, 257} tii[45,108] := {102, 103} tii[45,109] := {79, 80} tii[45,110] := {31, 302} tii[45,111] := {184} tii[45,112] := {185} tii[45,113] := {186} tii[45,114] := {53} tii[45,115] := {64, 325} tii[45,116] := {243} tii[45,117] := {92} tii[45,118] := {244} tii[45,119] := {68, 326} tii[45,120] := {248} tii[45,121] := {95} tii[45,122] := {249} tii[45,123] := {14, 268} tii[45,124] := {234} tii[45,125] := {237} tii[45,126] := {123, 124} tii[45,127] := {283} tii[45,128] := {34, 299} tii[45,129] := {190} tii[45,130] := {286} tii[45,131] := {159, 160} tii[45,132] := {288} tii[45,133] := {37, 301} tii[45,134] := {196} tii[45,135] := {291} tii[45,136] := {165, 166} tii[45,137] := {67, 261} tii[45,138] := {306} tii[45,139] := {71, 265} tii[45,140] := {307} tii[45,141] := {99, 295} tii[45,142] := {334} tii[45,143] := {155, 156} tii[45,144] := {90} tii[45,145] := {138} tii[45,146] := {143} tii[45,147] := {274} tii[45,148] := {277} tii[45,149] := {172, 173} tii[45,150] := {188} tii[45,151] := {210, 211} tii[45,152] := {317} tii[45,153] := {241} tii[45,154] := {194} tii[45,155] := {215, 216} tii[45,156] := {320} tii[45,157] := {246} tii[45,158] := {162, 163} tii[45,159] := {330} tii[45,160] := {168, 169} tii[45,161] := {332} tii[45,162] := {202, 203} tii[45,163] := {86, 354} tii[45,164] := {350} tii[45,165] := {282} tii[45,166] := {287} tii[45,167] := {348} tii[45,168] := {349} tii[45,169] := {292, 293} tii[45,170] := {357} tii[45,171] := {360} tii[45,172] := {43} tii[45,173] := {8, 130} tii[45,174] := {61} tii[45,175] := {108} tii[45,176] := {114} tii[45,177] := {32} tii[45,178] := {65} tii[45,179] := {69} tii[45,180] := {111} tii[45,181] := {117} tii[45,182] := {150} tii[45,183] := {136} tii[45,184] := {0, 209} tii[45,185] := {191} tii[45,186] := {197} tii[45,187] := {54} tii[45,188] := {4, 224} tii[45,189] := {240} tii[45,190] := {16, 260} tii[45,191] := {93} tii[45,192] := {245} tii[45,193] := {17, 264} tii[45,194] := {96} tii[45,195] := {35, 214} tii[45,196] := {141} tii[45,197] := {38, 219} tii[45,198] := {146} tii[45,199] := {57, 253} tii[45,200] := {41, 132} tii[45,201] := {182} tii[45,202] := {189} tii[45,203] := {195} tii[45,204] := {193} tii[45,205] := {66, 164} tii[45,206] := {199} tii[45,207] := {70, 170} tii[45,208] := {120, 121} tii[45,209] := {98, 204} tii[45,210] := {24, 322} tii[45,211] := {230} tii[45,212] := {147, 252} tii[45,213] := {272} tii[45,214] := {28} tii[45,215] := {55} tii[45,216] := {56} tii[45,217] := {94} tii[45,218] := {97} tii[45,219] := {18, 180} tii[45,220] := {133} tii[45,221] := {137} tii[45,222] := {142} tii[45,223] := {140} tii[45,224] := {109, 110} tii[45,225] := {145} tii[45,226] := {115, 116} tii[45,227] := {50, 343} tii[45,228] := {11, 220} tii[45,229] := {148, 149} tii[45,230] := {181} tii[45,231] := {72, 73} tii[45,232] := {26, 323} tii[45,233] := {228} tii[45,234] := {200, 201} tii[45,235] := {25, 179} tii[45,236] := {192} tii[45,237] := {198} tii[45,238] := {118, 119} tii[45,239] := {229} tii[45,240] := {250, 251} tii[45,241] := {271} tii[45,242] := {84, 85} tii[45,243] := {308} tii[45,244] := {27, 88} tii[45,245] := {51, 52} tii[45,246] := {3, 171} tii[45,247] := {74, 75} tii[45,248] := {10, 294} tii[45,249] := {9, 131} tii[45,250] := {23, 87} tii[45,251] := {39, 40} tii[45,252] := {48, 49} cell#22 , |C| = 112 special orbit = [9, 3, 3, 1] special rep = [[1], [5, 2]] , dim = 112 cell rep = phi[[1],[5, 2]] TII depth = 4 TII multiplicity polynomial = 112*X TII subcells: tii[52,1] := {111} tii[52,2] := {110} tii[52,3] := {107} tii[52,4] := {101} tii[52,5] := {13} tii[52,6] := {19} tii[52,7] := {106} tii[52,8] := {16} tii[52,9] := {98} tii[52,10] := {14} tii[52,11] := {76} tii[52,12] := {22} tii[52,13] := {109} tii[52,14] := {31} tii[52,15] := {33} tii[52,16] := {28} tii[52,17] := {105} tii[52,18] := {47} tii[52,19] := {104} tii[52,20] := {23} tii[52,21] := {89} tii[52,22] := {99} tii[52,23] := {61} tii[52,24] := {77} tii[52,25] := {78} tii[52,26] := {45} tii[52,27] := {108} tii[52,28] := {42} tii[52,29] := {58} tii[52,30] := {34} tii[52,31] := {103} tii[52,32] := {96} tii[52,33] := {66} tii[52,34] := {82} tii[52,35] := {85} tii[52,36] := {57} tii[52,37] := {102} tii[52,38] := {48} tii[52,39] := {65} tii[52,40] := {81} tii[52,41] := {84} tii[52,42] := {64} tii[52,43] := {80} tii[52,44] := {83} tii[52,45] := {7} tii[52,46] := {6} tii[52,47] := {2} tii[52,48] := {21} tii[52,49] := {32} tii[52,50] := {100} tii[52,51] := {12} tii[52,52] := {92} tii[52,53] := {5} tii[52,54] := {46} tii[52,55] := {62} tii[52,56] := {63} tii[52,57] := {29} tii[52,58] := {90} tii[52,59] := {10} tii[52,60] := {36} tii[52,61] := {53} tii[52,62] := {56} tii[52,63] := {24} tii[52,64] := {38} tii[52,65] := {40} tii[52,66] := {25} tii[52,67] := {26} tii[52,68] := {44} tii[52,69] := {20} tii[52,70] := {11} tii[52,71] := {43} tii[52,72] := {18} tii[52,73] := {97} tii[52,74] := {50} tii[52,75] := {69} tii[52,76] := {72} tii[52,77] := {35} tii[52,78] := {52} tii[52,79] := {55} tii[52,80] := {37} tii[52,81] := {39} tii[52,82] := {91} tii[52,83] := {59} tii[52,84] := {30} tii[52,85] := {49} tii[52,86] := {68} tii[52,87] := {71} tii[52,88] := {51} tii[52,89] := {54} tii[52,90] := {95} tii[52,91] := {73} tii[52,92] := {67} tii[52,93] := {70} tii[52,94] := {86} tii[52,95] := {94} tii[52,96] := {93} tii[52,97] := {0} tii[52,98] := {79} tii[52,99] := {1} tii[52,100] := {75} tii[52,101] := {3} tii[52,102] := {60} tii[52,103] := {8} tii[52,104] := {4} tii[52,105] := {9} tii[52,106] := {88} tii[52,107] := {15} tii[52,108] := {74} tii[52,109] := {17} tii[52,110] := {27} tii[52,111] := {87} tii[52,112] := {41} cell#23 , |C| = 140 special orbit = [9, 3, 2, 2] special rep = [[1, 1], [5, 1]] , dim = 140 cell rep = phi[[1, 1],[5, 1]] TII depth = 6 TII multiplicity polynomial = 140*X TII subcells: tii[51,1] := {87} tii[51,2] := {86} tii[51,3] := {79} tii[51,4] := {72} tii[51,5] := {106} tii[51,6] := {65} tii[51,7] := {122} tii[51,8] := {60} tii[51,9] := {134} tii[51,10] := {53} tii[51,11] := {135} tii[51,12] := {138} tii[51,13] := {139} tii[51,14] := {85} tii[51,15] := {78} tii[51,16] := {101} tii[51,17] := {71} tii[51,18] := {109} tii[51,19] := {126} tii[51,20] := {131} tii[51,21] := {100} tii[51,22] := {91} tii[51,23] := {108} tii[51,24] := {125} tii[51,25] := {130} tii[51,26] := {107} tii[51,27] := {124} tii[51,28] := {129} tii[51,29] := {128} tii[51,30] := {133} tii[51,31] := {0} tii[51,32] := {2} tii[51,33] := {69} tii[51,34] := {5} tii[51,35] := {52} tii[51,36] := {38} tii[51,37] := {9} tii[51,38] := {16} tii[51,39] := {17} tii[51,40] := {105} tii[51,41] := {4} tii[51,42] := {119} tii[51,43] := {8} tii[51,44] := {68} tii[51,45] := {50} tii[51,46] := {123} tii[51,47] := {11} tii[51,48] := {136} tii[51,49] := {22} tii[51,50] := {137} tii[51,51] := {24} tii[51,52] := {102} tii[51,53] := {15} tii[51,54] := {67} tii[51,55] := {110} tii[51,56] := {20} tii[51,57] := {127} tii[51,58] := {31} tii[51,59] := {132} tii[51,60] := {34} tii[51,61] := {90} tii[51,62] := {28} tii[51,63] := {113} tii[51,64] := {41} tii[51,65] := {117} tii[51,66] := {44} tii[51,67] := {95} tii[51,68] := {56} tii[51,69] := {99} tii[51,70] := {59} tii[51,71] := {82} tii[51,72] := {84} tii[51,73] := {1} tii[51,74] := {3} tii[51,75] := {51} tii[51,76] := {6} tii[51,77] := {37} tii[51,78] := {12} tii[51,79] := {13} tii[51,80] := {77} tii[51,81] := {7} tii[51,82] := {49} tii[51,83] := {10} tii[51,84] := {88} tii[51,85] := {21} tii[51,86] := {111} tii[51,87] := {23} tii[51,88] := {115} tii[51,89] := {70} tii[51,90] := {18} tii[51,91] := {29} tii[51,92] := {93} tii[51,93] := {32} tii[51,94] := {97} tii[51,95] := {42} tii[51,96] := {74} tii[51,97] := {45} tii[51,98] := {76} tii[51,99] := {63} tii[51,100] := {64} tii[51,101] := {14} tii[51,102] := {19} tii[51,103] := {66} tii[51,104] := {30} tii[51,105] := {33} tii[51,106] := {89} tii[51,107] := {27} tii[51,108] := {40} tii[51,109] := {112} tii[51,110] := {43} tii[51,111] := {116} tii[51,112] := {55} tii[51,113] := {94} tii[51,114] := {58} tii[51,115] := {98} tii[51,116] := {81} tii[51,117] := {83} tii[51,118] := {39} tii[51,119] := {54} tii[51,120] := {57} tii[51,121] := {73} tii[51,122] := {114} tii[51,123] := {75} tii[51,124] := {118} tii[51,125] := {103} tii[51,126] := {104} tii[51,127] := {92} tii[51,128] := {96} tii[51,129] := {120} tii[51,130] := {121} tii[51,131] := {26} tii[51,132] := {36} tii[51,133] := {48} tii[51,134] := {62} tii[51,135] := {25} tii[51,136] := {35} tii[51,137] := {46} tii[51,138] := {47} tii[51,139] := {61} tii[51,140] := {80} cell#24 , |C| = 184 special orbit = [9, 3, 1, 1, 1, 1] special rep = [[1], [5, 1, 1]] , dim = 120 cell rep = phi[[],[5, 2, 1]]+phi[[1],[5, 1, 1]] TII depth = 3 TII multiplicity polynomial = 64*X^2+56*X TII subcells: tii[50,1] := {79, 183} tii[50,2] := {68, 178} tii[50,3] := {77, 168} tii[50,4] := {69, 150} tii[50,5] := {60, 182} tii[50,6] := {51, 173} tii[50,7] := {45, 180} tii[50,8] := {59, 160} tii[50,9] := {33, 177} tii[50,10] := {53, 137} tii[50,11] := {22, 171} tii[50,12] := {37, 170} tii[50,13] := {42, 148} tii[50,14] := {25, 164} tii[50,15] := {39, 120} tii[50,16] := {19, 151} tii[50,17] := {49, 161} tii[50,18] := {54, 130} tii[50,19] := {36, 153} tii[50,20] := {63, 147} tii[50,21] := {100} tii[50,22] := {111} tii[50,23] := {62, 181} tii[50,24] := {127} tii[50,25] := {47, 179} tii[50,26] := {34, 174} tii[50,27] := {141} tii[50,28] := {155} tii[50,29] := {156} tii[50,30] := {31, 176} tii[50,31] := {90} tii[50,32] := {20, 172} tii[50,33] := {107} tii[50,34] := {52, 175} tii[50,35] := {12, 163} tii[50,36] := {46, 167} tii[50,37] := {122} tii[50,38] := {142} tii[50,39] := {143} tii[50,40] := {10, 165} tii[50,41] := {89} tii[50,42] := {4, 152} tii[50,43] := {61, 159} tii[50,44] := {104} tii[50,45] := {124} tii[50,46] := {126} tii[50,47] := {9, 139} tii[50,48] := {91} tii[50,49] := {112} tii[50,50] := {113} tii[50,51] := {92} tii[50,52] := {94} tii[50,53] := {114} tii[50,54] := {67} tii[50,55] := {88} tii[50,56] := {38, 169} tii[50,57] := {103} tii[50,58] := {32, 158} tii[50,59] := {123} tii[50,60] := {125} tii[50,61] := {15, 154} tii[50,62] := {66} tii[50,63] := {44, 146} tii[50,64] := {7, 138} tii[50,65] := {81} tii[50,66] := {105} tii[50,67] := {106} tii[50,68] := {14, 121} tii[50,69] := {70} tii[50,70] := {93} tii[50,71] := {95} tii[50,72] := {71} tii[50,73] := {74} tii[50,74] := {11, 162} tii[50,75] := {96} tii[50,76] := {50} tii[50,77] := {65} tii[50,78] := {30, 131} tii[50,79] := {84} tii[50,80] := {87} tii[50,81] := {24, 140} tii[50,82] := {55} tii[50,83] := {73} tii[50,84] := {76} tii[50,85] := {56} tii[50,86] := {57} tii[50,87] := {5, 133} tii[50,88] := {78} tii[50,89] := {64} tii[50,90] := {83} tii[50,91] := {86} tii[50,92] := {72} tii[50,93] := {75} tii[50,94] := {28, 132} tii[50,95] := {97} tii[50,96] := {82} tii[50,97] := {85} tii[50,98] := {48, 136} tii[50,99] := {108} tii[50,100] := {129} tii[50,101] := {21, 166} tii[50,102] := {2, 149} tii[50,103] := {29, 157} tii[50,104] := {0, 135} tii[50,105] := {43, 145} tii[50,106] := {3, 118} tii[50,107] := {58, 134} tii[50,108] := {8, 102} tii[50,109] := {17, 144} tii[50,110] := {1, 116} tii[50,111] := {27, 128} tii[50,112] := {6, 99} tii[50,113] := {40, 115} tii[50,114] := {13, 80} tii[50,115] := {16, 110} tii[50,116] := {18, 117} tii[50,117] := {26, 98} tii[50,118] := {23, 101} tii[50,119] := {41, 109} tii[50,120] := {35, 119} cell#25 , |C| = 364 special orbit = [7, 5, 3, 1] special rep = [[2], [4, 2]] , dim = 252 cell rep = phi[[1],[4, 3]]+phi[[2],[4, 2]] TII depth = 3 TII multiplicity polynomial = 112*X^2+140*X TII subcells: tii[45,1] := {260, 350} tii[45,2] := {343, 361} tii[45,3] := {363} tii[45,4] := {48, 49} tii[45,5] := {175, 176} tii[45,6] := {132, 296} tii[45,7] := {239, 323} tii[45,8] := {277} tii[45,9] := {47} tii[45,10] := {88, 89} tii[45,11] := {23, 91} tii[45,12] := {110} tii[45,13] := {177, 320} tii[45,14] := {219, 220} tii[45,15] := {95, 267} tii[45,16] := {96, 181} tii[45,17] := {306} tii[45,18] := {202} tii[45,19] := {204} tii[45,20] := {278, 339} tii[45,21] := {252} tii[45,22] := {258} tii[45,23] := {129, 130} tii[45,24] := {200} tii[45,25] := {221, 338} tii[45,26] := {262, 263} tii[45,27] := {87, 174} tii[45,28] := {183, 265} tii[45,29] := {307, 351} tii[45,30] := {182, 322} tii[45,31] := {282} tii[45,32] := {284} tii[45,33] := {328} tii[45,34] := {111, 223} tii[45,35] := {161, 268} tii[45,36] := {315} tii[45,37] := {169, 271} tii[45,38] := {318} tii[45,39] := {294, 295} tii[45,40] := {329, 357} tii[45,41] := {344} tii[45,42] := {334} tii[45,43] := {335} tii[45,44] := {261, 321} tii[45,45] := {348} tii[45,46] := {286, 340} tii[45,47] := {349} tii[45,48] := {290, 341} tii[45,49] := {353} tii[45,50] := {358} tii[45,51] := {359} tii[45,52] := {7, 8} tii[45,53] := {57, 58} tii[45,54] := {20} tii[45,55] := {68} tii[45,56] := {24, 25} tii[45,57] := {6, 51} tii[45,58] := {5} tii[45,59] := {56, 136} tii[45,60] := {55, 228} tii[45,61] := {97, 98} tii[45,62] := {156} tii[45,63] := {157} tii[45,64] := {10, 11} tii[45,65] := {17} tii[45,66] := {209} tii[45,67] := {43} tii[45,68] := {216} tii[45,69] := {46} tii[45,70] := {109} tii[45,71] := {22, 90} tii[45,72] := {137, 138} tii[45,73] := {93, 266} tii[45,74] := {94, 180} tii[45,75] := {201} tii[45,76] := {203} tii[45,77] := {69} tii[45,78] := {36, 134} tii[45,79] := {114} tii[45,80] := {73, 186} tii[45,81] := {251} tii[45,82] := {122} tii[45,83] := {80, 189} tii[45,84] := {257} tii[45,85] := {245} tii[45,86] := {247} tii[45,87] := {133, 224} tii[45,88] := {206} tii[45,89] := {160, 269} tii[45,90] := {289} tii[45,91] := {213} tii[45,92] := {168, 272} tii[45,93] := {293} tii[45,94] := {308} tii[45,95] := {309} tii[45,96] := {333} tii[45,97] := {21} tii[45,98] := {52, 53} tii[45,99] := {141, 142} tii[45,100] := {26, 27} tii[45,101] := {40} tii[45,102] := {77} tii[45,103] := {84} tii[45,104] := {154} tii[45,105] := {50, 131} tii[45,106] := {139, 298} tii[45,107] := {9, 54} tii[45,108] := {184, 185} tii[45,109] := {140, 225} tii[45,110] := {70, 179} tii[45,111] := {72} tii[45,112] := {244} tii[45,113] := {246} tii[45,114] := {112} tii[45,115] := {115, 229} tii[45,116] := {117} tii[45,117] := {162} tii[45,118] := {288} tii[45,119] := {123, 232} tii[45,120] := {125} tii[45,121] := {170} tii[45,122] := {292} tii[45,123] := {37, 135} tii[45,124] := {283} tii[45,125] := {285} tii[45,126] := {178, 264} tii[45,127] := {159} tii[45,128] := {74, 187} tii[45,129] := {249} tii[45,130] := {316} tii[45,131] := {207, 299} tii[45,132] := {167} tii[45,133] := {81, 190} tii[45,134] := {255} tii[45,135] := {319} tii[45,136] := {214, 301} tii[45,137] := {119, 231} tii[45,138] := {330} tii[45,139] := {127, 234} tii[45,140] := {331} tii[45,141] := {152, 276} tii[45,142] := {347} tii[45,143] := {226, 227} tii[45,144] := {155} tii[45,145] := {208} tii[45,146] := {215} tii[45,147] := {312} tii[45,148] := {313} tii[45,149] := {222, 297} tii[45,150] := {248} tii[45,151] := {250, 324} tii[45,152] := {336} tii[45,153] := {287} tii[45,154] := {254} tii[45,155] := {256, 325} tii[45,156] := {337} tii[45,157] := {291} tii[45,158] := {210, 300} tii[45,159] := {345} tii[45,160] := {217, 302} tii[45,161] := {346} tii[45,162] := {242, 327} tii[45,163] := {145, 303} tii[45,164] := {356} tii[45,165] := {314} tii[45,166] := {317} tii[45,167] := {354} tii[45,168] := {355} tii[45,169] := {310, 352} tii[45,170] := {360} tii[45,171] := {362} tii[45,172] := {0} tii[45,173] := {2, 3} tii[45,174] := {4} tii[45,175] := {18} tii[45,176] := {19} tii[45,177] := {16} tii[45,178] := {42} tii[45,179] := {45} tii[45,180] := {79} tii[45,181] := {86} tii[45,182] := {108} tii[45,183] := {39} tii[45,184] := {1, 28} tii[45,185] := {76} tii[45,186] := {83} tii[45,187] := {38} tii[45,188] := {15, 92} tii[45,189] := {113} tii[45,190] := {41, 143} tii[45,191] := {75} tii[45,192] := {121} tii[45,193] := {44, 144} tii[45,194] := {82} tii[45,195] := {78, 188} tii[45,196] := {120} tii[45,197] := {85, 191} tii[45,198] := {128} tii[45,199] := {107, 238} tii[45,200] := {34, 35} tii[45,201] := {153} tii[45,202] := {158} tii[45,203] := {166} tii[45,204] := {163} tii[45,205] := {118, 230} tii[45,206] := {171} tii[45,207] := {126, 233} tii[45,208] := {99, 100} tii[45,209] := {151, 275} tii[45,210] := {59, 236} tii[45,211] := {197} tii[45,212] := {196, 304} tii[45,213] := {240} tii[45,214] := {71} tii[45,215] := {116} tii[45,216] := {124} tii[45,217] := {165} tii[45,218] := {173} tii[45,219] := {65, 66} tii[45,220] := {199} tii[45,221] := {205} tii[45,222] := {212} tii[45,223] := {211} tii[45,224] := {164, 270} tii[45,225] := {218} tii[45,226] := {172, 273} tii[45,227] := {101, 274} tii[45,228] := {33, 106} tii[45,229] := {198, 305} tii[45,230] := {243} tii[45,231] := {147, 148} tii[45,232] := {61, 237} tii[45,233] := {279} tii[45,234] := {241, 326} tii[45,235] := {62, 150} tii[45,236] := {253} tii[45,237] := {259} tii[45,238] := {192, 193} tii[45,239] := {281} tii[45,240] := {280, 342} tii[45,241] := {311} tii[45,242] := {146, 235} tii[45,243] := {332} tii[45,244] := {13, 14} tii[45,245] := {31, 32} tii[45,246] := {12, 67} tii[45,247] := {63, 64} tii[45,248] := {29, 195} tii[45,249] := {30, 103} tii[45,250] := {60, 149} tii[45,251] := {104, 105} tii[45,252] := {102, 194} cell#26 , |C| = 252 special orbit = [7, 3, 3, 3] special rep = [[1, 1], [4, 2]] , dim = 252 cell rep = phi[[1, 1],[4, 2]] TII depth = 5 TII multiplicity polynomial = 252*X TII subcells: tii[42,1] := {130} tii[42,2] := {153} tii[42,3] := {187} tii[42,4] := {160} tii[42,5] := {147} tii[42,6] := {184} tii[42,7] := {137} tii[42,8] := {214} tii[42,9] := {190} tii[42,10] := {213} tii[42,11] := {208} tii[42,12] := {195} tii[42,13] := {233} tii[42,14] := {219} tii[42,15] := {237} tii[42,16] := {240} tii[42,17] := {232} tii[42,18] := {244} tii[42,19] := {235} tii[42,20] := {245} tii[42,21] := {247} tii[42,22] := {249} tii[42,23] := {250} tii[42,24] := {251} tii[42,25] := {2} tii[42,26] := {7} tii[42,27] := {75} tii[42,28] := {29} tii[42,29] := {67} tii[42,30] := {4} tii[42,31] := {101} tii[42,32] := {14} tii[42,33] := {114} tii[42,34] := {11} tii[42,35] := {107} tii[42,36] := {44} tii[42,37] := {79} tii[42,38] := {93} tii[42,39] := {16} tii[42,40] := {31} tii[42,41] := {33} tii[42,42] := {25} tii[42,43] := {146} tii[42,44] := {122} tii[42,45] := {65} tii[42,46] := {136} tii[42,47] := {42} tii[42,48] := {165} tii[42,49] := {68} tii[42,50] := {198} tii[42,51] := {71} tii[42,52] := {204} tii[42,53] := {164} tii[42,54] := {91} tii[42,55] := {196} tii[42,56] := {125} tii[42,57] := {203} tii[42,58] := {128} tii[42,59] := {201} tii[42,60] := {207} tii[42,61] := {10} tii[42,62] := {20} tii[42,63] := {131} tii[42,64] := {26} tii[42,65] := {66} tii[42,66] := {123} tii[42,67] := {105} tii[42,68] := {28} tii[42,69] := {46} tii[42,70] := {49} tii[42,71] := {178} tii[42,72] := {24} tii[42,73] := {41} tii[42,74] := {155} tii[42,75] := {92} tii[42,76] := {119} tii[42,77] := {167} tii[42,78] := {194} tii[42,79] := {38} tii[42,80] := {64} tii[42,81] := {222} tii[42,82] := {59} tii[42,83] := {94} tii[42,84] := {227} tii[42,85] := {61} tii[42,86] := {97} tii[42,87] := {166} tii[42,88] := {57} tii[42,89] := {120} tii[42,90] := {193} tii[42,91] := {199} tii[42,92] := {82} tii[42,93] := {156} tii[42,94] := {220} tii[42,95] := {205} tii[42,96] := {85} tii[42,97] := {158} tii[42,98] := {226} tii[42,99] := {224} tii[42,100] := {172} tii[42,101] := {110} tii[42,102] := {229} tii[42,103] := {177} tii[42,104] := {113} tii[42,105] := {150} tii[42,106] := {152} tii[42,107] := {63} tii[42,108] := {186} tii[42,109] := {121} tii[42,110] := {90} tii[42,111] := {124} tii[42,112] := {127} tii[42,113] := {218} tii[42,114] := {106} tii[42,115] := {154} tii[42,116] := {236} tii[42,117] := {138} tii[42,118] := {188} tii[42,119] := {239} tii[42,120] := {142} tii[42,121] := {189} tii[42,122] := {238} tii[42,123] := {168} tii[42,124] := {223} tii[42,125] := {241} tii[42,126] := {173} tii[42,127] := {228} tii[42,128] := {209} tii[42,129] := {211} tii[42,130] := {185} tii[42,131] := {215} tii[42,132] := {216} tii[42,133] := {246} tii[42,134] := {221} tii[42,135] := {248} tii[42,136] := {225} tii[42,137] := {242} tii[42,138] := {243} tii[42,139] := {0} tii[42,140] := {1} tii[42,141] := {5} tii[42,142] := {55} tii[42,143] := {3} tii[42,144] := {8} tii[42,145] := {18} tii[42,146] := {19} tii[42,147] := {15} tii[42,148] := {30} tii[42,149] := {32} tii[42,150] := {47} tii[42,151] := {50} tii[42,152] := {78} tii[42,153] := {13} tii[42,154] := {9} tii[42,155] := {23} tii[42,156] := {89} tii[42,157] := {39} tii[42,158] := {40} tii[42,159] := {37} tii[42,160] := {27} tii[42,161] := {135} tii[42,162] := {58} tii[42,163] := {170} tii[42,164] := {45} tii[42,165] := {60} tii[42,166] := {175} tii[42,167] := {48} tii[42,168] := {83} tii[42,169] := {141} tii[42,170] := {70} tii[42,171] := {86} tii[42,172] := {145} tii[42,173] := {73} tii[42,174] := {54} tii[42,175] := {117} tii[42,176] := {118} tii[42,177] := {104} tii[42,178] := {56} tii[42,179] := {81} tii[42,180] := {84} tii[42,181] := {109} tii[42,182] := {95} tii[42,183] := {171} tii[42,184] := {112} tii[42,185] := {98} tii[42,186] := {176} tii[42,187] := {133} tii[42,188] := {149} tii[42,189] := {151} tii[42,190] := {102} tii[42,191] := {140} tii[42,192] := {144} tii[42,193] := {162} tii[42,194] := {181} tii[42,195] := {183} tii[42,196] := {17} tii[42,197] := {43} tii[42,198] := {69} tii[42,199] := {72} tii[42,200] := {96} tii[42,201] := {99} tii[42,202] := {134} tii[42,203] := {77} tii[42,204] := {80} tii[42,205] := {108} tii[42,206] := {111} tii[42,207] := {126} tii[42,208] := {139} tii[42,209] := {200} tii[42,210] := {129} tii[42,211] := {143} tii[42,212] := {206} tii[42,213] := {88} tii[42,214] := {163} tii[42,215] := {132} tii[42,216] := {180} tii[42,217] := {182} tii[42,218] := {169} tii[42,219] := {174} tii[42,220] := {191} tii[42,221] := {210} tii[42,222] := {212} tii[42,223] := {116} tii[42,224] := {157} tii[42,225] := {159} tii[42,226] := {192} tii[42,227] := {161} tii[42,228] := {197} tii[42,229] := {202} tii[42,230] := {217} tii[42,231] := {230} tii[42,232] := {231} tii[42,233] := {179} tii[42,234] := {234} tii[42,235] := {6} tii[42,236] := {35} tii[42,237] := {12} tii[42,238] := {53} tii[42,239] := {21} tii[42,240] := {22} tii[42,241] := {62} tii[42,242] := {87} tii[42,243] := {34} tii[42,244] := {76} tii[42,245] := {51} tii[42,246] := {115} tii[42,247] := {36} tii[42,248] := {103} tii[42,249] := {52} tii[42,250] := {74} tii[42,251] := {148} tii[42,252] := {100} cell#27 , |C| = 280 special orbit = [7, 3, 3, 1, 1, 1] special rep = [[1], [4, 2, 1]] , dim = 280 cell rep = phi[[1],[4, 2, 1]] TII depth = 4 TII multiplicity polynomial = 280*X TII subcells: tii[41,1] := {257} tii[41,2] := {264} tii[41,3] := {275} tii[41,4] := {9} tii[41,5] := {235} tii[41,6] := {30} tii[41,7] := {171} tii[41,8] := {247} tii[41,9] := {81} tii[41,10] := {153} tii[41,11] := {266} tii[41,12] := {245} tii[41,13] := {73} tii[41,14] := {265} tii[41,15] := {219} tii[41,16] := {151} tii[41,17] := {225} tii[41,18] := {274} tii[41,19] := {186} tii[41,20] := {272} tii[41,21] := {221} tii[41,22] := {278} tii[41,23] := {262} tii[41,24] := {279} tii[41,25] := {19} tii[41,26] := {49} tii[41,27] := {207} tii[41,28] := {116} tii[41,29] := {192} tii[41,30] := {3} tii[41,31] := {37} tii[41,32] := {236} tii[41,33] := {16} tii[41,34] := {75} tii[41,35] := {2} tii[41,36] := {60} tii[41,37] := {133} tii[41,38] := {54} tii[41,39] := {117} tii[41,40] := {152} tii[41,41] := {5} tii[41,42] := {215} tii[41,43] := {226} tii[41,44] := {79} tii[41,45] := {121} tii[41,46] := {127} tii[41,47] := {29} tii[41,48] := {109} tii[41,49] := {144} tii[41,50] := {250} tii[41,51] := {80} tii[41,52] := {190} tii[41,53] := {23} tii[41,54] := {154} tii[41,55] := {105} tii[41,56] := {148} tii[41,57] := {195} tii[41,58] := {201} tii[41,59] := {113} tii[41,60] := {182} tii[41,61] := {223} tii[41,62] := {252} tii[41,63] := {255} tii[41,64] := {20} tii[41,65] := {6} tii[41,66] := {38} tii[41,67] := {206} tii[41,68] := {48} tii[41,69] := {12} tii[41,70] := {115} tii[41,71] := {191} tii[41,72] := {179} tii[41,73] := {52} tii[41,74] := {84} tii[41,75] := {89} tii[41,76] := {47} tii[41,77] := {184} tii[41,78] := {21} tii[41,79] := {74} tii[41,80] := {224} tii[41,81] := {146} tii[41,82] := {150} tii[41,83] := {42} tii[41,84] := {18} tii[41,85] := {140} tii[41,86] := {114} tii[41,87] := {193} tii[41,88] := {32} tii[41,89] := {110} tii[41,90] := {155} tii[41,91] := {57} tii[41,92] := {162} tii[41,93] := {59} tii[41,94] := {149} tii[41,95] := {107} tii[41,96] := {51} tii[41,97] := {217} tii[41,98] := {187} tii[41,99] := {83} tii[41,100] := {227} tii[41,101] := {88} tii[41,102] := {231} tii[41,103] := {123} tii[41,104] := {129} tii[41,105] := {178} tii[41,106] := {108} tii[41,107] := {67} tii[41,108] := {249} tii[41,109] := {189} tii[41,110] := {147} tii[41,111] := {194} tii[41,112] := {200} tii[41,113] := {188} tii[41,114] := {243} tii[41,115] := {111} tii[41,116] := {222} tii[41,117] := {156} tii[41,118] := {251} tii[41,119] := {163} tii[41,120] := {254} tii[41,121] := {198} tii[41,122] := {204} tii[41,123] := {175} tii[41,124] := {240} tii[41,125] := {248} tii[41,126] := {267} tii[41,127] := {268} tii[41,128] := {253} tii[41,129] := {256} tii[41,130] := {244} tii[41,131] := {271} tii[41,132] := {277} tii[41,133] := {13} tii[41,134] := {25} tii[41,135] := {0} tii[41,136] := {39} tii[41,137] := {1} tii[41,138] := {180} tii[41,139] := {33} tii[41,140] := {53} tii[41,141] := {85} tii[41,142] := {90} tii[41,143] := {4} tii[41,144] := {78} tii[41,145] := {120} tii[41,146] := {126} tii[41,147] := {161} tii[41,148] := {168} tii[41,149] := {213} tii[41,150] := {10} tii[41,151] := {8} tii[41,152] := {55} tii[41,153] := {17} tii[41,154] := {100} tii[41,155] := {35} tii[41,156] := {36} tii[41,157] := {11} tii[41,158] := {72} tii[41,159] := {31} tii[41,160] := {112} tii[41,161] := {56} tii[41,162] := {157} tii[41,163] := {58} tii[41,164] := {164} tii[41,165] := {86} tii[41,166] := {199} tii[41,167] := {91} tii[41,168] := {205} tii[41,169] := {15} tii[41,170] := {176} tii[41,171] := {139} tii[41,172] := {241} tii[41,173] := {50} tii[41,174] := {82} tii[41,175] := {87} tii[41,176] := {122} tii[41,177] := {230} tii[41,178] := {128} tii[41,179] := {234} tii[41,180] := {96} tii[41,181] := {44} tii[41,182] := {260} tii[41,183] := {177} tii[41,184] := {238} tii[41,185] := {158} tii[41,186] := {165} tii[41,187] := {143} tii[41,188] := {270} tii[41,189] := {101} tii[41,190] := {214} tii[41,191] := {220} tii[41,192] := {34} tii[41,193] := {24} tii[41,194] := {77} tii[41,195] := {119} tii[41,196] := {125} tii[41,197] := {160} tii[41,198] := {167} tii[41,199] := {28} tii[41,200] := {137} tii[41,201] := {212} tii[41,202] := {76} tii[41,203] := {118} tii[41,204] := {124} tii[41,205] := {197} tii[41,206] := {159} tii[41,207] := {203} tii[41,208] := {166} tii[41,209] := {136} tii[41,210] := {70} tii[41,211] := {41} tii[41,212] := {97} tii[41,213] := {239} tii[41,214] := {208} tii[41,215] := {211} tii[41,216] := {196} tii[41,217] := {202} tii[41,218] := {98} tii[41,219] := {183} tii[41,220] := {258} tii[41,221] := {141} tii[41,222] := {242} tii[41,223] := {62} tii[41,224] := {135} tii[41,225] := {106} tii[41,226] := {246} tii[41,227] := {229} tii[41,228] := {233} tii[41,229] := {103} tii[41,230] := {259} tii[41,231] := {237} tii[41,232] := {228} tii[41,233] := {232} tii[41,234] := {218} tii[41,235] := {269} tii[41,236] := {181} tii[41,237] := {130} tii[41,238] := {209} tii[41,239] := {261} tii[41,240] := {185} tii[41,241] := {263} tii[41,242] := {216} tii[41,243] := {276} tii[41,244] := {273} tii[41,245] := {46} tii[41,246] := {7} tii[41,247] := {138} tii[41,248] := {65} tii[41,249] := {14} tii[41,250] := {174} tii[41,251] := {94} tii[41,252] := {26} tii[41,253] := {99} tii[41,254] := {22} tii[41,255] := {63} tii[41,256] := {64} tii[41,257] := {40} tii[41,258] := {95} tii[41,259] := {132} tii[41,260] := {27} tii[41,261] := {210} tii[41,262] := {71} tii[41,263] := {43} tii[41,264] := {61} tii[41,265] := {134} tii[41,266] := {170} tii[41,267] := {104} tii[41,268] := {68} tii[41,269] := {66} tii[41,270] := {45} tii[41,271] := {173} tii[41,272] := {93} tii[41,273] := {69} tii[41,274] := {92} tii[41,275] := {131} tii[41,276] := {172} tii[41,277] := {145} tii[41,278] := {102} tii[41,279] := {169} tii[41,280] := {142} cell#28 , |C| = 184 special orbit = [9, 3, 1, 1, 1, 1] special rep = [[1], [5, 1, 1]] , dim = 120 cell rep = phi[[],[5, 2, 1]]+phi[[1],[5, 1, 1]] TII depth = 3 TII multiplicity polynomial = 64*X^2+56*X TII subcells: tii[50,1] := {130, 183} tii[50,2] := {80, 175} tii[50,3] := {58, 177} tii[50,4] := {133, 176} tii[50,5] := {158, 180} tii[50,6] := {42, 155} tii[50,7] := {148, 172} tii[50,8] := {25, 166} tii[50,9] := {152, 159} tii[50,10] := {101, 160} tii[50,11] := {128, 149} tii[50,12] := {78, 127} tii[50,13] := {7, 141} tii[50,14] := {95, 97} tii[50,15] := {63, 134} tii[50,16] := {77, 79} tii[50,17] := {24, 154} tii[50,18] := {100, 161} tii[50,19] := {16, 126} tii[50,20] := {132, 174} tii[50,21] := {35} tii[50,22] := {11} tii[50,23] := {96, 181} tii[50,24] := {22} tii[50,25] := {59, 173} tii[50,26] := {29, 156} tii[50,27] := {50} tii[50,28] := {89} tii[50,29] := {90} tii[50,30] := {117, 151} tii[50,31] := {6} tii[50,32] := {123, 131} tii[50,33] := {12} tii[50,34] := {44, 157} tii[50,35] := {92, 118} tii[50,36] := {19, 147} tii[50,37] := {28} tii[50,38] := {66} tii[50,39] := {69} tii[50,40] := {88, 98} tii[50,41] := {36} tii[50,42] := {53, 81} tii[50,43] := {30, 170} tii[50,44] := {62} tii[50,45] := {104} tii[50,46] := {108} tii[50,47] := {45, 87} tii[50,48] := {99} tii[50,49] := {135} tii[50,50] := {138} tii[50,51] := {163} tii[50,52] := {165} tii[50,53] := {178} tii[50,54] := {0} tii[50,55] := {2} tii[50,56] := {17, 129} tii[50,57] := {9} tii[50,58] := {5, 116} tii[50,59] := {32} tii[50,60] := {34} tii[50,61] := {56, 57} tii[50,62] := {13} tii[50,63] := {10, 146} tii[50,64] := {41, 43} tii[50,65] := {27} tii[50,66] := {65} tii[50,67] := {68} tii[50,68] := {18, 55} tii[50,69] := {61} tii[50,70] := {103} tii[50,71] := {107} tii[50,72] := {137} tii[50,73] := {140} tii[50,74] := {91, 171} tii[50,75] := {169} tii[50,76] := {3} tii[50,77] := {8} tii[50,78] := {1, 115} tii[50,79] := {31} tii[50,80] := {33} tii[50,81] := {4, 94} tii[50,82] := {26} tii[50,83] := {64} tii[50,84] := {67} tii[50,85] := {105} tii[50,86] := {109} tii[50,87] := {38, 121} tii[50,88] := {145} tii[50,89] := {60} tii[50,90] := {102} tii[50,91] := {106} tii[50,92] := {136} tii[50,93] := {139} tii[50,94] := {47, 112} tii[50,95] := {168} tii[50,96] := {162} tii[50,97] := {164} tii[50,98] := {119, 153} tii[50,99] := {179} tii[50,100] := {182} tii[50,101] := {75, 124} tii[50,102] := {51, 150} tii[50,103] := {49, 114} tii[50,104] := {23, 122} tii[50,105] := {76, 144} tii[50,106] := {52, 85} tii[50,107] := {110, 167} tii[50,108] := {86, 120} tii[50,109] := {21, 73} tii[50,110] := {14, 84} tii[50,111] := {40, 113} tii[50,112] := {39, 48} tii[50,113] := {71, 143} tii[50,114] := {54, 83} tii[50,115] := {15, 72} tii[50,116] := {20, 74} tii[50,117] := {37, 111} tii[50,118] := {46, 93} tii[50,119] := {70, 142} tii[50,120] := {82, 125} cell#29 , |C| = 350 special orbit = [7, 5, 1, 1, 1, 1] special rep = [[2], [4, 1, 1]] , dim = 280 cell rep = phi[[],[4, 3, 1]]+phi[[2],[4, 1, 1]] TII depth = 4 TII multiplicity polynomial = 70*X^2+210*X TII subcells: tii[43,1] := {98, 293} tii[43,2] := {236, 300} tii[43,3] := {323} tii[43,4] := {57, 261} tii[43,5] := {12, 175} tii[43,6] := {193, 274} tii[43,7] := {67, 151} tii[43,8] := {306} tii[43,9] := {97, 271} tii[43,10] := {235, 301} tii[43,11] := {58, 233} tii[43,12] := {149, 244} tii[43,13] := {322} tii[43,14] := {51, 190} tii[43,15] := {273, 318} tii[43,16] := {332} tii[43,17] := {237, 298} tii[43,18] := {340} tii[43,19] := {42} tii[43,20] := {100} tii[43,21] := {30, 221} tii[43,22] := {108, 202} tii[43,23] := {196} tii[43,24] := {198} tii[43,25] := {249} tii[43,26] := {258} tii[43,27] := {80} tii[43,28] := {59, 262} tii[43,29] := {144} tii[43,30] := {44} tii[43,31] := {3, 129} tii[43,32] := {36, 109} tii[43,33] := {37, 229} tii[43,34] := {150, 243} tii[43,35] := {239} tii[43,36] := {241} tii[43,37] := {65} tii[43,38] := {115} tii[43,39] := {286} tii[43,40] := {123} tii[43,41] := {292} tii[43,42] := {192} tii[43,43] := {11, 140} tii[43,44] := {200, 281} tii[43,45] := {66, 152} tii[43,46] := {8, 94} tii[43,47] := {276} tii[43,48] := {279} tii[43,49] := {146} tii[43,50] := {207} tii[43,51] := {309} tii[43,52] := {215} tii[43,53] := {313} tii[43,54] := {104, 186} tii[43,55] := {303} tii[43,56] := {305} tii[43,57] := {284} tii[43,58] := {325} tii[43,59] := {289} tii[43,60] := {328} tii[43,61] := {335} tii[43,62] := {338} tii[43,63] := {344} tii[43,64] := {43} tii[43,65] := {99} tii[43,66] := {20} tii[43,67] := {29, 220} tii[43,68] := {195} tii[43,69] := {197} tii[43,70] := {107, 201} tii[43,71] := {15, 183} tii[43,72] := {33} tii[43,73] := {248} tii[43,74] := {70} tii[43,75] := {257} tii[43,76] := {76} tii[43,77] := {28, 188} tii[43,78] := {6} tii[43,79] := {143} tii[43,80] := {148, 242} tii[43,81] := {24, 142} tii[43,82] := {5, 136} tii[43,83] := {106, 203} tii[43,84] := {238} tii[43,85] := {240} tii[43,86] := {14} tii[43,87] := {101} tii[43,88] := {155} tii[43,89] := {39} tii[43,90] := {285} tii[43,91] := {165} tii[43,92] := {41} tii[43,93] := {291} tii[43,94] := {9, 96} tii[43,95] := {32} tii[43,96] := {147, 231} tii[43,97] := {277} tii[43,98] := {280} tii[43,99] := {69} tii[43,100] := {247} tii[43,101] := {310} tii[43,102] := {75} tii[43,103] := {255} tii[43,104] := {314} tii[43,105] := {117} tii[43,106] := {326} tii[43,107] := {125} tii[43,108] := {329} tii[43,109] := {182} tii[43,110] := {339} tii[43,111] := {191} tii[43,112] := {275} tii[43,113] := {278} tii[43,114] := {199, 282} tii[43,115] := {145} tii[43,116] := {308} tii[43,117] := {206} tii[43,118] := {312} tii[43,119] := {214} tii[43,120] := {194, 269} tii[43,121] := {102} tii[43,122] := {302} tii[43,123] := {304} tii[43,124] := {156} tii[43,125] := {283} tii[43,126] := {324} tii[43,127] := {166} tii[43,128] := {288} tii[43,129] := {327} tii[43,130] := {210} tii[43,131] := {334} tii[43,132] := {218} tii[43,133] := {337} tii[43,134] := {92, 179} tii[43,135] := {266} tii[43,136] := {343} tii[43,137] := {320} tii[43,138] := {321} tii[43,139] := {333} tii[43,140] := {307} tii[43,141] := {336} tii[43,142] := {311} tii[43,143] := {287} tii[43,144] := {341} tii[43,145] := {290} tii[43,146] := {342} tii[43,147] := {230, 270} tii[43,148] := {317} tii[43,149] := {347} tii[43,150] := {345} tii[43,151] := {346} tii[43,152] := {331} tii[43,153] := {348} tii[43,154] := {349} tii[43,155] := {19} tii[43,156] := {35} tii[43,157] := {72} tii[43,158] := {78} tii[43,159] := {21} tii[43,160] := {16, 184} tii[43,161] := {64} tii[43,162] := {34} tii[43,163] := {114} tii[43,164] := {71} tii[43,165] := {122} tii[43,166] := {77} tii[43,167] := {62} tii[43,168] := {154} tii[43,169] := {112} tii[43,170] := {164} tii[43,171] := {120} tii[43,172] := {162} tii[43,173] := {172} tii[43,174] := {227} tii[43,175] := {1} tii[43,176] := {105} tii[43,177] := {4} tii[43,178] := {0, 89} tii[43,179] := {17} tii[43,180] := {159} tii[43,181] := {18} tii[43,182] := {169} tii[43,183] := {2, 56} tii[43,184] := {13} tii[43,185] := {103} tii[43,186] := {205} tii[43,187] := {38} tii[43,188] := {157} tii[43,189] := {213} tii[43,190] := {40} tii[43,191] := {167} tii[43,192] := {73} tii[43,193] := {211} tii[43,194] := {79} tii[43,195] := {219} tii[43,196] := {88, 180} tii[43,197] := {135} tii[43,198] := {267} tii[43,199] := {31} tii[43,200] := {246} tii[43,201] := {68} tii[43,202] := {254} tii[43,203] := {74} tii[43,204] := {252} tii[43,205] := {116} tii[43,206] := {260} tii[43,207] := {124} tii[43,208] := {26, 85} tii[43,209] := {174, 264} tii[43,210] := {181} tii[43,211] := {296} tii[43,212] := {158} tii[43,213] := {168} tii[43,214] := {90, 139} tii[43,215] := {228} tii[43,216] := {316} tii[43,217] := {234} tii[43,218] := {63} tii[43,219] := {113} tii[43,220] := {121} tii[43,221] := {61} tii[43,222] := {153} tii[43,223] := {111} tii[43,224] := {163} tii[43,225] := {119} tii[43,226] := {161} tii[43,227] := {171} tii[43,228] := {49, 133} tii[43,229] := {226} tii[43,230] := {60} tii[43,231] := {204} tii[43,232] := {110} tii[43,233] := {212} tii[43,234] := {118} tii[43,235] := {209} tii[43,236] := {160} tii[43,237] := {217} tii[43,238] := {170} tii[43,239] := {54, 132} tii[43,240] := {23, 86} tii[43,241] := {126, 222} tii[43,242] := {225} tii[43,243] := {265} tii[43,244] := {208} tii[43,245] := {216} tii[43,246] := {27, 87} tii[43,247] := {137, 187} tii[43,248] := {46, 131} tii[43,249] := {294} tii[43,250] := {268} tii[43,251] := {53, 95} tii[43,252] := {272} tii[43,253] := {245} tii[43,254] := {253} tii[43,255] := {251} tii[43,256] := {259} tii[43,257] := {173, 263} tii[43,258] := {295} tii[43,259] := {250} tii[43,260] := {256} tii[43,261] := {185, 232} tii[43,262] := {127, 223} tii[43,263] := {315} tii[43,264] := {297} tii[43,265] := {138, 189} tii[43,266] := {299} tii[43,267] := {330} tii[43,268] := {319} tii[43,269] := {50, 134} tii[43,270] := {83, 178} tii[43,271] := {7, 47} tii[43,272] := {10, 48} tii[43,273] := {22, 84} tii[43,274] := {128, 224} tii[43,275] := {25, 55} tii[43,276] := {45, 130} tii[43,277] := {52, 93} tii[43,278] := {82, 177} tii[43,279] := {81, 176} tii[43,280] := {91, 141} cell#30 , |C| = 280 special orbit = [7, 3, 3, 1, 1, 1] special rep = [[1], [4, 2, 1]] , dim = 280 cell rep = phi[[1],[4, 2, 1]] TII depth = 4 TII multiplicity polynomial = 280*X TII subcells: tii[41,1] := {197} tii[41,2] := {219} tii[41,3] := {247} tii[41,4] := {18} tii[41,5] := {226} tii[41,6] := {49} tii[41,7] := {182} tii[41,8] := {244} tii[41,9] := {105} tii[41,10] := {173} tii[41,11] := {263} tii[41,12] := {250} tii[41,13] := {101} tii[41,14] := {262} tii[41,15] := {237} tii[41,16] := {171} tii[41,17] := {233} tii[41,18] := {273} tii[41,19] := {254} tii[41,20] := {272} tii[41,21] := {231} tii[41,22] := {277} tii[41,23] := {267} tii[41,24] := {279} tii[41,25] := {5} tii[41,26] := {22} tii[41,27] := {130} tii[41,28] := {63} tii[41,29] := {122} tii[41,30] := {9} tii[41,31] := {12} tii[41,32] := {164} tii[41,33] := {29} tii[41,34] := {38} tii[41,35] := {3} tii[41,36] := {26} tii[41,37] := {148} tii[41,38] := {75} tii[41,39] := {140} tii[41,40] := {89} tii[41,41] := {7} tii[41,42] := {134} tii[41,43] := {156} tii[41,44] := {40} tii[41,45] := {65} tii[41,46] := {67} tii[41,47] := {48} tii[41,48] := {59} tii[41,49] := {181} tii[41,50] := {189} tii[41,51] := {104} tii[41,52] := {120} tii[41,53] := {28} tii[41,54] := {172} tii[41,55] := {205} tii[41,56] := {87} tii[41,57] := {123} tii[41,58] := {126} tii[41,59] := {137} tii[41,60] := {203} tii[41,61] := {154} tii[41,62] := {192} tii[41,63] := {195} tii[41,64] := {25} tii[41,65] := {8} tii[41,66] := {44} tii[41,67] := {198} tii[41,68] := {60} tii[41,69] := {16} tii[41,70] := {121} tii[41,71] := {190} tii[41,72] := {168} tii[41,73] := {62} tii[41,74] := {91} tii[41,75] := {94} tii[41,76] := {72} tii[41,77] := {212} tii[41,78] := {34} tii[41,79] := {86} tii[41,80] := {221} tii[41,81] := {232} tii[41,82] := {155} tii[41,83] := {47} tii[41,84] := {32} tii[41,85] := {152} tii[41,86] := {138} tii[41,87] := {206} tii[41,88] := {51} tii[41,89] := {119} tii[41,90] := {157} tii[41,91] := {79} tii[41,92] := {160} tii[41,93] := {81} tii[41,94] := {170} tii[41,95] := {207} tii[41,96] := {74} tii[41,97] := {230} tii[41,98] := {187} tii[41,99] := {108} tii[41,100] := {222} tii[41,101] := {111} tii[41,102] := {224} tii[41,103] := {143} tii[41,104] := {146} tii[41,105] := {185} tii[41,106] := {118} tii[41,107] := {71} tii[41,108] := {246} tii[41,109] := {188} tii[41,110] := {153} tii[41,111] := {191} tii[41,112] := {194} tii[41,113] := {204} tii[41,114] := {253} tii[41,115] := {136} tii[41,116] := {220} tii[41,117] := {175} tii[41,118] := {248} tii[41,119] := {178} tii[41,120] := {249} tii[41,121] := {209} tii[41,122] := {211} tii[41,123] := {271} tii[41,124] := {240} tii[41,125] := {245} tii[41,126] := {264} tii[41,127] := {265} tii[41,128] := {256} tii[41,129] := {257} tii[41,130] := {276} tii[41,131] := {270} tii[41,132] := {278} tii[41,133] := {1} tii[41,134] := {4} tii[41,135] := {0} tii[41,136] := {13} tii[41,137] := {2} tii[41,138] := {100} tii[41,139] := {11} tii[41,140] := {23} tii[41,141] := {42} tii[41,142] := {43} tii[41,143] := {6} tii[41,144] := {39} tii[41,145] := {64} tii[41,146] := {66} tii[41,147] := {92} tii[41,148] := {95} tii[41,149] := {133} tii[41,150] := {19} tii[41,151] := {17} tii[41,152] := {24} tii[41,153] := {31} tii[41,154] := {117} tii[41,155] := {53} tii[41,156] := {54} tii[41,157] := {15} tii[41,158] := {174} tii[41,159] := {50} tii[41,160] := {61} tii[41,161] := {78} tii[41,162] := {90} tii[41,163] := {80} tii[41,164] := {93} tii[41,165] := {109} tii[41,166] := {125} tii[41,167] := {112} tii[41,168] := {128} tii[41,169] := {21} tii[41,170] := {99} tii[41,171] := {151} tii[41,172] := {167} tii[41,173] := {73} tii[41,174] := {107} tii[41,175] := {110} tii[41,176] := {142} tii[41,177] := {158} tii[41,178] := {145} tii[41,179] := {161} tii[41,180] := {241} tii[41,181] := {55} tii[41,182] := {200} tii[41,183] := {184} tii[41,184] := {165} tii[41,185] := {176} tii[41,186] := {179} tii[41,187] := {238} tii[41,188] := {228} tii[41,189] := {102} tii[41,190] := {214} tii[41,191] := {234} tii[41,192] := {41} tii[41,193] := {30} tii[41,194] := {88} tii[41,195] := {124} tii[41,196] := {127} tii[41,197] := {159} tii[41,198] := {162} tii[41,199] := {36} tii[41,200] := {132} tii[41,201] := {201} tii[41,202] := {103} tii[41,203] := {141} tii[41,204] := {144} tii[41,205] := {193} tii[41,206] := {177} tii[41,207] := {196} tii[41,208] := {180} tii[41,209] := {260} tii[41,210] := {82} tii[41,211] := {58} tii[41,212] := {116} tii[41,213] := {229} tii[41,214] := {199} tii[41,215] := {215} tii[41,216] := {208} tii[41,217] := {210} tii[41,218] := {243} tii[41,219] := {258} tii[41,220] := {251} tii[41,221] := {135} tii[41,222] := {239} tii[41,223] := {84} tii[41,224] := {150} tii[41,225] := {217} tii[41,226] := {255} tii[41,227] := {223} tii[41,228] := {225} tii[41,229] := {113} tii[41,230] := {252} tii[41,231] := {227} tii[41,232] := {235} tii[41,233] := {236} tii[41,234] := {269} tii[41,235] := {266} tii[41,236] := {169} tii[41,237] := {147} tii[41,238] := {213} tii[41,239] := {259} tii[41,240] := {261} tii[41,241] := {268} tii[41,242] := {202} tii[41,243] := {274} tii[41,244] := {275} tii[41,245] := {14} tii[41,246] := {10} tii[41,247] := {69} tii[41,248] := {27} tii[41,249] := {20} tii[41,250] := {98} tii[41,251] := {45} tii[41,252] := {33} tii[41,253] := {46} tii[41,254] := {37} tii[41,255] := {85} tii[41,256] := {218} tii[41,257] := {56} tii[41,258] := {115} tii[41,259] := {68} tii[41,260] := {35} tii[41,261] := {131} tii[41,262] := {186} tii[41,263] := {52} tii[41,264] := {83} tii[41,265] := {149} tii[41,266] := {96} tii[41,267] := {216} tii[41,268] := {76} tii[41,269] := {70} tii[41,270] := {57} tii[41,271] := {166} tii[41,272] := {97} tii[41,273] := {77} tii[41,274] := {114} tii[41,275] := {129} tii[41,276] := {183} tii[41,277] := {242} tii[41,278] := {106} tii[41,279] := {163} tii[41,280] := {139} cell#31 , |C| = 280 special orbit = [7, 3, 3, 1, 1, 1] special rep = [[1], [4, 2, 1]] , dim = 280 cell rep = phi[[1],[4, 2, 1]] TII depth = 4 TII multiplicity polynomial = 280*X TII subcells: tii[41,1] := {243} tii[41,2] := {135} tii[41,3] := {236} tii[41,4] := {278} tii[41,5] := {265} tii[41,6] := {262} tii[41,7] := {229} tii[41,8] := {83} tii[41,9] := {267} tii[41,10] := {208} tii[41,11] := {194} tii[41,12] := {276} tii[41,13] := {198} tii[41,14] := {132} tii[41,15] := {270} tii[41,16] := {210} tii[41,17] := {110} tii[41,18] := {234} tii[41,19] := {277} tii[41,20] := {185} tii[41,21] := {260} tii[41,22] := {261} tii[41,23] := {206} tii[41,24] := {274} tii[41,25] := {60} tii[41,26] := {11} tii[41,27] := {158} tii[41,28] := {66} tii[41,29] := {65} tii[41,30] := {272} tii[41,31] := {106} tii[41,32] := {205} tii[41,33] := {239} tii[41,34] := {7} tii[41,35] := {258} tii[41,36] := {59} tii[41,37] := {188} tii[41,38] := {247} tii[41,39] := {162} tii[41,40] := {48} tii[41,41] := {232} tii[41,42] := {163} tii[41,43] := {47} tii[41,44] := {93} tii[41,45] := {145} tii[41,46] := {146} tii[41,47] := {201} tii[41,48] := {19} tii[41,49] := {227} tii[41,50] := {89} tii[41,51] := {211} tii[41,52] := {91} tii[41,53] := {155} tii[41,54] := {111} tii[41,55] := {245} tii[41,56] := {30} tii[41,57] := {69} tii[41,58] := {74} tii[41,59] := {235} tii[41,60] := {161} tii[41,61] := {137} tii[41,62] := {166} tii[41,63] := {173} tii[41,64] := {157} tii[41,65] := {273} tii[41,66] := {105} tii[41,67] := {244} tii[41,68] := {1} tii[41,69] := {259} tii[41,70] := {21} tii[41,71] := {20} tii[41,72] := {209} tii[41,73] := {144} tii[41,74] := {195} tii[41,75] := {196} tii[41,76] := {148} tii[41,77] := {256} tii[41,78] := {82} tii[41,79] := {6} tii[41,80] := {44} tii[41,81] := {266} tii[41,82] := {46} tii[41,83] := {100} tii[41,84] := {241} tii[41,85] := {190} tii[41,86] := {164} tii[41,87] := {64} tii[41,88] := {107} tii[41,89] := {12} tii[41,90] := {32} tii[41,91] := {168} tii[41,92] := {35} tii[41,93] := {176} tii[41,94] := {193} tii[41,95] := {246} tii[41,96] := {159} tii[41,97] := {109} tii[41,98] := {85} tii[41,99] := {213} tii[41,100] := {113} tii[41,101] := {218} tii[41,102] := {120} tii[41,103] := {249} tii[41,104] := {251} tii[41,105] := {269} tii[41,106] := {18} tii[41,107] := {152} tii[41,108] := {86} tii[41,109] := {88} tii[41,110] := {29} tii[41,111] := {68} tii[41,112] := {73} tii[41,113] := {233} tii[41,114] := {160} tii[41,115] := {62} tii[41,116] := {134} tii[41,117] := {114} tii[41,118] := {165} tii[41,119] := {121} tii[41,120] := {172} tii[41,121] := {170} tii[41,122] := {177} tii[41,123] := {271} tii[41,124] := {224} tii[41,125] := {187} tii[41,126] := {212} tii[41,127] := {217} tii[41,128] := {248} tii[41,129] := {250} tii[41,130] := {186} tii[41,131] := {268} tii[41,132] := {279} tii[41,133] := {28} tii[41,134] := {14} tii[41,135] := {231} tii[41,136] := {27} tii[41,137] := {192} tii[41,138] := {112} tii[41,139] := {5} tii[41,140] := {53} tii[41,141] := {94} tii[41,142] := {96} tii[41,143] := {142} tii[41,144] := {26} tii[41,145] := {54} tii[41,146] := {55} tii[41,147] := {95} tii[41,148] := {97} tii[41,149] := {143} tii[41,150] := {43} tii[41,151] := {204} tii[41,152] := {2} tii[41,153] := {61} tii[41,154] := {138} tii[41,155] := {116} tii[41,156] := {123} tii[41,157] := {103} tii[41,158] := {207} tii[41,159] := {108} tii[41,160] := {13} tii[41,161] := {167} tii[41,162] := {33} tii[41,163] := {174} tii[41,164] := {36} tii[41,165] := {216} tii[41,166] := {71} tii[41,167] := {221} tii[41,168] := {76} tii[41,169] := {203} tii[41,170] := {127} tii[41,171] := {253} tii[41,172] := {104} tii[41,173] := {63} tii[41,174] := {115} tii[41,175] := {122} tii[41,176] := {171} tii[41,177] := {119} tii[41,178] := {178} tii[41,179] := {126} tii[41,180] := {228} tii[41,181] := {131} tii[41,182] := {156} tii[41,183] := {225} tii[41,184] := {51} tii[41,185] := {215} tii[41,186] := {220} tii[41,187] := {136} tii[41,188] := {202} tii[41,189] := {200} tii[41,190] := {255} tii[41,191] := {264} tii[41,192] := {0} tii[41,193] := {57} tii[41,194] := {4} tii[41,195] := {15} tii[41,196] := {16} tii[41,197] := {34} tii[41,198] := {37} tii[41,199] := {240} tii[41,200] := {179} tii[41,201] := {58} tii[41,202] := {31} tii[41,203] := {67} tii[41,204] := {72} tii[41,205] := {70} tii[41,206] := {117} tii[41,207] := {75} tii[41,208] := {124} tii[41,209] := {257} tii[41,210] := {80} tii[41,211] := {223} tii[41,212] := {140} tii[41,213] := {101} tii[41,214] := {22} tii[41,215] := {184} tii[41,216] := {169} tii[41,217] := {175} tii[41,218] := {230} tii[41,219] := {84} tii[41,220] := {149} tii[41,221] := {147} tii[41,222] := {226} tii[41,223] := {252} tii[41,224] := {180} tii[41,225] := {191} tii[41,226] := {242} tii[41,227] := {118} tii[41,228] := {125} tii[41,229] := {130} tii[41,230] := {153} tii[41,231] := {49} tii[41,232] := {214} tii[41,233] := {219} tii[41,234] := {133} tii[41,235] := {199} tii[41,236] := {197} tii[41,237] := {181} tii[41,238] := {78} tii[41,239] := {254} tii[41,240] := {87} tii[41,241] := {263} tii[41,242] := {237} tii[41,243] := {238} tii[41,244] := {275} tii[41,245] := {42} tii[41,246] := {150} tii[41,247] := {77} tii[41,248] := {17} tii[41,249] := {98} tii[41,250] := {39} tii[41,251] := {40} tii[41,252] := {141} tii[41,253] := {10} tii[41,254] := {183} tii[41,255] := {92} tii[41,256] := {189} tii[41,257] := {222} tii[41,258] := {128} tii[41,259] := {25} tii[41,260] := {81} tii[41,261] := {24} tii[41,262] := {139} tii[41,263] := {102} tii[41,264] := {182} tii[41,265] := {79} tii[41,266] := {52} tii[41,267] := {90} tii[41,268] := {154} tii[41,269] := {3} tii[41,270] := {41} tii[41,271] := {8} tii[41,272] := {9} tii[41,273] := {56} tii[41,274] := {129} tii[41,275] := {23} tii[41,276] := {38} tii[41,277] := {45} tii[41,278] := {99} tii[41,279] := {50} tii[41,280] := {151} cell#32 , |C| = 35 special orbit = [9, 1, 1, 1, 1, 1, 1, 1] special rep = [[], [5, 1, 1, 1]] , dim = 35 cell rep = phi[[],[5, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 35*X TII subcells: tii[49,1] := {27} tii[49,2] := {24} tii[49,3] := {29} tii[49,4] := {32} tii[49,5] := {14} tii[49,6] := {23} tii[49,7] := {28} tii[49,8] := {13} tii[49,9] := {22} tii[49,10] := {18} tii[49,11] := {6} tii[49,12] := {12} tii[49,13] := {21} tii[49,14] := {5} tii[49,15] := {11} tii[49,16] := {7} tii[49,17] := {0} tii[49,18] := {4} tii[49,19] := {1} tii[49,20] := {3} tii[49,21] := {34} tii[49,22] := {33} tii[49,23] := {31} tii[49,24] := {26} tii[49,25] := {19} tii[49,26] := {30} tii[49,27] := {25} tii[49,28] := {20} tii[49,29] := {8} tii[49,30] := {17} tii[49,31] := {10} tii[49,32] := {2} tii[49,33] := {16} tii[49,34] := {9} tii[49,35] := {15} cell#33 , |C| = 250 special orbit = [7, 3, 1, 1, 1, 1, 1, 1] special rep = [[1], [4, 1, 1, 1]] , dim = 160 cell rep = phi[[],[4, 2, 1, 1]]+phi[[1],[4, 1, 1, 1]] TII depth = 2 TII multiplicity polynomial = 90*X^2+70*X TII subcells: tii[39,1] := {35, 221} tii[39,2] := {69, 182} tii[39,3] := {119, 175} tii[39,4] := {20, 237} tii[39,5] := {49, 155} tii[39,6] := {9, 228} tii[39,7] := {94, 144} tii[39,8] := {17, 241} tii[39,9] := {68, 181} tii[39,10] := {118, 174} tii[39,11] := {47, 202} tii[39,12] := {142, 200} tii[39,13] := {10, 244} tii[39,14] := {30, 131} tii[39,15] := {3, 236} tii[39,16] := {73, 120} tii[39,17] := {8, 245} tii[39,18] := {2, 220} tii[39,19] := {48, 154} tii[39,20] := {93, 143} tii[39,21] := {29, 172} tii[39,22] := {5, 235} tii[39,23] := {12, 219} tii[39,24] := {116, 170} tii[39,25] := {67, 166} tii[39,26] := {117, 173} tii[39,27] := {46, 192} tii[39,28] := {40, 164} tii[39,29] := {141, 201} tii[39,30] := {171, 217} tii[39,31] := {45} tii[39,32] := {66} tii[39,33] := {19, 195} tii[39,34] := {33, 167} tii[39,35] := {88} tii[39,36] := {112} tii[39,37] := {113} tii[39,38] := {57} tii[39,39] := {6, 207} tii[39,40] := {52, 161} tii[39,41] := {13, 225} tii[39,42] := {72} tii[39,43] := {99} tii[39,44] := {103} tii[39,45] := {24, 204} tii[39,46] := {92} tii[39,47] := {123} tii[39,48] := {128} tii[39,49] := {149} tii[39,50] := {153} tii[39,51] := {186} tii[39,52] := {36} tii[39,53] := {0, 194} tii[39,54] := {51} tii[39,55] := {34, 136} tii[39,56] := {1, 218} tii[39,57] := {77} tii[39,58] := {79} tii[39,59] := {4, 193} tii[39,60] := {31, 176} tii[39,61] := {71} tii[39,62] := {98} tii[39,63] := {102} tii[39,64] := {125} tii[39,65] := {130} tii[39,66] := {38, 248} tii[39,67] := {160} tii[39,68] := {11, 165} tii[39,69] := {91} tii[39,70] := {122} tii[39,71] := {127} tii[39,72] := {148} tii[39,73] := {152} tii[39,74] := {81, 232} tii[39,75] := {185} tii[39,76] := {178} tii[39,77] := {180} tii[39,78] := {115, 229} tii[39,79] := {210} tii[39,80] := {227} tii[39,81] := {21} tii[39,82] := {32} tii[39,83] := {18, 110} tii[39,84] := {54} tii[39,85] := {55} tii[39,86] := {16, 145} tii[39,87] := {50} tii[39,88] := {76} tii[39,89] := {78} tii[39,90] := {100} tii[39,91] := {104} tii[39,92] := {22, 249} tii[39,93] := {135} tii[39,94] := {23, 138} tii[39,95] := {70} tii[39,96] := {97} tii[39,97] := {101} tii[39,98] := {124} tii[39,99] := {129} tii[39,100] := {56, 211} tii[39,101] := {15, 247} tii[39,102] := {159} tii[39,103] := {146} tii[39,104] := {150} tii[39,105] := {89, 208} tii[39,106] := {27, 240} tii[39,107] := {183} tii[39,108] := {42, 233} tii[39,109] := {203} tii[39,110] := {90} tii[39,111] := {121} tii[39,112] := {126} tii[39,113] := {147} tii[39,114] := {151} tii[39,115] := {80, 223} tii[39,116] := {184} tii[39,117] := {177} tii[39,118] := {179} tii[39,119] := {114, 230} tii[39,120] := {65, 197} tii[39,121] := {209} tii[39,122] := {87, 188} tii[39,123] := {226} tii[39,124] := {205} tii[39,125] := {206} tii[39,126] := {140, 238} tii[39,127] := {231} tii[39,128] := {137, 222} tii[39,129] := {242} tii[39,130] := {246} tii[39,131] := {60, 139} tii[39,132] := {28, 243} tii[39,133] := {85, 134} tii[39,134] := {44, 234} tii[39,135] := {107, 158} tii[39,136] := {64, 215} tii[39,137] := {7, 239} tii[39,138] := {61, 109} tii[39,139] := {14, 224} tii[39,140] := {59, 216} tii[39,141] := {83, 133} tii[39,142] := {25, 214} tii[39,143] := {75, 189} tii[39,144] := {26, 199} tii[39,145] := {106, 157} tii[39,146] := {41, 190} tii[39,147] := {96, 213} tii[39,148] := {62, 198} tii[39,149] := {39, 84} tii[39,150] := {37, 191} tii[39,151] := {58, 108} tii[39,152] := {53, 162} tii[39,153] := {43, 169} tii[39,154] := {82, 132} tii[39,155] := {63, 163} tii[39,156] := {74, 187} tii[39,157] := {86, 168} tii[39,158] := {105, 156} tii[39,159] := {95, 212} tii[39,160] := {111, 196} cell#34 , |C| = 280 special orbit = [7, 3, 3, 1, 1, 1] special rep = [[1], [4, 2, 1]] , dim = 280 cell rep = phi[[1],[4, 2, 1]] TII depth = 4 TII multiplicity polynomial = 280*X TII subcells: tii[41,1] := {278} tii[41,2] := {275} tii[41,3] := {262} tii[41,4] := {41} tii[41,5] := {272} tii[41,6] := {51} tii[41,7] := {243} tii[41,8] := {264} tii[41,9] := {43} tii[41,10] := {197} tii[41,11] := {245} tii[41,12] := {279} tii[41,13] := {93} tii[41,14] := {270} tii[41,15] := {273} tii[41,16] := {98} tii[41,17] := {239} tii[41,18] := {263} tii[41,19] := {267} tii[41,20] := {277} tii[41,21] := {158} tii[41,22] := {268} tii[41,23] := {271} tii[41,24] := {276} tii[41,25] := {65} tii[41,26] := {80} tii[41,27] := {260} tii[41,28] := {67} tii[41,29] := {230} tii[41,30] := {23} tii[41,31] := {96} tii[41,32] := {274} tii[41,33] := {30} tii[41,34] := {113} tii[41,35] := {13} tii[41,36] := {130} tii[41,37] := {214} tii[41,38] := {27} tii[41,39] := {157} tii[41,40] := {99} tii[41,41] := {10} tii[41,42] := {257} tii[41,43] := {252} tii[41,44] := {160} tii[41,45] := {202} tii[41,46] := {205} tii[41,47] := {37} tii[41,48] := {149} tii[41,49] := {244} tii[41,50] := {266} tii[41,51] := {44} tii[41,52] := {137} tii[41,53] := {22} tii[41,54] := {173} tii[41,55] := {231} tii[41,56] := {177} tii[41,57] := {217} tii[41,58] := {220} tii[41,59] := {56} tii[41,60] := {213} tii[41,61] := {175} tii[41,62] := {215} tii[41,63] := {218} tii[41,64] := {64} tii[41,65] := {26} tii[41,66] := {94} tii[41,67] := {259} tii[41,68] := {79} tii[41,69] := {20} tii[41,70] := {66} tii[41,71] := {229} tii[41,72] := {240} tii[41,73] := {120} tii[41,74] := {163} tii[41,75] := {167} tii[41,76] := {60} tii[41,77] := {261} tii[41,78] := {61} tii[41,79] := {110} tii[41,80] := {251} tii[41,81] := {253} tii[41,82] := {97} tii[41,83] := {40} tii[41,84] := {34} tii[41,85] := {212} tii[41,86] := {68} tii[41,87] := {211} tii[41,88] := {85} tii[41,89] := {135} tii[41,90] := {179} tii[41,91] := {124} tii[41,92] := {184} tii[41,93] := {127} tii[41,94] := {83} tii[41,95] := {232} tii[41,96] := {69} tii[41,97] := {242} tii[41,98] := {134} tii[41,99] := {105} tii[41,100] := {178} tii[41,101] := {109} tii[41,102] := {183} tii[41,103] := {70} tii[41,104] := {73} tii[41,105] := {114} tii[41,106] := {129} tii[41,107] := {63} tii[41,108] := {256} tii[41,109] := {136} tii[41,110] := {159} tii[41,111] := {201} tii[41,112] := {204} tii[41,113] := {118} tii[41,114] := {258} tii[41,115] := {119} tii[41,116] := {176} tii[41,117] := {162} tii[41,118] := {216} tii[41,119] := {166} tii[41,120] := {219} tii[41,121] := {140} tii[41,122] := {145} tii[41,123] := {249} tii[41,124] := {189} tii[41,125] := {199} tii[41,126] := {233} tii[41,127] := {234} tii[41,128] := {200} tii[41,129] := {203} tii[41,130] := {265} tii[41,131] := {235} tii[41,132] := {269} tii[41,133] := {42} tii[41,134] := {35} tii[41,135] := {6} tii[41,136] := {95} tii[41,137] := {3} tii[41,138] := {241} tii[41,139] := {55} tii[41,140] := {121} tii[41,141] := {164} tii[41,142] := {168} tii[41,143] := {5} tii[41,144] := {101} tii[41,145] := {143} tii[41,146] := {148} tii[41,147] := {103} tii[41,148] := {107} tii[41,149] := {151} tii[41,150] := {38} tii[41,151] := {19} tii[41,152] := {82} tii[41,153] := {58} tii[41,154] := {174} tii[41,155] := {88} tii[41,156] := {91} tii[41,157] := {12} tii[41,158] := {198} tii[41,159] := {45} tii[41,160] := {138} tii[41,161] := {72} tii[41,162] := {182} tii[41,163] := {75} tii[41,164] := {187} tii[41,165] := {46} tii[41,166] := {141} tii[41,167] := {47} tii[41,168] := {146} tii[41,169] := {1} tii[41,170] := {237} tii[41,171] := {81} tii[41,172] := {190} tii[41,173] := {57} tii[41,174] := {87} tii[41,175] := {90} tii[41,176] := {71} tii[41,177] := {181} tii[41,178] := {74} tii[41,179] := {186} tii[41,180] := {191} tii[41,181] := {16} tii[41,182] := {224} tii[41,183] := {115} tii[41,184] := {248} tii[41,185] := {86} tii[41,186] := {89} tii[41,187] := {195} tii[41,188] := {246} tii[41,189] := {36} tii[41,190] := {131} tii[41,191] := {172} tii[41,192] := {54} tii[41,193] := {25} tii[41,194] := {100} tii[41,195] := {142} tii[41,196] := {147} tii[41,197] := {102} tii[41,198] := {106} tii[41,199] := {8} tii[41,200] := {208} tii[41,201] := {150} tii[41,202] := {84} tii[41,203] := {123} tii[41,204] := {126} tii[41,205] := {139} tii[41,206] := {104} tii[41,207] := {144} tii[41,208] := {108} tii[41,209] := {225} tii[41,210] := {33} tii[41,211] := {15} tii[41,212] := {171} tii[41,213] := {188} tii[41,214] := {222} tii[41,215] := {152} tii[41,216] := {122} tii[41,217] := {125} tii[41,218] := {194} tii[41,219] := {227} tii[41,220] := {221} tii[41,221] := {59} tii[41,222] := {169} tii[41,223] := {28} tii[41,224] := {153} tii[41,225] := {155} tii[41,226] := {210} tii[41,227] := {180} tii[41,228] := {185} tii[41,229] := {52} tii[41,230] := {223} tii[41,231] := {236} tii[41,232] := {161} tii[41,233] := {165} tii[41,234] := {250} tii[41,235] := {247} tii[41,236] := {92} tii[41,237] := {77} tii[41,238] := {207} tii[41,239] := {206} tii[41,240] := {228} tii[41,241] := {238} tii[41,242] := {128} tii[41,243] := {254} tii[41,244] := {255} tii[41,245] := {17} tii[41,246] := {0} tii[41,247] := {209} tii[41,248] := {32} tii[41,249] := {2} tii[41,250] := {193} tii[41,251] := {49} tii[41,252] := {4} tii[41,253] := {53} tii[41,254] := {7} tii[41,255] := {133} tii[41,256] := {154} tii[41,257] := {14} tii[41,258] := {116} tii[41,259] := {78} tii[41,260] := {9} tii[41,261] := {226} tii[41,262] := {117} tii[41,263] := {11} tii[41,264] := {29} tii[41,265] := {132} tii[41,266] := {112} tii[41,267] := {156} tii[41,268] := {21} tii[41,269] := {31} tii[41,270] := {18} tii[41,271] := {192} tii[41,272] := {48} tii[41,273] := {24} tii[41,274] := {50} tii[41,275] := {76} tii[41,276] := {170} tii[41,277] := {196} tii[41,278] := {39} tii[41,279] := {111} tii[41,280] := {62} cell#35 , |C| = 21 special orbit = [11, 1, 1, 1, 1, 1] special rep = [[], [6, 1, 1]] , dim = 21 cell rep = phi[[],[6, 1, 1]] TII depth = 1 TII multiplicity polynomial = 21*X TII subcells: tii[55,1] := {18} tii[55,2] := {15} tii[55,3] := {11} tii[55,4] := {14} tii[55,5] := {17} tii[55,6] := {10} tii[55,7] := {5} tii[55,8] := {9} tii[55,9] := {13} tii[55,10] := {0} tii[55,11] := {4} tii[55,12] := {8} tii[55,13] := {2} tii[55,14] := {6} tii[55,15] := {1} tii[55,16] := {20} tii[55,17] := {19} tii[55,18] := {16} tii[55,19] := {12} tii[55,20] := {7} tii[55,21] := {3} cell#36 , |C| = 184 special orbit = [9, 3, 1, 1, 1, 1] special rep = [[1], [5, 1, 1]] , dim = 120 cell rep = phi[[],[5, 2, 1]]+phi[[1],[5, 1, 1]] TII depth = 3 TII multiplicity polynomial = 64*X^2+56*X TII subcells: tii[50,1] := {25, 159} tii[50,2] := {53, 156} tii[50,3] := {84, 153} tii[50,4] := {121, 151} tii[50,5] := {13, 162} tii[50,6] := {37, 143} tii[50,7] := {5, 171} tii[50,8] := {64, 140} tii[50,9] := {12, 177} tii[50,10] := {104, 137} tii[50,11] := {22, 181} tii[50,12] := {31, 157} tii[50,13] := {58, 134} tii[50,14] := {18, 166} tii[50,15] := {95, 132} tii[50,16] := {30, 173} tii[50,17] := {43, 148} tii[50,18] := {76, 114} tii[50,19] := {29, 160} tii[50,20] := {61, 133} tii[50,21] := {15} tii[50,22] := {27} tii[50,23] := {14, 146} tii[50,24] := {39} tii[50,25] := {24, 131} tii[50,26] := {36, 113} tii[50,27] := {50} tii[50,28] := {69} tii[50,29] := {71} tii[50,30] := {0, 167} tii[50,31] := {41} tii[50,32] := {4, 174} tii[50,33] := {55} tii[50,34] := {40, 145} tii[50,35] := {11, 178} tii[50,36] := {52, 129} tii[50,37] := {66} tii[50,38] := {88} tii[50,39] := {90} tii[50,40] := {2, 165} tii[50,41] := {72} tii[50,42] := {7, 172} tii[50,43] := {67, 144} tii[50,44] := {86} tii[50,45] := {106} tii[50,46] := {108} tii[50,47] := {1, 163} tii[50,48] := {103} tii[50,49] := {122} tii[50,50] := {124} tii[50,51] := {138} tii[50,52] := {139} tii[50,53] := {155} tii[50,54] := {26} tii[50,55] := {38} tii[50,56] := {23, 130} tii[50,57] := {49} tii[50,58] := {35, 112} tii[50,59] := {68} tii[50,60] := {70} tii[50,61] := {8, 154} tii[50,62] := {54} tii[50,63] := {51, 128} tii[50,64] := {17, 164} tii[50,65] := {65} tii[50,66] := {87} tii[50,67] := {89} tii[50,68] := {6, 152} tii[50,69] := {85} tii[50,70] := {105} tii[50,71] := {107} tii[50,72] := {123} tii[50,73] := {125} tii[50,74] := {42, 183} tii[50,75] := {142} tii[50,76] := {45} tii[50,77] := {60} tii[50,78] := {44, 119} tii[50,79] := {78} tii[50,80] := {81} tii[50,81] := {16, 147} tii[50,82] := {75} tii[50,83] := {96} tii[50,84] := {98} tii[50,85] := {115} tii[50,86] := {116} tii[50,87] := {48, 180} tii[50,88] := {135} tii[50,89] := {59} tii[50,90] := {77} tii[50,91] := {80} tii[50,92] := {97} tii[50,93] := {99} tii[50,94] := {47, 170} tii[50,95] := {118} tii[50,96] := {79} tii[50,97] := {82} tii[50,98] := {46, 150} tii[50,99] := {102} tii[50,100] := {120} tii[50,101] := {57, 93} tii[50,102] := {28, 182} tii[50,103] := {74, 111} tii[50,104] := {21, 179} tii[50,105] := {94, 127} tii[50,106] := {10, 175} tii[50,107] := {109, 141} tii[50,108] := {3, 168} tii[50,109] := {56, 92} tii[50,110] := {34, 176} tii[50,111] := {73, 110} tii[50,112] := {20, 169} tii[50,113] := {91, 126} tii[50,114] := {9, 158} tii[50,115] := {63, 101} tii[50,116] := {33, 161} tii[50,117] := {83, 117} tii[50,118] := {19, 149} tii[50,119] := {62, 100} tii[50,120] := {32, 136} cell#37 , |C| = 184 special orbit = [9, 3, 1, 1, 1, 1] special rep = [[1], [5, 1, 1]] , dim = 120 cell rep = phi[[],[5, 2, 1]]+phi[[1],[5, 1, 1]] TII depth = 3 TII multiplicity polynomial = 64*X^2+56*X TII subcells: tii[50,1] := {37, 151} tii[50,2] := {90, 91} tii[50,3] := {145, 146} tii[50,4] := {178, 179} tii[50,5] := {16, 133} tii[50,6] := {59, 60} tii[50,7] := {5, 101} tii[50,8] := {114, 115} tii[50,9] := {15, 72} tii[50,10] := {167, 168} tii[50,11] := {33, 98} tii[50,12] := {44, 45} tii[50,13] := {96, 97} tii[50,14] := {23, 24} tii[50,15] := {157, 158} tii[50,16] := {41, 42} tii[50,17] := {66, 67} tii[50,18] := {131, 132} tii[50,19] := {39, 40} tii[50,20] := {99, 100} tii[50,21] := {64} tii[50,22] := {83} tii[50,23] := {17, 126} tii[50,24] := {112} tii[50,25] := {36, 92} tii[50,26] := {58, 119} tii[50,27] := {139} tii[50,28] := {162} tii[50,29] := {165} tii[50,30] := {0, 71} tii[50,31] := {55} tii[50,32] := {4, 46} tii[50,33] := {82} tii[50,34] := {62, 63} tii[50,35] := {14, 70} tii[50,36] := {88, 89} tii[50,37] := {108} tii[50,38] := {141} tii[50,39] := {143} tii[50,40] := {2, 25} tii[50,41] := {111} tii[50,42] := {8, 43} tii[50,43] := {117, 118} tii[50,44] := {138} tii[50,45] := {161} tii[50,46] := {164} tii[50,47] := {1, 20} tii[50,48] := {159} tii[50,49] := {173} tii[50,50] := {175} tii[50,51] := {181} tii[50,52] := {182} tii[50,53] := {183} tii[50,54] := {32} tii[50,55] := {54} tii[50,56] := {34, 35} tii[50,57] := {80} tii[50,58] := {56, 57} tii[50,59] := {109} tii[50,60] := {110} tii[50,61] := {9, 10} tii[50,62] := {81} tii[50,63] := {86, 87} tii[50,64] := {21, 22} tii[50,65] := {107} tii[50,66] := {140} tii[50,67] := {142} tii[50,68] := {6, 7} tii[50,69] := {137} tii[50,70] := {160} tii[50,71] := {163} tii[50,72] := {174} tii[50,73] := {176} tii[50,74] := {65, 136} tii[50,75] := {180} tii[50,76] := {61} tii[50,77] := {85} tii[50,78] := {68, 69} tii[50,79] := {121} tii[50,80] := {124} tii[50,81] := {18, 19} tii[50,82] := {116} tii[50,83] := {147} tii[50,84] := {149} tii[50,85] := {169} tii[50,86] := {170} tii[50,87] := {77, 78} tii[50,88] := {177} tii[50,89] := {84} tii[50,90] := {120} tii[50,91] := {123} tii[50,92] := {148} tii[50,93] := {150} tii[50,94] := {75, 76} tii[50,95] := {166} tii[50,96] := {122} tii[50,97] := {125} tii[50,98] := {73, 74} tii[50,99] := {144} tii[50,100] := {113} tii[50,101] := {95, 156} tii[50,102] := {38, 106} tii[50,103] := {129, 130} tii[50,104] := {31, 79} tii[50,105] := {154, 155} tii[50,106] := {13, 51} tii[50,107] := {171, 172} tii[50,108] := {3, 28} tii[50,109] := {93, 94} tii[50,110] := {52, 53} tii[50,111] := {127, 128} tii[50,112] := {29, 30} tii[50,113] := {152, 153} tii[50,114] := {11, 12} tii[50,115] := {104, 105} tii[50,116] := {49, 50} tii[50,117] := {134, 135} tii[50,118] := {26, 27} tii[50,119] := {102, 103} tii[50,120] := {47, 48} cell#38 , |C| = 280 special orbit = [7, 3, 3, 1, 1, 1] special rep = [[1], [4, 2, 1]] , dim = 280 cell rep = phi[[1],[4, 2, 1]] TII depth = 4 TII multiplicity polynomial = 280*X TII subcells: tii[41,1] := {195} tii[41,2] := {268} tii[41,3] := {279} tii[41,4] := {33} tii[41,5] := {174} tii[41,6] := {89} tii[41,7] := {88} tii[41,8] := {260} tii[41,9] := {181} tii[41,10] := {180} tii[41,11] := {278} tii[41,12] := {129} tii[41,13] := {87} tii[41,14] := {241} tii[41,15] := {86} tii[41,16] := {179} tii[41,17] := {178} tii[41,18] := {273} tii[41,19] := {52} tii[41,20] := {212} tii[41,21] := {177} tii[41,22] := {263} tii[41,23] := {176} tii[41,24] := {246} tii[41,25] := {46} tii[41,26] := {111} tii[41,27] := {110} tii[41,28] := {199} tii[41,29] := {198} tii[41,30] := {15} tii[41,31] := {83} tii[41,32] := {154} tii[41,33] := {51} tii[41,34] := {155} tii[41,35] := {6} tii[41,36] := {107} tii[41,37] := {50} tii[41,38] := {138} tii[41,39] := {137} tii[41,40] := {230} tii[41,41] := {12} tii[41,42] := {115} tii[41,43] := {229} tii[41,44] := {148} tii[41,45] := {188} tii[41,46] := {190} tii[41,47] := {27} tii[41,48] := {196} tii[41,49] := {26} tii[41,50] := {254} tii[41,51] := {95} tii[41,52] := {255} tii[41,53] := {11} tii[41,54] := {94} tii[41,55] := {10} tii[41,56] := {220} tii[41,57] := {247} tii[41,58] := {249} tii[41,59] := {57} tii[41,60] := {56} tii[41,61] := {269} tii[41,62] := {274} tii[41,63] := {275} tii[41,64] := {58} tii[41,65] := {16} tii[41,66] := {84} tii[41,67] := {131} tii[41,68] := {132} tii[41,69] := {32} tii[41,70] := {217} tii[41,71] := {216} tii[41,72] := {90} tii[41,73] := {114} tii[41,74] := {160} tii[41,75] := {166} tii[41,76] := {49} tii[41,77] := {48} tii[41,78] := {47} tii[41,79] := {175} tii[41,80] := {243} tii[41,81] := {28} tii[41,82] := {244} tii[41,83] := {29} tii[41,84] := {55} tii[41,85] := {54} tii[41,86] := {136} tii[41,87] := {135} tii[41,88] := {74} tii[41,89] := {197} tii[41,90] := {232} tii[41,91] := {119} tii[41,92] := {236} tii[41,93] := {124} tii[41,94] := {93} tii[41,95] := {13} tii[41,96] := {113} tii[41,97] := {92} tii[41,98] := {261} tii[41,99] := {159} tii[41,100] := {270} tii[41,101] := {165} tii[41,102] := {271} tii[41,103] := {204} tii[41,104] := {209} tii[41,105] := {228} tii[41,106] := {130} tii[41,107] := {53} tii[41,108] := {214} tii[41,109] := {215} tii[41,110] := {156} tii[41,111] := {200} tii[41,112] := {205} tii[41,113] := {134} tii[41,114] := {133} tii[41,115] := {112} tii[41,116] := {242} tii[41,117] := {158} tii[41,118] := {256} tii[41,119] := {164} tii[41,120] := {258} tii[41,121] := {203} tii[41,122] := {208} tii[41,123] := {102} tii[41,124] := {227} tii[41,125] := {213} tii[41,126] := {231} tii[41,127] := {235} tii[41,128] := {202} tii[41,129] := {207} tii[41,130] := {139} tii[41,131] := {226} tii[41,132] := {225} tii[41,133] := {25} tii[41,134] := {45} tii[41,135] := {1} tii[41,136] := {70} tii[41,137] := {5} tii[41,138] := {75} tii[41,139] := {76} tii[41,140] := {106} tii[41,141] := {149} tii[41,142] := {150} tii[41,143] := {0} tii[41,144] := {147} tii[41,145] := {187} tii[41,146] := {189} tii[41,147] := {222} tii[41,148] := {224} tii[41,149] := {245} tii[41,150] := {24} tii[41,151] := {31} tii[41,152] := {116} tii[41,153] := {44} tii[41,154] := {30} tii[41,155] := {78} tii[41,156] := {81} tii[41,157] := {4} tii[41,158] := {3} tii[41,159] := {73} tii[41,160] := {186} tii[41,161] := {118} tii[41,162] := {221} tii[41,163] := {123} tii[41,164] := {223} tii[41,165] := {163} tii[41,166] := {248} tii[41,167] := {169} tii[41,168] := {250} tii[41,169] := {40} tii[41,170] := {172} tii[41,171] := {194} tii[41,172] := {262} tii[41,173] := {43} tii[41,174] := {77} tii[41,175] := {80} tii[41,176] := {121} tii[41,177] := {264} tii[41,178] := {126} tii[41,179] := {265} tii[41,180] := {36} tii[41,181] := {37} tii[41,182] := {272} tii[41,183] := {153} tii[41,184] := {239} tii[41,185] := {79} tii[41,186] := {82} tii[41,187] := {34} tii[41,188] := {277} tii[41,189] := {35} tii[41,190] := {109} tii[41,191] := {71} tii[41,192] := {91} tii[41,193] := {14} tii[41,194] := {157} tii[41,195] := {201} tii[41,196] := {206} tii[41,197] := {234} tii[41,198] := {238} tii[41,199] := {69} tii[41,200] := {145} tii[41,201] := {253} tii[41,202] := {72} tii[41,203] := {117} tii[41,204] := {122} tii[41,205] := {257} tii[41,206] := {162} tii[41,207] := {259} tii[41,208] := {168} tii[41,209] := {63} tii[41,210] := {64} tii[41,211] := {105} tii[41,212] := {104} tii[41,213] := {267} tii[41,214] := {218} tii[41,215] := {193} tii[41,216] := {120} tii[41,217] := {125} tii[41,218] := {41} tii[41,219] := {59} tii[41,220] := {276} tii[41,221] := {60} tii[41,222] := {152} tii[41,223] := {144} tii[41,224] := {143} tii[41,225] := {19} tii[41,226] := {108} tii[41,227] := {233} tii[41,228] := {237} tii[41,229] := {103} tii[41,230] := {252} tii[41,231] := {182} tii[41,232] := {161} tii[41,233] := {167} tii[41,234] := {96} tii[41,235] := {266} tii[41,236] := {97} tii[41,237] := {142} tii[41,238] := {141} tii[41,239] := {192} tii[41,240] := {67} tii[41,241] := {151} tii[41,242] := {140} tii[41,243] := {251} tii[41,244] := {191} tii[41,245] := {85} tii[41,246] := {23} tii[41,247] := {127} tii[41,248] := {128} tii[41,249] := {9} tii[41,250] := {170} tii[41,251] := {171} tii[41,252] := {2} tii[41,253] := {173} tii[41,254] := {66} tii[41,255] := {65} tii[41,256] := {21} tii[41,257] := {101} tii[41,258] := {100} tii[41,259] := {211} tii[41,260] := {22} tii[41,261] := {210} tii[41,262] := {7} tii[41,263] := {8} tii[41,264] := {62} tii[41,265] := {61} tii[41,266] := {240} tii[41,267] := {17} tii[41,268] := {18} tii[41,269] := {146} tii[41,270] := {42} tii[41,271] := {184} tii[41,272] := {185} tii[41,273] := {20} tii[41,274] := {99} tii[41,275] := {219} tii[41,276] := {98} tii[41,277] := {38} tii[41,278] := {39} tii[41,279] := {183} tii[41,280] := {68} cell#39 , |C| = 336 special orbit = [7, 3, 2, 2, 1, 1] special rep = [[1, 1], [4, 1, 1]] , dim = 280 cell rep = phi[[],[4, 2, 2]]+phi[[1, 1],[4, 1, 1]] TII depth = 5 TII multiplicity polynomial = 56*X^2+224*X TII subcells: tii[40,1] := {130, 335} tii[40,2] := {189, 329} tii[40,3] := {272, 327} tii[40,4] := {188, 330} tii[40,5] := {271, 326} tii[40,6] := {270, 328} tii[40,7] := {49} tii[40,8] := {43} tii[40,9] := {35} tii[40,10] := {93, 321} tii[40,11] := {72} tii[40,12] := {146, 313} tii[40,13] := {67} tii[40,14] := {66, 301} tii[40,15] := {95} tii[40,16] := {233, 302} tii[40,17] := {54} tii[40,18] := {81, 267} tii[40,19] := {112} tii[40,20] := {160} tii[40,21] := {167} tii[40,22] := {109, 289} tii[40,23] := {94} tii[40,24] := {195, 273} tii[40,25] := {79} tii[40,26] := {78, 264} tii[40,27] := {111} tii[40,28] := {159} tii[40,29] := {166} tii[40,30] := {153, 236} tii[40,31] := {110} tii[40,32] := {157} tii[40,33] := {164} tii[40,34] := {163} tii[40,35] := {170} tii[40,36] := {103} tii[40,37] := {96, 325} tii[40,38] := {133} tii[40,39] := {97} tii[40,40] := {117, 300} tii[40,41] := {80} tii[40,42] := {152} tii[40,43] := {202} tii[40,44] := {211} tii[40,45] := {147, 314} tii[40,46] := {132} tii[40,47] := {172} tii[40,48] := {116} tii[40,49] := {115, 298} tii[40,50] := {155, 323} tii[40,51] := {234, 303} tii[40,52] := {151} tii[40,53] := {194} tii[40,54] := {201} tii[40,55] := {241} tii[40,56] := {210} tii[40,57] := {249} tii[40,58] := {196, 274} tii[40,59] := {149} tii[40,60] := {232} tii[40,61] := {198} tii[40,62] := {277} tii[40,63] := {207} tii[40,64] := {284} tii[40,65] := {205} tii[40,66] := {308} tii[40,67] := {214} tii[40,68] := {312} tii[40,69] := {333} tii[40,70] := {171} tii[40,71] := {154, 322} tii[40,72] := {156} tii[40,73] := {193} tii[40,74] := {240} tii[40,75] := {248} tii[40,76] := {235, 304} tii[40,77] := {192} tii[40,78] := {231} tii[40,79] := {239} tii[40,80] := {276} tii[40,81] := {247} tii[40,82] := {283} tii[40,83] := {244} tii[40,84] := {307} tii[40,85] := {252} tii[40,86] := {311} tii[40,87] := {332} tii[40,88] := {230} tii[40,89] := {275} tii[40,90] := {282} tii[40,91] := {281} tii[40,92] := {306} tii[40,93] := {288} tii[40,94] := {310} tii[40,95] := {331} tii[40,96] := {305} tii[40,97] := {309} tii[40,98] := {334} tii[40,99] := {0} tii[40,100] := {1} tii[40,101] := {33} tii[40,102] := {21} tii[40,103] := {2} tii[40,104] := {5} tii[40,105] := {6} tii[40,106] := {44, 269} tii[40,107] := {65} tii[40,108] := {3} tii[40,109] := {56, 228} tii[40,110] := {32} tii[40,111] := {76} tii[40,112] := {4} tii[40,113] := {120} tii[40,114] := {10} tii[40,115] := {126} tii[40,116] := {11} tii[40,117] := {36, 187} tii[40,118] := {53} tii[40,119] := {8} tii[40,120] := {86} tii[40,121] := {16} tii[40,122] := {91} tii[40,123] := {18} tii[40,124] := {60} tii[40,125] := {25} tii[40,126] := {64} tii[40,127] := {28} tii[40,128] := {46} tii[40,129] := {47} tii[40,130] := {7} tii[40,131] := {131} tii[40,132] := {9} tii[40,133] := {114, 297} tii[40,134] := {50} tii[40,135] := {150} tii[40,136] := {17} tii[40,137] := {200} tii[40,138] := {19} tii[40,139] := {209} tii[40,140] := {55, 229} tii[40,141] := {77} tii[40,142] := {190} tii[40,143] := {14} tii[40,144] := {237} tii[40,145] := {24} tii[40,146] := {121} tii[40,147] := {245} tii[40,148] := {27} tii[40,149] := {127} tii[40,150] := {278} tii[40,151] := {39} tii[40,152] := {87} tii[40,153] := {285} tii[40,154] := {42} tii[40,155] := {92} tii[40,156] := {144, 222} tii[40,157] := {318} tii[40,158] := {70} tii[40,159] := {71} tii[40,160] := {22} tii[40,161] := {148} tii[40,162] := {37} tii[40,163] := {197} tii[40,164] := {40} tii[40,165] := {206} tii[40,166] := {58} tii[40,167] := {242} tii[40,168] := {122} tii[40,169] := {62} tii[40,170] := {250} tii[40,171] := {128} tii[40,172] := {141, 221} tii[40,173] := {99} tii[40,174] := {101} tii[40,175] := {295} tii[40,176] := {85} tii[40,177] := {203} tii[40,178] := {90} tii[40,179] := {212} tii[40,180] := {134, 218} tii[40,181] := {137} tii[40,182] := {139} tii[40,183] := {263} tii[40,184] := {227} tii[40,185] := {12} tii[40,186] := {73} tii[40,187] := {15} tii[40,188] := {26} tii[40,189] := {29} tii[40,190] := {113} tii[40,191] := {82, 268} tii[40,192] := {23} tii[40,193] := {161} tii[40,194] := {38} tii[40,195] := {168} tii[40,196] := {41} tii[40,197] := {123} tii[40,198] := {59} tii[40,199] := {129} tii[40,200] := {63} tii[40,201] := {186, 262} tii[40,202] := {100} tii[40,203] := {102} tii[40,204] := {34} tii[40,205] := {191} tii[40,206] := {57} tii[40,207] := {238} tii[40,208] := {61} tii[40,209] := {246} tii[40,210] := {84} tii[40,211] := {162} tii[40,212] := {279} tii[40,213] := {89} tii[40,214] := {169} tii[40,215] := {286} tii[40,216] := {182, 261} tii[40,217] := {225, 294} tii[40,218] := {136} tii[40,219] := {138} tii[40,220] := {319} tii[40,221] := {119} tii[40,222] := {243} tii[40,223] := {125} tii[40,224] := {251} tii[40,225] := {174, 257} tii[40,226] := {176} tii[40,227] := {178} tii[40,228] := {296} tii[40,229] := {255, 317} tii[40,230] := {266} tii[40,231] := {52} tii[40,232] := {83} tii[40,233] := {88} tii[40,234] := {204} tii[40,235] := {118} tii[40,236] := {213} tii[40,237] := {124} tii[40,238] := {224, 293} tii[40,239] := {175} tii[40,240] := {177} tii[40,241] := {158} tii[40,242] := {280} tii[40,243] := {165} tii[40,244] := {287} tii[40,245] := {217, 292} tii[40,246] := {219} tii[40,247] := {220} tii[40,248] := {254, 316} tii[40,249] := {320} tii[40,250] := {299} tii[40,251] := {199} tii[40,252] := {208} tii[40,253] := {253, 315} tii[40,254] := {258} tii[40,255] := {259} tii[40,256] := {324} tii[40,257] := {13} tii[40,258] := {108, 179} tii[40,259] := {20} tii[40,260] := {75, 140} tii[40,261] := {30} tii[40,262] := {51, 105} tii[40,263] := {181, 260} tii[40,264] := {31} tii[40,265] := {215, 290} tii[40,266] := {45} tii[40,267] := {107, 180} tii[40,268] := {74, 143} tii[40,269] := {173, 256} tii[40,270] := {68} tii[40,271] := {104, 184} tii[40,272] := {48} tii[40,273] := {145, 223} tii[40,274] := {69} tii[40,275] := {106, 185} tii[40,276] := {216, 291} tii[40,277] := {98} tii[40,278] := {142, 226} tii[40,279] := {135} tii[40,280] := {183, 265} cell#40 , |C| = 280 special orbit = [7, 3, 3, 1, 1, 1] special rep = [[1], [4, 2, 1]] , dim = 280 cell rep = phi[[1],[4, 2, 1]] TII depth = 4 TII multiplicity polynomial = 280*X TII subcells: tii[41,1] := {275} tii[41,2] := {235} tii[41,3] := {261} tii[41,4] := {149} tii[41,5] := {278} tii[41,6] := {68} tii[41,7] := {269} tii[41,8] := {200} tii[41,9] := {160} tii[41,10] := {239} tii[41,11] := {240} tii[41,12] := {279} tii[41,13] := {17} tii[41,14] := {236} tii[41,15] := {277} tii[41,16] := {77} tii[41,17] := {162} tii[41,18] := {260} tii[41,19] := {273} tii[41,20] := {251} tii[41,21] := {155} tii[41,22] := {271} tii[41,23] := {229} tii[41,24] := {274} tii[41,25] := {37} tii[41,26] := {41} tii[41,27] := {256} tii[41,28] := {119} tii[41,29] := {206} tii[41,30] := {102} tii[41,31] := {67} tii[41,32] := {268} tii[41,33] := {38} tii[41,34] := {20} tii[41,35] := {64} tii[41,36] := {108} tii[41,37] := {257} tii[41,38] := {118} tii[41,39] := {205} tii[41,40] := {79} tii[41,41] := {36} tii[41,42] := {258} tii[41,43] := {163} tii[41,44] := {156} tii[41,45] := {207} tii[41,46] := {213} tii[41,47] := {19} tii[41,48] := {40} tii[41,49] := {264} tii[41,50] := {204} tii[41,51] := {78} tii[41,52] := {117} tii[41,53] := {12} tii[41,54] := {164} tii[41,55] := {252} tii[41,56] := {72} tii[41,57] := {123} tii[41,58] := {132} tii[41,59] := {115} tii[41,60] := {195} tii[41,61] := {159} tii[41,62] := {210} tii[41,63] := {216} tii[41,64] := {107} tii[41,65] := {103} tii[41,66] := {154} tii[41,67] := {276} tii[41,68] := {6} tii[41,69] := {66} tii[41,70] := {47} tii[41,71] := {120} tii[41,72] := {270} tii[41,73] := {201} tii[41,74] := {241} tii[41,75] := {243} tii[41,76] := {5} tii[41,77] := {272} tii[41,78] := {109} tii[41,79] := {18} tii[41,80] := {161} tii[41,81] := {265} tii[41,82] := {76} tii[41,83] := {2} tii[41,84] := {59} tii[41,85] := {259} tii[41,86] := {46} tii[41,87] := {121} tii[41,88] := {157} tii[41,89] := {42} tii[41,90] := {80} tii[41,91] := {208} tii[41,92] := {86} tii[41,93] := {214} tii[41,94] := {75} tii[41,95] := {253} tii[41,96] := {112} tii[41,97] := {150} tii[41,98] := {113} tii[41,99] := {167} tii[41,100] := {168} tii[41,101] := {177} tii[41,102] := {178} tii[41,103] := {212} tii[41,104] := {218} tii[41,105] := {250} tii[41,106] := {39} tii[41,107] := {11} tii[41,108] := {203} tii[41,109] := {116} tii[41,110] := {71} tii[41,111] := {122} tii[41,112] := {131} tii[41,113] := {114} tii[41,114] := {194} tii[41,115] := {43} tii[41,116] := {158} tii[41,117] := {81} tii[41,118] := {209} tii[41,119] := {87} tii[41,120] := {215} tii[41,121] := {128} tii[41,122] := {137} tii[41,123] := {266} tii[41,124] := {190} tii[41,125] := {202} tii[41,126] := {242} tii[41,127] := {244} tii[41,128] := {211} tii[41,129] := {217} tii[41,130] := {196} tii[41,131] := {249} tii[41,132] := {267} tii[41,133] := {21} tii[41,134] := {8} tii[41,135] := {35} tii[41,136] := {70} tii[41,137] := {16} tii[41,138] := {238} tii[41,139] := {24} tii[41,140] := {111} tii[41,141] := {166} tii[41,142] := {176} tii[41,143] := {7} tii[41,144] := {74} tii[41,145] := {125} tii[41,146] := {134} tii[41,147] := {174} tii[41,148] := {184} tii[41,149] := {226} tii[41,150] := {69} tii[41,151] := {30} tii[41,152] := {9} tii[41,153] := {110} tii[41,154] := {237} tii[41,155] := {165} tii[41,156] := {175} tii[41,157] := {3} tii[41,158] := {230} tii[41,159] := {73} tii[41,160] := {45} tii[41,161] := {124} tii[41,162] := {83} tii[41,163] := {133} tii[41,164] := {89} tii[41,165] := {173} tii[41,166] := {130} tii[41,167] := {183} tii[41,168] := {139} tii[41,169] := {92} tii[41,170] := {245} tii[41,171] := {225} tii[41,172] := {192} tii[41,173] := {44} tii[41,174] := {82} tii[41,175] := {88} tii[41,176] := {129} tii[41,177] := {172} tii[41,178] := {138} tii[41,179] := {182} tii[41,180] := {231} tii[41,181] := {34} tii[41,182] := {224} tii[41,183] := {191} tii[41,184] := {186} tii[41,185] := {170} tii[41,186] := {180} tii[41,187] := {152} tii[41,188] := {248} tii[41,189] := {100} tii[41,190] := {228} tii[41,191] := {234} tii[41,192] := {1} tii[41,193] := {0} tii[41,194] := {23} tii[41,195] := {50} tii[41,196] := {52} tii[41,197] := {85} tii[41,198] := {91} tii[41,199] := {140} tii[41,200] := {262} tii[41,201] := {147} tii[41,202] := {22} tii[41,203] := {49} tii[41,204] := {51} tii[41,205] := {127} tii[41,206] := {84} tii[41,207] := {136} tii[41,208] := {90} tii[41,209] := {254} tii[41,210] := {14} tii[41,211] := {101} tii[41,212] := {246} tii[41,213] := {189} tii[41,214] := {142} tii[41,215] := {146} tii[41,216] := {126} tii[41,217] := {135} tii[41,218] := {232} tii[41,219] := {104} tii[41,220] := {222} tii[41,221] := {60} tii[41,222] := {193} tii[41,223] := {141} tii[41,224] := {221} tii[41,225] := {198} tii[41,226] := {199} tii[41,227] := {171} tii[41,228] := {181} tii[41,229] := {33} tii[41,230] := {223} tii[41,231] := {185} tii[41,232] := {169} tii[41,233] := {179} tii[41,234] := {151} tii[41,235] := {247} tii[41,236] := {99} tii[41,237] := {54} tii[41,238] := {143} tii[41,239] := {227} tii[41,240] := {105} tii[41,241] := {233} tii[41,242] := {148} tii[41,243] := {263} tii[41,244] := {255} tii[41,245] := {28} tii[41,246] := {53} tii[41,247] := {220} tii[41,248] := {58} tii[41,249] := {27} tii[41,250] := {188} tii[41,251] := {96} tii[41,252] := {48} tii[41,253] := {29} tii[41,254] := {63} tii[41,255] := {219} tii[41,256] := {197} tii[41,257] := {93} tii[41,258] := {187} tii[41,259] := {57} tii[41,260] := {15} tii[41,261] := {145} tii[41,262] := {153} tii[41,263] := {32} tii[41,264] := {56} tii[41,265] := {144} tii[41,266] := {95} tii[41,267] := {106} tii[41,268] := {62} tii[41,269] := {10} tii[41,270] := {4} tii[41,271] := {98} tii[41,272] := {26} tii[41,273] := {13} tii[41,274] := {25} tii[41,275] := {55} tii[41,276] := {97} tii[41,277] := {65} tii[41,278] := {31} tii[41,279] := {94} tii[41,280] := {61} cell#41 , |C| = 140 special orbit = [5, 5, 5, 1] special rep = [[2], [3, 3]] , dim = 140 cell rep = phi[[2],[3, 3]] TII depth = 3 TII multiplicity polynomial = 140*X TII subcells: tii[33,1] := {139} tii[33,2] := {82} tii[33,3] := {126} tii[33,4] := {39} tii[33,5] := {101} tii[33,6] := {78} tii[33,7] := {132} tii[33,8] := {74} tii[33,9] := {115} tii[33,10] := {108} tii[33,11] := {136} tii[33,12] := {102} tii[33,13] := {103} tii[33,14] := {116} tii[33,15] := {117} tii[33,16] := {125} tii[33,17] := {138} tii[33,18] := {127} tii[33,19] := {133} tii[33,20] := {134} tii[33,21] := {31} tii[33,22] := {22} tii[33,23] := {7} tii[33,24] := {49} tii[33,25] := {60} tii[33,26] := {38} tii[33,27] := {67} tii[33,28] := {77} tii[33,29] := {63} tii[33,30] := {65} tii[33,31] := {28} tii[33,32] := {40} tii[33,33] := {87} tii[33,34] := {42} tii[33,35] := {90} tii[33,36] := {93} tii[33,37] := {109} tii[33,38] := {111} tii[33,39] := {68} tii[33,40] := {17} tii[33,41] := {56} tii[33,42] := {23} tii[33,43] := {85} tii[33,44] := {83} tii[33,45] := {84} tii[33,46] := {94} tii[33,47] := {44} tii[33,48] := {105} tii[33,49] := {57} tii[33,50] := {106} tii[33,51] := {58} tii[33,52] := {64} tii[33,53] := {66} tii[33,54] := {107} tii[33,55] := {51} tii[33,56] := {88} tii[33,57] := {119} tii[33,58] := {53} tii[33,59] := {91} tii[33,60] := {121} tii[33,61] := {96} tii[33,62] := {98} tii[33,63] := {114} tii[33,64] := {104} tii[33,65] := {59} tii[33,66] := {75} tii[33,67] := {76} tii[33,68] := {118} tii[33,69] := {86} tii[33,70] := {128} tii[33,71] := {89} tii[33,72] := {129} tii[33,73] := {120} tii[33,74] := {122} tii[33,75] := {130} tii[33,76] := {137} tii[33,77] := {1} tii[33,78] := {6} tii[33,79] := {11} tii[33,80] := {13} tii[33,81] := {10} tii[33,82] := {16} tii[33,83] := {47} tii[33,84] := {48} tii[33,85] := {24} tii[33,86] := {70} tii[33,87] := {32} tii[33,88] := {26} tii[33,89] := {72} tii[33,90] := {34} tii[33,91] := {12} tii[33,92] := {79} tii[33,93] := {14} tii[33,94] := {80} tii[33,95] := {21} tii[33,96] := {100} tii[33,97] := {50} tii[33,98] := {52} tii[33,99] := {95} tii[33,100] := {97} tii[33,101] := {54} tii[33,102] := {113} tii[33,103] := {124} tii[33,104] := {29} tii[33,105] := {41} tii[33,106] := {43} tii[33,107] := {25} tii[33,108] := {27} tii[33,109] := {37} tii[33,110] := {69} tii[33,111] := {71} tii[33,112] := {33} tii[33,113] := {110} tii[33,114] := {35} tii[33,115] := {112} tii[33,116] := {15} tii[33,117] := {73} tii[33,118] := {46} tii[33,119] := {123} tii[33,120] := {62} tii[33,121] := {131} tii[33,122] := {92} tii[33,123] := {135} tii[33,124] := {99} tii[33,125] := {3} tii[33,126] := {4} tii[33,127] := {9} tii[33,128] := {20} tii[33,129] := {18} tii[33,130] := {19} tii[33,131] := {5} tii[33,132] := {30} tii[33,133] := {36} tii[33,134] := {45} tii[33,135] := {2} tii[33,136] := {61} tii[33,137] := {8} tii[33,138] := {55} tii[33,139] := {81} tii[33,140] := {0} cell#42 , |C| = 336 special orbit = [7, 3, 2, 2, 1, 1] special rep = [[1, 1], [4, 1, 1]] , dim = 280 cell rep = phi[[],[4, 2, 2]]+phi[[1, 1],[4, 1, 1]] TII depth = 5 TII multiplicity polynomial = 56*X^2+224*X TII subcells: tii[40,1] := {212, 335} tii[40,2] := {186, 330} tii[40,3] := {192, 320} tii[40,4] := {89, 316} tii[40,5] := {93, 279} tii[40,6] := {174, 315} tii[40,7] := {173} tii[40,8] := {162} tii[40,9] := {143} tii[40,10] := {158, 334} tii[40,11] := {223} tii[40,12] := {135, 325} tii[40,13] := {113} tii[40,14] := {112, 332} tii[40,15] := {256} tii[40,16] := {139, 303} tii[40,17] := {97} tii[40,18] := {82, 329} tii[40,19] := {283} tii[40,20] := {309} tii[40,21] := {310} tii[40,22] := {91, 322} tii[40,23] := {159} tii[40,24] := {94, 281} tii[40,25] := {142} tii[40,26] := {59, 312} tii[40,27] := {191} tii[40,28] := {243} tii[40,29] := {250} tii[40,30] := {127, 306} tii[40,31] := {189} tii[40,32] := {241} tii[40,33] := {248} tii[40,34] := {247} tii[40,35] := {254} tii[40,36] := {255} tii[40,37] := {161, 333} tii[40,38] := {274} tii[40,39] := {74} tii[40,40] := {122, 331} tii[40,41] := {61} tii[40,42] := {295} tii[40,43] := {317} tii[40,44] := {318} tii[40,45] := {55, 308} tii[40,46] := {110} tii[40,47] := {233} tii[40,48] := {96} tii[40,49] := {31, 293} tii[40,50] := {136, 327} tii[40,51] := {60, 239} tii[40,52] := {138} tii[40,53] := {267} tii[40,54] := {196} tii[40,55] := {296} tii[40,56] := {205} tii[40,57] := {298} tii[40,58] := {86, 282} tii[40,59] := {137} tii[40,60] := {226} tii[40,61] := {194} tii[40,62] := {270} tii[40,63] := {204} tii[40,64] := {273} tii[40,65] := {202} tii[40,66] := {244} tii[40,67] := {211} tii[40,68] := {251} tii[40,69] := {288} tii[40,70] := {134} tii[40,71] := {57, 305} tii[40,72] := {141} tii[40,73] := {175} tii[40,74] := {228} tii[40,75] := {231} tii[40,76] := {125, 307} tii[40,77] := {190} tii[40,78] := {126} tii[40,79] := {242} tii[40,80] := {178} tii[40,81] := {249} tii[40,82] := {182} tii[40,83] := {246} tii[40,84] := {146} tii[40,85] := {253} tii[40,86] := {153} tii[40,87] := {218} tii[40,88] := {224} tii[40,89] := {268} tii[40,90] := {271} tii[40,91] := {285} tii[40,92] := {227} tii[40,93] := {287} tii[40,94] := {230} tii[40,95] := {275} tii[40,96] := {297} tii[40,97] := {299} tii[40,98] := {314} tii[40,99] := {1} tii[40,100] := {4} tii[40,101] := {124} tii[40,102] := {85} tii[40,103] := {11} tii[40,104] := {27} tii[40,105] := {28} tii[40,106] := {75, 328} tii[40,107] := {213} tii[40,108] := {9} tii[40,109] := {50, 324} tii[40,110] := {123} tii[40,111] := {240} tii[40,112] := {17} tii[40,113] := {284} tii[40,114] := {40} tii[40,115] := {286} tii[40,116] := {44} tii[40,117] := {26, 313} tii[40,118] := {193} tii[40,119] := {36} tii[40,120] := {245} tii[40,121] := {64} tii[40,122] := {252} tii[40,123] := {69} tii[40,124] := {201} tii[40,125] := {100} tii[40,126] := {210} tii[40,127] := {106} tii[40,128] := {165} tii[40,129] := {169} tii[40,130] := {3} tii[40,131] := {185} tii[40,132] := {6} tii[40,133] := {92, 321} tii[40,134] := {83} tii[40,135] := {225} tii[40,136] := {19} tii[40,137] := {269} tii[40,138] := {21} tii[40,139] := {272} tii[40,140] := {33, 294} tii[40,141] := {140} tii[40,142] := {176} tii[40,143] := {16} tii[40,144] := {229} tii[40,145] := {38} tii[40,146] := {198} tii[40,147] := {232} tii[40,148] := {42} tii[40,149] := {207} tii[40,150] := {197} tii[40,151] := {66} tii[40,152] := {150} tii[40,153] := {206} tii[40,154] := {71} tii[40,155] := {157} tii[40,156] := {52, 323} tii[40,157] := {259} tii[40,158] := {118} tii[40,159] := {120} tii[40,160] := {35} tii[40,161] := {128} tii[40,162] := {63} tii[40,163] := {180} tii[40,164] := {68} tii[40,165] := {184} tii[40,166] := {99} tii[40,167] := {147} tii[40,168] := {200} tii[40,169] := {105} tii[40,170] := {154} tii[40,171] := {209} tii[40,172] := {48, 289} tii[40,173] := {164} tii[40,174] := {168} tii[40,175] := {219} tii[40,176] := {145} tii[40,177] := {179} tii[40,178] := {152} tii[40,179] := {183} tii[40,180] := {90, 291} tii[40,181] := {215} tii[40,182] := {217} tii[40,183] := {236} tii[40,184] := {280} tii[40,185] := {0} tii[40,186] := {51} tii[40,187] := {2} tii[40,188] := {7} tii[40,189] := {8} tii[40,190] := {95} tii[40,191] := {14, 266} tii[40,192] := {5} tii[40,193] := {148} tii[40,194] := {18} tii[40,195] := {155} tii[40,196] := {20} tii[40,197] := {103} tii[40,198] := {39} tii[40,199] := {109} tii[40,200] := {43} tii[40,201] := {84, 326} tii[40,202] := {78} tii[40,203] := {79} tii[40,204] := {15} tii[40,205] := {87} tii[40,206] := {37} tii[40,207] := {130} tii[40,208] := {41} tii[40,209] := {132} tii[40,210] := {65} tii[40,211] := {149} tii[40,212] := {102} tii[40,213] := {70} tii[40,214] := {156} tii[40,215] := {108} tii[40,216] := {22, 260} tii[40,217] := {121, 319} tii[40,218] := {117} tii[40,219] := {119} tii[40,220] := {171} tii[40,221] := {101} tii[40,222] := {129} tii[40,223] := {107} tii[40,224] := {131} tii[40,225] := {54, 262} tii[40,226] := {166} tii[40,227] := {170} tii[40,228] := {187} tii[40,229] := {160, 301} tii[40,230] := {238} tii[40,231] := {34} tii[40,232] := {62} tii[40,233] := {67} tii[40,234] := {199} tii[40,235] := {98} tii[40,236] := {208} tii[40,237] := {104} tii[40,238] := {47, 276} tii[40,239] := {163} tii[40,240] := {167} tii[40,241] := {144} tii[40,242] := {177} tii[40,243] := {151} tii[40,244] := {181} tii[40,245] := {88, 292} tii[40,246] := {214} tii[40,247] := {216} tii[40,248] := {72, 235} tii[40,249] := {234} tii[40,250] := {278} tii[40,251] := {195} tii[40,252] := {203} tii[40,253] := {133, 302} tii[40,254] := {257} tii[40,255] := {258} tii[40,256] := {304} tii[40,257] := {53} tii[40,258] := {29, 311} tii[40,259] := {81} tii[40,260] := {12, 290} tii[40,261] := {116} tii[40,262] := {25, 263} tii[40,263] := {80, 300} tii[40,264] := {49} tii[40,265] := {111, 277} tii[40,266] := {77} tii[40,267] := {24, 261} tii[40,268] := {32, 221} tii[40,269] := {73, 237} tii[40,270] := {115} tii[40,271] := {58, 265} tii[40,272] := {23} tii[40,273] := {10, 220} tii[40,274] := {46} tii[40,275] := {13, 172} tii[40,276] := {45, 188} tii[40,277] := {76} tii[40,278] := {30, 222} tii[40,279] := {114} tii[40,280] := {56, 264} cell#43 , |C| = 616 special orbit = [5, 5, 3, 1, 1, 1] special rep = [[2], [3, 2, 1]] , dim = 448 cell rep = phi[[1],[3, 3, 1]]+phi[[2],[3, 2, 1]] TII depth = 3 TII multiplicity polynomial = 168*X^2+280*X TII subcells: tii[31,1] := {415, 549} tii[31,2] := {579} tii[31,3] := {267, 429} tii[31,4] := {475, 575} tii[31,5] := {280, 463} tii[31,6] := {493} tii[31,7] := {594} tii[31,8] := {428, 519} tii[31,9] := {520, 592} tii[31,10] := {313, 438} tii[31,11] := {565} tii[31,12] := {439, 551} tii[31,13] := {604} tii[31,14] := {553, 602} tii[31,15] := {593} tii[31,16] := {610} tii[31,17] := {532, 588} tii[31,18] := {613} tii[31,19] := {78, 79} tii[31,20] := {256} tii[31,21] := {172, 397} tii[31,22] := {53} tii[31,23] := {144, 145} tii[31,24] := {180, 352} tii[31,25] := {36, 152} tii[31,26] := {437} tii[31,27] := {58, 188} tii[31,28] := {258, 462} tii[31,29] := {183} tii[31,30] := {185} tii[31,31] := {190, 396} tii[31,32] := {339} tii[31,33] := {286} tii[31,34] := {298} tii[31,35] := {223, 224} tii[31,36] := {266, 414} tii[31,37] := {341, 512} tii[31,38] := {148, 276} tii[31,39] := {416} tii[31,40] := {355} tii[31,41] := {359} tii[31,42] := {494} tii[31,43] := {277, 464} tii[31,44] := {181, 340} tii[31,45] := {143, 314} tii[31,46] := {191, 398} tii[31,47] := {442} tii[31,48] := {202, 403} tii[31,49] := {450} tii[31,50] := {523} tii[31,51] := {353, 495} tii[31,52] := {476} tii[31,53] := {524} tii[31,54] := {526} tii[31,55] := {106} tii[31,56] := {225, 226} tii[31,57] := {113, 278} tii[31,58] := {86, 231} tii[31,59] := {270} tii[31,60] := {273} tii[31,61] := {343, 513} tii[31,62] := {417} tii[31,63] := {371} tii[31,64] := {380} tii[31,65] := {351, 474} tii[31,66] := {179} tii[31,67] := {311, 312} tii[31,68] := {187, 363} tii[31,69] := {227, 364} tii[31,70] := {419, 550} tii[31,71] := {49, 153} tii[31,72] := {477} tii[31,73] := {268, 418} tii[31,74] := {431} tii[31,75] := {434} tii[31,76] := {356} tii[31,77] := {360} tii[31,78] := {108} tii[31,79] := {535} tii[31,80] := {365, 514} tii[31,81] := {222, 394} tii[31,82] := {196} tii[31,83] := {497} tii[31,84] := {281, 465} tii[31,85] := {443} tii[31,86] := {207} tii[31,87] := {502} tii[31,88] := {291, 467} tii[31,89] := {451} tii[31,90] := {151, 279} tii[31,91] := {430, 536} tii[31,92] := {433} tii[31,93] := {436} tii[31,94] := {555} tii[31,95] := {100, 230} tii[31,96] := {521} tii[31,97] := {369} tii[31,98] := {157, 320} tii[31,99] := {556} tii[31,100] := {499} tii[31,101] := {377} tii[31,102] := {163, 327} tii[31,103] := {559} tii[31,104] := {504} tii[31,105] := {539} tii[31,106] := {543} tii[31,107] := {573} tii[31,108] := {392, 393} tii[31,109] := {354, 478} tii[31,110] := {489} tii[31,111] := {491} tii[31,112] := {479, 576} tii[31,113] := {522} tii[31,114] := {310, 461} tii[31,115] := {537} tii[31,116] := {366, 515} tii[31,117] := {541} tii[31,118] := {374, 516} tii[31,119] := {578} tii[31,120] := {488, 566} tii[31,121] := {533} tii[31,122] := {534} tii[31,123] := {255, 395} tii[31,124] := {554} tii[31,125] := {496} tii[31,126] := {580} tii[31,127] := {317, 466} tii[31,128] := {567} tii[31,129] := {501} tii[31,130] := {582} tii[31,131] := {324, 468} tii[31,132] := {569} tii[31,133] := {401, 402} tii[31,134] := {589} tii[31,135] := {406, 407} tii[31,136] := {590} tii[31,137] := {472, 473} tii[31,138] := {603} tii[31,139] := {577} tii[31,140] := {595} tii[31,141] := {597} tii[31,142] := {605} tii[31,143] := {606} tii[31,144] := {571, 572} tii[31,145] := {611} tii[31,146] := {615} tii[31,147] := {12, 13} tii[31,148] := {20} tii[31,149] := {37, 38} tii[31,150] := {11, 84} tii[31,151] := {110} tii[31,152] := {111} tii[31,153] := {23, 114} tii[31,154] := {5} tii[31,155] := {197} tii[31,156] := {25} tii[31,157] := {209} tii[31,158] := {29} tii[31,159] := {184} tii[31,160] := {186} tii[31,161] := {57, 171} tii[31,162] := {34, 150} tii[31,163] := {116} tii[31,164] := {287} tii[31,165] := {60, 234} tii[31,166] := {126} tii[31,167] := {299} tii[31,168] := {67, 243} tii[31,169] := {344} tii[31,170] := {345} tii[31,171] := {425} tii[31,172] := {107} tii[31,173] := {112, 275} tii[31,174] := {87, 88} tii[31,175] := {21} tii[31,176] := {18, 83} tii[31,177] := {269} tii[31,178] := {272} tii[31,179] := {55} tii[31,180] := {62} tii[31,181] := {118} tii[31,182] := {370} tii[31,183] := {69} tii[31,184] := {128} tii[31,185] := {379} tii[31,186] := {82, 189} tii[31,187] := {109, 257} tii[31,188] := {271} tii[31,189] := {274} tii[31,190] := {357} tii[31,191] := {361} tii[31,192] := {81, 229} tii[31,193] := {22} tii[31,194] := {47, 149} tii[31,195] := {115} tii[31,196] := {117, 319} tii[31,197] := {284} tii[31,198] := {444} tii[31,199] := {372} tii[31,200] := {61} tii[31,201] := {89, 233} tii[31,202] := {194} tii[31,203] := {125} tii[31,204] := {127, 326} tii[31,205] := {294} tii[31,206] := {452} tii[31,207] := {381} tii[31,208] := {68} tii[31,209] := {91, 242} tii[31,210] := {205} tii[31,211] := {64, 239} tii[31,212] := {500} tii[31,213] := {122} tii[31,214] := {420} tii[31,215] := {71, 248} tii[31,216] := {505} tii[31,217] := {132} tii[31,218] := {421} tii[31,219] := {104, 335} tii[31,220] := {548} tii[31,221] := {486} tii[31,222] := {219} tii[31,223] := {432} tii[31,224] := {435} tii[31,225] := {98, 228} tii[31,226] := {282} tii[31,227] := {498} tii[31,228] := {368} tii[31,229] := {156, 318} tii[31,230] := {292} tii[31,231] := {503} tii[31,232] := {376} tii[31,233] := {162, 325} tii[31,234] := {288} tii[31,235] := {540} tii[31,236] := {480} tii[31,237] := {235, 236} tii[31,238] := {296} tii[31,239] := {544} tii[31,240] := {482} tii[31,241] := {244, 245} tii[31,242] := {260, 469} tii[31,243] := {333, 334} tii[31,244] := {529} tii[31,245] := {574} tii[31,246] := {142, 259} tii[31,247] := {386} tii[31,248] := {558} tii[31,249] := {561} tii[31,250] := {456, 457} tii[31,251] := {563} tii[31,252] := {587} tii[31,253] := {485} tii[31,254] := {601} tii[31,255] := {154, 155} tii[31,256] := {54} tii[31,257] := {120} tii[31,258] := {131} tii[31,259] := {358} tii[31,260] := {362} tii[31,261] := {182, 342} tii[31,262] := {56} tii[31,263] := {147, 316} tii[31,264] := {193} tii[31,265] := {119} tii[31,266] := {195, 400} tii[31,267] := {445} tii[31,268] := {285} tii[31,269] := {204} tii[31,270] := {129} tii[31,271] := {206, 405} tii[31,272] := {453} tii[31,273] := {295} tii[31,274] := {200} tii[31,275] := {123, 323} tii[31,276] := {481} tii[31,277] := {211} tii[31,278] := {133, 330} tii[31,279] := {483} tii[31,280] := {177, 413} tii[31,281] := {530} tii[31,282] := {305} tii[31,283] := {490} tii[31,284] := {492} tii[31,285] := {170, 315} tii[31,286] := {283} tii[31,287] := {367} tii[31,288] := {232, 399} tii[31,289] := {538} tii[31,290] := {441} tii[31,291] := {293} tii[31,292] := {375} tii[31,293] := {241, 404} tii[31,294] := {542} tii[31,295] := {448} tii[31,296] := {321, 322} tii[31,297] := {290} tii[31,298] := {90, 240} tii[31,299] := {525} tii[31,300] := {568} tii[31,301] := {373} tii[31,302] := {328, 329} tii[31,303] := {300} tii[31,304] := {92, 249} tii[31,305] := {527} tii[31,306] := {570} tii[31,307] := {378} tii[31,308] := {135, 303} tii[31,309] := {411, 412} tii[31,310] := {347, 517} tii[31,311] := {221, 346} tii[31,312] := {141, 336} tii[31,313] := {564} tii[31,314] := {385} tii[31,315] := {591} tii[31,316] := {458} tii[31,317] := {237, 238} tii[31,318] := {581} tii[31,319] := {246, 247} tii[31,320] := {583} tii[31,321] := {507, 508} tii[31,322] := {216, 410} tii[31,323] := {99, 215} tii[31,324] := {454} tii[31,325] := {585} tii[31,326] := {337, 338} tii[31,327] := {600} tii[31,328] := {528} tii[31,329] := {390, 391} tii[31,330] := {609} tii[31,331] := {440} tii[31,332] := {447} tii[31,333] := {446} tii[31,334] := {557} tii[31,335] := {449} tii[31,336] := {560} tii[31,337] := {309, 422} tii[31,338] := {423, 552} tii[31,339] := {586} tii[31,340] := {509} tii[31,341] := {596} tii[31,342] := {598} tii[31,343] := {546, 547} tii[31,344] := {545} tii[31,345] := {599} tii[31,346] := {254, 382} tii[31,347] := {383, 518} tii[31,348] := {562} tii[31,349] := {608} tii[31,350] := {510, 511} tii[31,351] := {612} tii[31,352] := {584} tii[31,353] := {607} tii[31,354] := {614} tii[31,355] := {0} tii[31,356] := {7} tii[31,357] := {8} tii[31,358] := {27} tii[31,359] := {31} tii[31,360] := {52} tii[31,361] := {6} tii[31,362] := {59} tii[31,363] := {24} tii[31,364] := {66} tii[31,365] := {28} tii[31,366] := {65} tii[31,367] := {63} tii[31,368] := {26, 161} tii[31,369] := {72} tii[31,370] := {70} tii[31,371] := {30, 167} tii[31,372] := {15, 16} tii[31,373] := {51, 251} tii[31,374] := {105} tii[31,375] := {139} tii[31,376] := {121} tii[31,377] := {130} tii[31,378] := {173} tii[31,379] := {102, 332} tii[31,380] := {33, 101} tii[31,381] := {220} tii[31,382] := {265} tii[31,383] := {192} tii[31,384] := {203} tii[31,385] := {199} tii[31,386] := {124} tii[31,387] := {39, 160} tii[31,388] := {210} tii[31,389] := {134} tii[31,390] := {40, 166} tii[31,391] := {73, 217} tii[31,392] := {42, 43} tii[31,393] := {77, 250} tii[31,394] := {304} tii[31,395] := {178} tii[31,396] := {198} tii[31,397] := {158, 159} tii[31,398] := {208} tii[31,399] := {164, 165} tii[31,400] := {175, 409} tii[31,401] := {384} tii[31,402] := {137, 331} tii[31,403] := {80, 174} tii[31,404] := {32, 138} tii[31,405] := {46, 136} tii[31,406] := {261} tii[31,407] := {252, 253} tii[31,408] := {14, 95} tii[31,409] := {306} tii[31,410] := {307, 308} tii[31,411] := {35, 103} tii[31,412] := {350} tii[31,413] := {455} tii[31,414] := {97, 213} tii[31,415] := {214, 408} tii[31,416] := {348} tii[31,417] := {388, 389} tii[31,418] := {426} tii[31,419] := {201} tii[31,420] := {212} tii[31,421] := {93, 94} tii[31,422] := {264} tii[31,423] := {289} tii[31,424] := {297} tii[31,425] := {74, 218} tii[31,426] := {146, 262} tii[31,427] := {263, 471} tii[31,428] := {349} tii[31,429] := {41, 168} tii[31,430] := {387} tii[31,431] := {85, 176} tii[31,432] := {427} tii[31,433] := {169, 301} tii[31,434] := {506} tii[31,435] := {302, 470} tii[31,436] := {424} tii[31,437] := {19, 96} tii[31,438] := {459, 460} tii[31,439] := {48, 140} tii[31,440] := {487} tii[31,441] := {484} tii[31,442] := {531} tii[31,443] := {2, 3} tii[31,444] := {9, 75} tii[31,445] := {1, 45} tii[31,446] := {10, 50} tii[31,447] := {4, 44} tii[31,448] := {17, 76} cell#44 , |C| = 616 special orbit = [5, 3, 3, 3, 1, 1] special rep = [[1, 1], [3, 2, 1]] , dim = 448 cell rep = phi[[1],[3, 2, 2]]+phi[[1, 1],[3, 2, 1]] TII depth = 4 TII multiplicity polynomial = 168*X^2+280*X TII subcells: tii[28,1] := {294, 595} tii[28,2] := {379, 581} tii[28,3] := {414, 613} tii[28,4] := {517, 606} tii[28,5] := {393, 589} tii[28,6] := {580, 615} tii[28,7] := {217} tii[28,8] := {299} tii[28,9] := {218, 571} tii[28,10] := {8, 186} tii[28,11] := {293} tii[28,12] := {263} tii[28,13] := {298, 543} tii[28,14] := {37, 190} tii[28,15] := {106, 483} tii[28,16] := {378} tii[28,17] := {257, 596} tii[28,18] := {375} tii[28,19] := {99, 314} tii[28,20] := {242, 520} tii[28,21] := {380, 563} tii[28,22] := {454} tii[28,23] := {191, 575} tii[28,24] := {415} tii[28,25] := {492} tii[28,26] := {500} tii[28,27] := {418, 591} tii[28,28] := {515} tii[28,29] := {545} tii[28,30] := {549} tii[28,31] := {16, 256} tii[28,32] := {376} tii[28,33] := {64, 261} tii[28,34] := {159, 539} tii[28,35] := {339} tii[28,36] := {455} tii[28,37] := {333, 611} tii[28,38] := {32, 329} tii[28,39] := {453} tii[28,40] := {224, 577} tii[28,41] := {316, 562} tii[28,42] := {105, 337} tii[28,43] := {264} tii[28,44] := {152, 391} tii[28,45] := {516} tii[28,46] := {262, 599} tii[28,47] := {60, 392} tii[28,48] := {456, 590} tii[28,49] := {489} tii[28,50] := {109, 467} tii[28,51] := {546} tii[28,52] := {115, 473} tii[28,53] := {550} tii[28,54] := {245, 542} tii[28,55] := {490, 607} tii[28,56] := {336} tii[28,57] := {155, 416} tii[28,58] := {559} tii[28,59] := {421} tii[28,60] := {227, 491} tii[28,61] := {582} tii[28,62] := {433} tii[28,63] := {232, 498} tii[28,64] := {584} tii[28,65] := {427} tii[28,66] := {437} tii[28,67] := {488} tii[28,68] := {338, 605} tii[28,69] := {219, 463} tii[28,70] := {560} tii[28,71] := {521} tii[28,72] := {565} tii[28,73] := {568} tii[28,74] := {544, 614} tii[28,75] := {296, 522} tii[28,76] := {587} tii[28,77] := {462} tii[28,78] := {382, 564} tii[28,79] := {602} tii[28,80] := {524} tii[28,81] := {384, 567} tii[28,82] := {603} tii[28,83] := {528} tii[28,84] := {548} tii[28,85] := {468} tii[28,86] := {552} tii[28,87] := {474} tii[28,88] := {534} tii[28,89] := {601} tii[28,90] := {608} tii[28,91] := {609} tii[28,92] := {592} tii[28,93] := {593} tii[28,94] := {604} tii[28,95] := {9} tii[28,96] := {38} tii[28,97] := {107} tii[28,98] := {3, 130} tii[28,99] := {18} tii[28,100] := {158} tii[28,101] := {21, 135} tii[28,102] := {63} tii[28,103] := {65, 413} tii[28,104] := {193} tii[28,105] := {1, 87} tii[28,106] := {34} tii[28,107] := {67} tii[28,108] := {73} tii[28,109] := {36, 182} tii[28,110] := {90, 486} tii[28,111] := {102} tii[28,112] := {258} tii[28,113] := {162} tii[28,114] := {340} tii[28,115] := {169} tii[28,116] := {354} tii[28,117] := {350} tii[28,118] := {361} tii[28,119] := {31} tii[28,120] := {17, 253} tii[28,121] := {157, 537} tii[28,122] := {223} tii[28,123] := {5, 133} tii[28,124] := {62, 260} tii[28,125] := {104} tii[28,126] := {59} tii[28,127] := {192} tii[28,128] := {33, 315} tii[28,129] := {108} tii[28,130] := {66, 396} tii[28,131] := {114} tii[28,132] := {72, 402} tii[28,133] := {136, 541} tii[28,134] := {61, 243} tii[28,135] := {181, 487} tii[28,136] := {335} tii[28,137] := {88} tii[28,138] := {101, 334} tii[28,139] := {19, 244} tii[28,140] := {259} tii[28,141] := {154} tii[28,142] := {420} tii[28,143] := {137} tii[28,144] := {161, 419} tii[28,145] := {341} tii[28,146] := {39, 321} tii[28,147] := {226} tii[28,148] := {432} tii[28,149] := {141} tii[28,150] := {168, 429} tii[28,151] := {355} tii[28,152] := {42, 325} tii[28,153] := {231} tii[28,154] := {349} tii[28,155] := {426} tii[28,156] := {347} tii[28,157] := {196} tii[28,158] := {70, 269} tii[28,159] := {360} tii[28,160] := {436} tii[28,161] := {358} tii[28,162] := {202} tii[28,163] := {76, 276} tii[28,164] := {282} tii[28,165] := {286} tii[28,166] := {124, 371} tii[28,167] := {220} tii[28,168] := {153, 389} tii[28,169] := {313} tii[28,170] := {300} tii[28,171] := {225, 464} tii[28,172] := {394} tii[28,173] := {304} tii[28,174] := {230, 470} tii[28,175] := {400} tii[28,176] := {495} tii[28,177] := {428} tii[28,178] := {342} tii[28,179] := {163, 395} tii[28,180] := {319} tii[28,181] := {502} tii[28,182] := {438} tii[28,183] := {351} tii[28,184] := {170, 401} tii[28,185] := {323} tii[28,186] := {238, 476} tii[28,187] := {145, 557} tii[28,188] := {440} tii[28,189] := {443} tii[28,190] := {407} tii[28,191] := {469} tii[28,192] := {475} tii[28,193] := {519} tii[28,194] := {362, 570} tii[28,195] := {58} tii[28,196] := {13, 189} tii[28,197] := {297} tii[28,198] := {156} tii[28,199] := {100} tii[28,200] := {160} tii[28,201] := {167} tii[28,202] := {103, 317} tii[28,203] := {194, 579} tii[28,204] := {35, 318} tii[28,205] := {417} tii[28,206] := {134} tii[28,207] := {222} tii[28,208] := {68, 399} tii[28,209] := {493} tii[28,210] := {195} tii[28,211] := {302} tii[28,212] := {74, 405} tii[28,213] := {501} tii[28,214] := {201} tii[28,215] := {306} tii[28,216] := {113, 346} tii[28,217] := {496} tii[28,218] := {425} tii[28,219] := {265} tii[28,220] := {119, 357} tii[28,221] := {503} tii[28,222] := {435} tii[28,223] := {273} tii[28,224] := {178, 447} tii[28,225] := {363} tii[28,226] := {367} tii[28,227] := {295} tii[28,228] := {390} tii[28,229] := {221, 461} tii[28,230] := {89} tii[28,231] := {465} tii[28,232] := {138} tii[28,233] := {381} tii[28,234] := {301, 523} tii[28,235] := {471} tii[28,236] := {142} tii[28,237] := {383} tii[28,238] := {305, 527} tii[28,239] := {547} tii[28,240] := {397} tii[28,241] := {422} tii[28,242] := {197} tii[28,243] := {166, 424} tii[28,244] := {348} tii[28,245] := {497} tii[28,246] := {228, 466} tii[28,247] := {551} tii[28,248] := {403} tii[28,249] := {430} tii[28,250] := {203} tii[28,251] := {173, 434} tii[28,252] := {359} tii[28,253] := {504} tii[28,254] := {233, 472} tii[28,255] := {175, 533} tii[28,256] := {478} tii[28,257] := {240, 511} tii[28,258] := {283} tii[28,259] := {287} tii[28,260] := {207, 586} tii[28,261] := {507} tii[28,262] := {509} tii[28,263] := {311, 532} tii[28,264] := {268} tii[28,265] := {322} tii[28,266] := {526} tii[28,267] := {275} tii[28,268] := {326} tii[28,269] := {530} tii[28,270] := {310, 554} tii[28,271] := {366} tii[28,272] := {370} tii[28,273] := {561} tii[28,274] := {410} tii[28,275] := {187, 513} tii[28,276] := {439, 594} tii[28,277] := {484} tii[28,278] := {377} tii[28,279] := {457} tii[28,280] := {458} tii[28,281] := {583} tii[28,282] := {494} tii[28,283] := {303, 525} tii[28,284] := {585} tii[28,285] := {499} tii[28,286] := {307, 529} tii[28,287] := {279, 598} tii[28,288] := {388, 573} tii[28,289] := {555} tii[28,290] := {556} tii[28,291] := {566} tii[28,292] := {423} tii[28,293] := {569} tii[28,294] := {431} tii[28,295] := {460, 597} tii[28,296] := {588} tii[28,297] := {505, 610} tii[28,298] := {508} tii[28,299] := {510} tii[28,300] := {327, 574} tii[28,301] := {578} tii[28,302] := {553, 612} tii[28,303] := {4} tii[28,304] := {0, 52} tii[28,305] := {20} tii[28,306] := {40} tii[28,307] := {43} tii[28,308] := {71} tii[28,309] := {77} tii[28,310] := {125} tii[28,311] := {54} tii[28,312] := {10, 183} tii[28,313] := {92} tii[28,314] := {22, 248} tii[28,315] := {94} tii[28,316] := {23, 251} tii[28,317] := {140} tii[28,318] := {41, 200} tii[28,319] := {112} tii[28,320] := {271} tii[28,321] := {144} tii[28,322] := {44, 206} tii[28,323] := {118} tii[28,324] := {278} tii[28,325] := {122} tii[28,326] := {213} tii[28,327] := {215} tii[28,328] := {82, 290} tii[28,329] := {177} tii[28,330] := {7, 56} tii[28,331] := {199} tii[28,332] := {69, 247} tii[28,333] := {205} tii[28,334] := {75, 250} tii[28,335] := {237} tii[28,336] := {285} tii[28,337] := {289} tii[28,338] := {126, 331} tii[28,339] := {55, 448} tii[28,340] := {26, 129} tii[28,341] := {151, 412} tii[28,342] := {53} tii[28,343] := {91} tii[28,344] := {93} tii[28,345] := {111, 345} tii[28,346] := {139} tii[28,347] := {165} tii[28,348] := {270} tii[28,349] := {117, 356} tii[28,350] := {143} tii[28,351] := {172} tii[28,352] := {277} tii[28,353] := {121, 477} tii[28,354] := {15, 97} tii[28,355] := {176, 446} tii[28,356] := {239} tii[28,357] := {174} tii[28,358] := {212} tii[28,359] := {214} tii[28,360] := {198} tii[28,361] := {267} tii[28,362] := {246} tii[28,363] := {110, 320} tii[28,364] := {204} tii[28,365] := {274} tii[28,366] := {249} tii[28,367] := {116, 324} tii[28,368] := {236, 506} tii[28,369] := {309} tii[28,370] := {96, 512} tii[28,371] := {284} tii[28,372] := {288} tii[28,373] := {210} tii[28,374] := {365} tii[28,375] := {369} tii[28,376] := {330} tii[28,377] := {179, 408} tii[28,378] := {24, 146} tii[28,379] := {80, 409} tii[28,380] := {128, 449} tii[28,381] := {49, 185} tii[28,382] := {411} tii[28,383] := {57, 451} tii[28,384] := {216, 482} tii[28,385] := {266} tii[28,386] := {272} tii[28,387] := {308, 531} tii[28,388] := {184, 481} tii[28,389] := {385} tii[28,390] := {364} tii[28,391] := {368} tii[28,392] := {83, 252} tii[28,393] := {485} tii[28,394] := {291, 536} tii[28,395] := {229} tii[28,396] := {234} tii[28,397] := {28, 150} tii[28,398] := {312} tii[28,399] := {235} tii[28,400] := {344} tii[28,401] := {164, 398} tii[28,402] := {353} tii[28,403] := {171, 404} tii[28,404] := {123, 480} tii[28,405] := {45, 209} tii[28,406] := {387} tii[28,407] := {147, 558} tii[28,408] := {281} tii[28,409] := {442} tii[28,410] := {445} tii[28,411] := {241, 479} tii[28,412] := {84, 255} tii[28,413] := {292, 538} tii[28,414] := {98, 514} tii[28,415] := {343} tii[28,416] := {352} tii[28,417] := {254, 535} tii[28,418] := {386, 572} tii[28,419] := {79, 280} tii[28,420] := {459} tii[28,421] := {441} tii[28,422] := {444} tii[28,423] := {127, 328} tii[28,424] := {211} tii[28,425] := {372, 576} tii[28,426] := {540} tii[28,427] := {131, 452} tii[28,428] := {180, 406} tii[28,429] := {518} tii[28,430] := {450, 600} tii[28,431] := {12} tii[28,432] := {81} tii[28,433] := {25} tii[28,434] := {2, 29} tii[28,435] := {6, 51} tii[28,436] := {11, 95} tii[28,437] := {47} tii[28,438] := {48, 332} tii[28,439] := {149} tii[28,440] := {30, 374} tii[28,441] := {14, 86} tii[28,442] := {46, 208} tii[28,443] := {78} tii[28,444] := {148} tii[28,445] := {85, 373} tii[28,446] := {27, 132} tii[28,447] := {120} tii[28,448] := {50, 188} cell#45 , |C| = 280 special orbit = [5, 3, 3, 1, 1, 1, 1, 1] special rep = [[1], [3, 2, 1, 1]] , dim = 280 cell rep = phi[[1],[3, 2, 1, 1]] TII depth = 4 TII multiplicity polynomial = 280*X TII subcells: tii[27,1] := {164} tii[27,2] := {204} tii[27,3] := {27} tii[27,4] := {200} tii[27,5] := {78} tii[27,6] := {147} tii[27,7] := {233} tii[27,8] := {229} tii[27,9] := {144} tii[27,10] := {253} tii[27,11] := {213} tii[27,12] := {266} tii[27,13] := {45} tii[27,14] := {231} tii[27,15] := {254} tii[27,16] := {110} tii[27,17] := {183} tii[27,18] := {28} tii[27,19] := {252} tii[27,20] := {181} tii[27,21] := {79} tii[27,22] := {148} tii[27,23] := {13} tii[27,24] := {267} tii[27,25] := {241} tii[27,26] := {109} tii[27,27] := {180} tii[27,28] := {273} tii[27,29] := {265} tii[27,30] := {215} tii[27,31] := {275} tii[27,32] := {251} tii[27,33] := {182} tii[27,34] := {230} tii[27,35] := {278} tii[27,36] := {279} tii[27,37] := {11} tii[27,38] := {41} tii[27,39] := {96} tii[27,40] := {16} tii[27,41] := {23} tii[27,42] := {130} tii[27,43] := {65} tii[27,44] := {51} tii[27,45] := {6} tii[27,46] := {40} tii[27,47] := {112} tii[27,48] := {66} tii[27,49] := {68} tii[27,50] := {77} tii[27,51] := {94} tii[27,52] := {142} tii[27,53] := {132} tii[27,54] := {135} tii[27,55] := {15} tii[27,56] := {39} tii[27,57] := {5} tii[27,58] := {14} tii[27,59] := {168} tii[27,60] := {50} tii[27,61] := {111} tii[27,62] := {95} tii[27,63] := {64} tii[27,64] := {97} tii[27,65] := {99} tii[27,66] := {108} tii[27,67] := {76} tii[27,68] := {179} tii[27,69] := {2} tii[27,70] := {143} tii[27,71] := {48} tii[27,72] := {128} tii[27,73] := {81} tii[27,74] := {169} tii[27,75] := {85} tii[27,76] := {171} tii[27,77] := {116} tii[27,78] := {121} tii[27,79] := {160} tii[27,80] := {107} tii[27,81] := {165} tii[27,82] := {166} tii[27,83] := {205} tii[27,84] := {207} tii[27,85] := {186} tii[27,86] := {189} tii[27,87] := {247} tii[27,88] := {225} tii[27,89] := {260} tii[27,90] := {63} tii[27,91] := {26} tii[27,92] := {203} tii[27,93] := {129} tii[27,94] := {93} tii[27,95] := {131} tii[27,96] := {134} tii[27,97] := {8} tii[27,98] := {146} tii[27,99] := {167} tii[27,100] := {214} tii[27,101] := {75} tii[27,102] := {206} tii[27,103] := {113} tii[27,104] := {208} tii[27,105] := {118} tii[27,106] := {152} tii[27,107] := {156} tii[27,108] := {197} tii[27,109] := {145} tii[27,110] := {201} tii[27,111] := {49} tii[27,112] := {202} tii[27,113] := {82} tii[27,114] := {235} tii[27,115] := {86} tii[27,116] := {236} tii[27,117] := {219} tii[27,118] := {117} tii[27,119] := {221} tii[27,120] := {122} tii[27,121] := {33} tii[27,122] := {263} tii[27,123] := {249} tii[27,124] := {161} tii[27,125] := {151} tii[27,126] := {155} tii[27,127] := {74} tii[27,128] := {224} tii[27,129] := {271} tii[27,130] := {196} tii[27,131] := {217} tii[27,132] := {232} tii[27,133] := {256} tii[27,134] := {257} tii[27,135] := {245} tii[27,136] := {246} tii[27,137] := {269} tii[27,138] := {264} tii[27,139] := {220} tii[27,140] := {222} tii[27,141] := {140} tii[27,142] := {276} tii[27,143] := {258} tii[27,144] := {250} tii[27,145] := {240} tii[27,146] := {262} tii[27,147] := {277} tii[27,148] := {274} tii[27,149] := {4} tii[27,150] := {1} tii[27,151] := {24} tii[27,152] := {42} tii[27,153] := {43} tii[27,154] := {67} tii[27,155] := {69} tii[27,156] := {103} tii[27,157] := {0} tii[27,158] := {30} tii[27,159] := {55} tii[27,160] := {57} tii[27,161] := {98} tii[27,162] := {84} tii[27,163] := {100} tii[27,164] := {88} tii[27,165] := {102} tii[27,166] := {138} tii[27,167] := {19} tii[27,168] := {126} tii[27,169] := {115} tii[27,170] := {120} tii[27,171] := {174} tii[27,172] := {192} tii[27,173] := {47} tii[27,174] := {159} tii[27,175] := {185} tii[27,176] := {29} tii[27,177] := {54} tii[27,178] := {56} tii[27,179] := {83} tii[27,180] := {133} tii[27,181] := {87} tii[27,182] := {136} tii[27,183] := {18} tii[27,184] := {34} tii[27,185] := {137} tii[27,186] := {125} tii[27,187] := {175} tii[27,188] := {114} tii[27,189] := {150} tii[27,190] := {119} tii[27,191] := {154} tii[27,192] := {223} tii[27,193] := {46} tii[27,194] := {10} tii[27,195] := {193} tii[27,196] := {210} tii[27,197] := {73} tii[27,198] := {158} tii[27,199] := {59} tii[27,200] := {123} tii[27,201] := {195} tii[27,202] := {184} tii[27,203] := {21} tii[27,204] := {198} tii[27,205] := {216} tii[27,206] := {149} tii[27,207] := {153} tii[27,208] := {72} tii[27,209] := {104} tii[27,210] := {209} tii[27,211] := {238} tii[27,212] := {194} tii[27,213] := {176} tii[27,214] := {218} tii[27,215] := {242} tii[27,216] := {61} tii[27,217] := {234} tii[27,218] := {170} tii[27,219] := {172} tii[27,220] := {58} tii[27,221] := {173} tii[27,222] := {211} tii[27,223] := {188} tii[27,224] := {191} tii[27,225] := {22} tii[27,226] := {239} tii[27,227] := {248} tii[27,228] := {89} tii[27,229] := {157} tii[27,230] := {106} tii[27,231] := {227} tii[27,232] := {38} tii[27,233] := {228} tii[27,234] := {243} tii[27,235] := {187} tii[27,236] := {190} tii[27,237] := {105} tii[27,238] := {237} tii[27,239] := {141} tii[27,240] := {60} tii[27,241] := {124} tii[27,242] := {259} tii[27,243] := {226} tii[27,244] := {212} tii[27,245] := {52} tii[27,246] := {199} tii[27,247] := {261} tii[27,248] := {92} tii[27,249] := {244} tii[27,250] := {177} tii[27,251] := {255} tii[27,252] := {178} tii[27,253] := {270} tii[27,254] := {127} tii[27,255] := {272} tii[27,256] := {268} tii[27,257] := {12} tii[27,258] := {71} tii[27,259] := {25} tii[27,260] := {7} tii[27,261] := {17} tii[27,262] := {3} tii[27,263] := {44} tii[27,264] := {36} tii[27,265] := {91} tii[27,266] := {9} tii[27,267] := {163} tii[27,268] := {32} tii[27,269] := {20} tii[27,270] := {35} tii[27,271] := {70} tii[27,272] := {90} tii[27,273] := {31} tii[27,274] := {162} tii[27,275] := {53} tii[27,276] := {37} tii[27,277] := {139} tii[27,278] := {101} tii[27,279] := {80} tii[27,280] := {62} cell#46 , |C| = 35 special orbit = [9, 1, 1, 1, 1, 1, 1, 1] special rep = [[], [5, 1, 1, 1]] , dim = 35 cell rep = phi[[],[5, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 35*X TII subcells: tii[49,1] := {33} tii[49,2] := {31} tii[49,3] := {27} tii[49,4] := {30} tii[49,5] := {26} tii[49,6] := {22} tii[49,7] := {25} tii[49,8] := {12} tii[49,9] := {20} tii[49,10] := {16} tii[49,11] := {21} tii[49,12] := {11} tii[49,13] := {19} tii[49,14] := {5} tii[49,15] := {10} tii[49,16] := {6} tii[49,17] := {0} tii[49,18] := {4} tii[49,19] := {1} tii[49,20] := {3} tii[49,21] := {34} tii[49,22] := {32} tii[49,23] := {29} tii[49,24] := {24} tii[49,25] := {17} tii[49,26] := {28} tii[49,27] := {23} tii[49,28] := {18} tii[49,29] := {7} tii[49,30] := {15} tii[49,31] := {9} tii[49,32] := {2} tii[49,33] := {14} tii[49,34] := {8} tii[49,35] := {13} cell#47 , |C| = 250 special orbit = [7, 3, 1, 1, 1, 1, 1, 1] special rep = [[1], [4, 1, 1, 1]] , dim = 160 cell rep = phi[[],[4, 2, 1, 1]]+phi[[1],[4, 1, 1, 1]] TII depth = 2 TII multiplicity polynomial = 90*X^2+70*X TII subcells: tii[39,1] := {61, 209} tii[39,2] := {98, 205} tii[39,3] := {153, 201} tii[39,4] := {41, 225} tii[39,5] := {75, 182} tii[39,6] := {27, 239} tii[39,7] := {127, 177} tii[39,8] := {40, 246} tii[39,9] := {68, 206} tii[39,10] := {115, 168} tii[39,11] := {50, 227} tii[39,12] := {90, 191} tii[39,13] := {26, 210} tii[39,14] := {57, 160} tii[39,15] := {12, 230} tii[39,16] := {103, 155} tii[39,17] := {24, 241} tii[39,18] := {5, 218} tii[39,19] := {49, 183} tii[39,20] := {92, 144} tii[39,21] := {31, 204} tii[39,22] := {11, 235} tii[39,23] := {6, 215} tii[39,24] := {70, 169} tii[39,25] := {56, 207} tii[39,26] := {102, 154} tii[39,27] := {38, 228} tii[39,28] := {23, 216} tii[39,29] := {91, 178} tii[39,30] := {101, 203} tii[39,31] := {44} tii[39,32] := {63} tii[39,33] := {43, 190} tii[39,34] := {60, 167} tii[39,35] := {79} tii[39,36] := {107} tii[39,37] := {111} tii[39,38] := {83} tii[39,39] := {13, 229} tii[39,40] := {80, 186} tii[39,41] := {25, 240} tii[39,42] := {100} tii[39,43] := {129} tii[39,44] := {134} tii[39,45] := {18, 226} tii[39,46] := {126} tii[39,47] := {156} tii[39,48] := {158} tii[39,49] := {180} tii[39,50] := {181} tii[39,51] := {208} tii[39,52] := {62} tii[39,53] := {0, 194} tii[39,54] := {78} tii[39,55] := {59, 166} tii[39,56] := {4, 217} tii[39,57] := {106} tii[39,58] := {110} tii[39,59] := {1, 192} tii[39,60] := {32, 202} tii[39,61] := {99} tii[39,62] := {128} tii[39,63] := {133} tii[39,64] := {157} tii[39,65] := {159} tii[39,66] := {67, 249} tii[39,67] := {185} tii[39,68] := {3, 170} tii[39,69] := {89} tii[39,70] := {116} tii[39,71] := {120} tii[39,72] := {145} tii[39,73] := {146} tii[39,74] := {74, 243} tii[39,75] := {171} tii[39,76] := {117} tii[39,77] := {121} tii[39,78] := {71, 222} tii[39,79] := {148} tii[39,80] := {172} tii[39,81] := {42} tii[39,82] := {58} tii[39,83] := {39, 143} tii[39,84] := {81} tii[39,85] := {82} tii[39,86] := {17, 179} tii[39,87] := {77} tii[39,88] := {105} tii[39,89] := {109} tii[39,90] := {132} tii[39,91] := {137} tii[39,92] := {47, 248} tii[39,93] := {165} tii[39,94] := {10, 193} tii[39,95] := {69} tii[39,96] := {93} tii[39,97] := {95} tii[39,98] := {119} tii[39,99] := {123} tii[39,100] := {54, 234} tii[39,101] := {30, 245} tii[39,102] := {150} tii[39,103] := {94} tii[39,104] := {96} tii[39,105] := {51, 199} tii[39,106] := {22, 236} tii[39,107] := {125} tii[39,108] := {7, 220} tii[39,109] := {151} tii[39,110] := {76} tii[39,111] := {104} tii[39,112] := {108} tii[39,113] := {131} tii[39,114] := {136} tii[39,115] := {65, 244} tii[39,116] := {164} tii[39,117] := {118} tii[39,118] := {122} tii[39,119] := {72, 213} tii[39,120] := {46, 237} tii[39,121] := {149} tii[39,122] := {35, 219} tii[39,123] := {173} tii[39,124] := {130} tii[39,125] := {135} tii[39,126] := {84, 233} tii[39,127] := {163} tii[39,128] := {64, 221} tii[39,129] := {187} tii[39,130] := {212} tii[39,131] := {88, 142} tii[39,132] := {48, 247} tii[39,133] := {114, 162} tii[39,134] := {37, 242} tii[39,135] := {138, 184} tii[39,136] := {20, 231} tii[39,137] := {16, 238} tii[39,138] := {87, 141} tii[39,139] := {9, 223} tii[39,140] := {55, 232} tii[39,141] := {112, 161} tii[39,142] := {2, 196} tii[39,143] := {34, 211} tii[39,144] := {15, 200} tii[39,145] := {97, 147} tii[39,146] := {8, 175} tii[39,147] := {52, 195} tii[39,148] := {14, 152} tii[39,149] := {66, 113} tii[39,150] := {36, 214} tii[39,151] := {86, 140} tii[39,152] := {19, 189} tii[39,153] := {29, 224} tii[39,154] := {73, 124} tii[39,155] := {21, 197} tii[39,156] := {33, 174} tii[39,157] := {28, 176} tii[39,158] := {85, 139} tii[39,159] := {53, 188} tii[39,160] := {45, 198} cell#48 , |C| = 250 special orbit = [7, 3, 1, 1, 1, 1, 1, 1] special rep = [[1], [4, 1, 1, 1]] , dim = 160 cell rep = phi[[],[4, 2, 1, 1]]+phi[[1],[4, 1, 1, 1]] TII depth = 2 TII multiplicity polynomial = 90*X^2+70*X TII subcells: tii[39,1] := {99, 243} tii[39,2] := {177, 178} tii[39,3] := {244, 245} tii[39,4] := {60, 230} tii[39,5] := {131, 132} tii[39,6] := {33, 200} tii[39,7] := {222, 223} tii[39,8] := {59, 154} tii[39,9] := {108, 109} tii[39,10] := {201, 202} tii[39,11] := {72, 73} tii[39,12] := {155, 156} tii[39,13] := {32, 242} tii[39,14] := {90, 92} tii[39,15] := {13, 220} tii[39,16] := {183, 186} tii[39,17] := {29, 179} tii[39,18] := {5, 176} tii[39,19] := {70, 71} tii[39,20] := {159, 160} tii[39,21] := {39, 40} tii[39,22] := {12, 134} tii[39,23] := {6, 97} tii[39,24] := {111, 112} tii[39,25] := {89, 91} tii[39,26] := {182, 185} tii[39,27] := {54, 56} tii[39,28] := {27, 28} tii[39,29] := {157, 158} tii[39,30] := {181, 184} tii[39,31] := {141} tii[39,32] := {172} tii[39,33] := {61, 221} tii[39,34] := {98, 180} tii[39,35] := {205} tii[39,36] := {236} tii[39,37] := {239} tii[39,38] := {128} tii[39,39] := {14, 153} tii[39,40] := {135, 136} tii[39,41] := {31, 110} tii[39,42] := {165} tii[39,43] := {207} tii[39,44] := {212} tii[39,45] := {20, 74} tii[39,46] := {204} tii[39,47] := {235} tii[39,48] := {238} tii[39,49] := {247} tii[39,50] := {248} tii[39,51] := {249} tii[39,52] := {88} tii[39,53] := {0, 130} tii[39,54] := {125} tii[39,55] := {95, 96} tii[39,56] := {4, 94} tii[39,57] := {168} tii[39,58] := {171} tii[39,59] := {1, 58} tii[39,60] := {41, 42} tii[39,61] := {164} tii[39,62] := {206} tii[39,63] := {211} tii[39,64] := {237} tii[39,65] := {240} tii[39,66] := {107, 203} tii[39,67] := {246} tii[39,68] := {3, 30} tii[39,69] := {133} tii[39,70] := {187} tii[39,71] := {191} tii[39,72] := {224} tii[39,73] := {225} tii[39,74] := {119, 120} tii[39,75] := {241} tii[39,76] := {188} tii[39,77] := {192} tii[39,78] := {113, 114} tii[39,79] := {217} tii[39,80] := {174} tii[39,81] := {53} tii[39,82] := {87} tii[39,83] := {55, 57} tii[39,84] := {126} tii[39,85] := {127} tii[39,86] := {18, 19} tii[39,87] := {124} tii[39,88] := {167} tii[39,89] := {170} tii[39,90] := {210} tii[39,91] := {215} tii[39,92] := {66, 228} tii[39,93] := {234} tii[39,94] := {10, 11} tii[39,95] := {93} tii[39,96] := {137} tii[39,97] := {139} tii[39,98] := {190} tii[39,99] := {194} tii[39,100] := {77, 78} tii[39,101] := {38, 197} tii[39,102] := {219} tii[39,103] := {138} tii[39,104] := {140} tii[39,105] := {75, 76} tii[39,106] := {26, 151} tii[39,107] := {175} tii[39,108] := {7, 121} tii[39,109] := {129} tii[39,110] := {123} tii[39,111] := {166} tii[39,112] := {169} tii[39,113] := {209} tii[39,114] := {214} tii[39,115] := {101, 104} tii[39,116] := {232} tii[39,117] := {189} tii[39,118] := {193} tii[39,119] := {115, 116} tii[39,120] := {63, 65} tii[39,121] := {218} tii[39,122] := {45, 46} tii[39,123] := {173} tii[39,124] := {208} tii[39,125] := {213} tii[39,126] := {142, 145} tii[39,127] := {231} tii[39,128] := {100, 103} tii[39,129] := {216} tii[39,130] := {233} tii[39,131] := {152, 229} tii[39,132] := {69, 163} tii[39,133] := {198, 199} tii[39,134] := {52, 122} tii[39,135] := {226, 227} tii[39,136] := {23, 84} tii[39,137] := {17, 148} tii[39,138] := {149, 150} tii[39,139] := {9, 106} tii[39,140] := {85, 86} tii[39,141] := {195, 196} tii[39,142] := {2, 83} tii[39,143] := {47, 48} tii[39,144] := {16, 68} tii[39,145] := {161, 162} tii[39,146] := {8, 49} tii[39,147] := {81, 82} tii[39,148] := {15, 67} tii[39,149] := {102, 105} tii[39,150] := {50, 51} tii[39,151] := {144, 147} tii[39,152] := {21, 22} tii[39,153] := {35, 37} tii[39,154] := {117, 118} tii[39,155] := {24, 25} tii[39,156] := {43, 44} tii[39,157] := {34, 36} tii[39,158] := {143, 146} tii[39,159] := {79, 80} tii[39,160] := {62, 64} cell#49 , |C| = 280 special orbit = [5, 3, 3, 1, 1, 1, 1, 1] special rep = [[1], [3, 2, 1, 1]] , dim = 280 cell rep = phi[[1],[3, 2, 1, 1]] TII depth = 4 TII multiplicity polynomial = 280*X TII subcells: tii[27,1] := {246} tii[27,2] := {279} tii[27,3] := {51} tii[27,4] := {226} tii[27,5] := {141} tii[27,6] := {140} tii[27,7] := {275} tii[27,8] := {187} tii[27,9] := {139} tii[27,10] := {259} tii[27,11] := {138} tii[27,12] := {232} tii[27,13] := {70} tii[27,14] := {245} tii[27,15] := {277} tii[27,16] := {171} tii[27,17] := {168} tii[27,18] := {40} tii[27,19] := {224} tii[27,20] := {190} tii[27,21] := {123} tii[27,22] := {121} tii[27,23] := {21} tii[27,24] := {274} tii[27,25] := {189} tii[27,26] := {95} tii[27,27] := {94} tii[27,28] := {258} tii[27,29] := {244} tii[27,30] := {215} tii[27,31] := {276} tii[27,32] := {212} tii[27,33] := {170} tii[27,34] := {167} tii[27,35] := {273} tii[27,36] := {278} tii[27,37] := {71} tii[27,38] := {172} tii[27,39] := {169} tii[27,40] := {28} tii[27,41] := {118} tii[27,42] := {214} tii[27,43] := {217} tii[27,44] := {97} tii[27,45] := {13} tii[27,46] := {152} tii[27,47] := {96} tii[27,48] := {197} tii[27,49] := {202} tii[27,50] := {53} tii[27,51] := {249} tii[27,52] := {52} tii[27,53] := {262} tii[27,54] := {265} tii[27,55] := {20} tii[27,56] := {91} tii[27,57] := {8} tii[27,58] := {29} tii[27,59] := {191} tii[27,60] := {76} tii[27,61] := {74} tii[27,62] := {192} tii[27,63] := {119} tii[27,64] := {173} tii[27,65] := {177} tii[27,66] := {93} tii[27,67] := {55} tii[27,68] := {92} tii[27,69] := {2} tii[27,70] := {54} tii[27,71] := {72} tii[27,72] := {227} tii[27,73] := {124} tii[27,74] := {251} tii[27,75] := {128} tii[27,76] := {253} tii[27,77] := {175} tii[27,78] := {179} tii[27,79] := {210} tii[27,80] := {75} tii[27,81] := {73} tii[27,82] := {188} tii[27,83] := {218} tii[27,84] := {221} tii[27,85] := {174} tii[27,86] := {178} tii[27,87] := {98} tii[27,88] := {207} tii[27,89] := {206} tii[27,90] := {117} tii[27,91] := {42} tii[27,92] := {213} tii[27,93] := {216} tii[27,94] := {151} tii[27,95] := {196} tii[27,96] := {201} tii[27,97] := {9} tii[27,98] := {143} tii[27,99] := {248} tii[27,100] := {142} tii[27,101] := {104} tii[27,102] := {261} tii[27,103] := {153} tii[27,104] := {264} tii[27,105] := {157} tii[27,106] := {199} tii[27,107] := {204} tii[27,108] := {229} tii[27,109] := {122} tii[27,110] := {120} tii[27,111] := {65} tii[27,112] := {225} tii[27,113] := {106} tii[27,114] := {250} tii[27,115] := {109} tii[27,116] := {252} tii[27,117] := {219} tii[27,118] := {156} tii[27,119] := {222} tii[27,120] := {160} tii[27,121] := {50} tii[27,122] := {144} tii[27,123] := {241} tii[27,124] := {194} tii[27,125] := {126} tii[27,126] := {130} tii[27,127] := {59} tii[27,128] := {58} tii[27,129] := {239} tii[27,130] := {165} tii[27,131] := {113} tii[27,132] := {247} tii[27,133] := {260} tii[27,134] := {263} tii[27,135] := {233} tii[27,136] := {236} tii[27,137] := {181} tii[27,138] := {254} tii[27,139] := {198} tii[27,140] := {203} tii[27,141] := {135} tii[27,142] := {266} tii[27,143] := {132} tii[27,144] := {228} tii[27,145] := {87} tii[27,146] := {209} tii[27,147] := {271} tii[27,148] := {256} tii[27,149] := {43} tii[27,150] := {5} tii[27,151] := {105} tii[27,152] := {154} tii[27,153] := {158} tii[27,154] := {200} tii[27,155] := {205} tii[27,156] := {231} tii[27,157] := {0} tii[27,158] := {41} tii[27,159] := {77} tii[27,160] := {80} tii[27,161] := {235} tii[27,162] := {127} tii[27,163] := {238} tii[27,164] := {131} tii[27,165] := {183} tii[27,166] := {257} tii[27,167] := {34} tii[27,168] := {166} tii[27,169] := {78} tii[27,170] := {81} tii[27,171] := {272} tii[27,172] := {30} tii[27,173] := {31} tii[27,174] := {115} tii[27,175] := {69} tii[27,176] := {39} tii[27,177] := {66} tii[27,178] := {67} tii[27,179] := {108} tii[27,180] := {220} tii[27,181] := {111} tii[27,182] := {223} tii[27,183] := {24} tii[27,184] := {62} tii[27,185] := {146} tii[27,186] := {149} tii[27,187] := {242} tii[27,188] := {79} tii[27,189] := {125} tii[27,190] := {82} tii[27,191] := {129} tii[27,192] := {56} tii[27,193] := {33} tii[27,194] := {12} tii[27,195] := {32} tii[27,196] := {268} tii[27,197] := {57} tii[27,198] := {116} tii[27,199] := {101} tii[27,200] := {100} tii[27,201] := {164} tii[27,202] := {68} tii[27,203] := {6} tii[27,204] := {35} tii[27,205] := {112} tii[27,206] := {107} tii[27,207] := {110} tii[27,208] := {46} tii[27,209] := {99} tii[27,210] := {44} tii[27,211] := {240} tii[27,212] := {148} tii[27,213] := {22} tii[27,214] := {114} tii[27,215] := {161} tii[27,216] := {23} tii[27,217] := {150} tii[27,218] := {234} tii[27,219] := {237} tii[27,220] := {89} tii[27,221] := {182} tii[27,222] := {255} tii[27,223] := {176} tii[27,224] := {180} tii[27,225] := {27} tii[27,226] := {270} tii[27,227] := {102} tii[27,228] := {136} tii[27,229] := {133} tii[27,230] := {103} tii[27,231] := {211} tii[27,232] := {18} tii[27,233] := {63} tii[27,234] := {162} tii[27,235] := {155} tii[27,236] := {159} tii[27,237] := {85} tii[27,238] := {83} tii[27,239] := {145} tii[27,240] := {86} tii[27,241] := {84} tii[27,242] := {267} tii[27,243] := {193} tii[27,244] := {48} tii[27,245] := {38} tii[27,246] := {37} tii[27,247] := {208} tii[27,248] := {49} tii[27,249] := {163} tii[27,250] := {25} tii[27,251] := {195} tii[27,252] := {184} tii[27,253] := {269} tii[27,254] := {88} tii[27,255] := {243} tii[27,256] := {230} tii[27,257] := {90} tii[27,258] := {134} tii[27,259] := {137} tii[27,260] := {19} tii[27,261] := {7} tii[27,262] := {4} tii[27,263] := {186} tii[27,264] := {61} tii[27,265] := {60} tii[27,266] := {1} tii[27,267] := {16} tii[27,268] := {17} tii[27,269] := {3} tii[27,270] := {47} tii[27,271] := {147} tii[27,272] := {45} tii[27,273] := {15} tii[27,274] := {14} tii[27,275] := {36} tii[27,276] := {11} tii[27,277] := {10} tii[27,278] := {185} tii[27,279] := {64} tii[27,280] := {26} cell#50 , |C| = 350 special orbit = [5, 3, 2, 2, 1, 1, 1, 1] special rep = [[1, 1], [3, 1, 1, 1]] , dim = 280 cell rep = phi[[],[3, 2, 2, 1]]+phi[[1, 1],[3, 1, 1, 1]] TII depth = 4 TII multiplicity polynomial = 70*X^2+210*X TII subcells: tii[25,1] := {96, 288} tii[25,2] := {187, 278} tii[25,3] := {186, 279} tii[25,4] := {126, 303} tii[25,5] := {221, 298} tii[25,6] := {88, 323} tii[25,7] := {234, 312} tii[25,8] := {173, 264} tii[25,9] := {58, 340} tii[25,10] := {140, 299} tii[25,11] := {263, 324} tii[25,12] := {220, 339} tii[25,13] := {28} tii[25,14] := {22} tii[25,15] := {63, 249} tii[25,16] := {49} tii[25,17] := {40} tii[25,18] := {141, 235} tii[25,19] := {39, 216} tii[25,20] := {65} tii[25,21] := {106} tii[25,22] := {112} tii[25,23] := {101, 189} tii[25,24] := {64} tii[25,25] := {103} tii[25,26] := {109} tii[25,27] := {108} tii[25,28] := {114} tii[25,29] := {57, 304} tii[25,30] := {76} tii[25,31] := {34, 327} tii[25,32] := {66, 258} tii[25,33] := {130, 222} tii[25,34] := {67} tii[25,35] := {99} tii[25,36] := {146} tii[25,37] := {154} tii[25,38] := {142, 236} tii[25,39] := {100, 265} tii[25,40] := {18, 313} tii[25,41] := {98} tii[25,42] := {138} tii[25,43] := {144} tii[25,44] := {191} tii[25,45] := {152} tii[25,46] := {200} tii[25,47] := {150} tii[25,48] := {240} tii[25,49] := {158} tii[25,50] := {246} tii[25,51] := {291} tii[25,52] := {129, 300} tii[25,53] := {137} tii[25,54] := {190} tii[25,55] := {199} tii[25,56] := {197} tii[25,57] := {239} tii[25,58] := {206} tii[25,59] := {245} tii[25,60] := {290} tii[25,61] := {238} tii[25,62] := {244} tii[25,63] := {293} tii[25,64] := {91} tii[25,65] := {90, 275} tii[25,66] := {102} tii[25,67] := {128} tii[25,68] := {175} tii[25,69] := {179} tii[25,70] := {139} tii[25,71] := {35, 325} tii[25,72] := {188, 280} tii[25,73] := {171} tii[25,74] := {192} tii[25,75] := {223} tii[25,76] := {201} tii[25,77] := {226} tii[25,78] := {198} tii[25,79] := {268} tii[25,80] := {207} tii[25,81] := {271} tii[25,82] := {307} tii[25,83] := {172, 326} tii[25,84] := {127} tii[25,85] := {185} tii[25,86] := {174} tii[25,87] := {237} tii[25,88] := {178} tii[25,89] := {243} tii[25,90] := {242} tii[25,91] := {283} tii[25,92] := {225} tii[25,93] := {248} tii[25,94] := {286} tii[25,95] := {228} tii[25,96] := {95, 349} tii[25,97] := {316} tii[25,98] := {274} tii[25,99] := {194} tii[25,100] := {282} tii[25,101] := {203} tii[25,102] := {285} tii[25,103] := {115, 334} tii[25,104] := {317} tii[25,105] := {255} tii[25,106] := {295} tii[25,107] := {219} tii[25,108] := {266} tii[25,109] := {269} tii[25,110] := {284} tii[25,111] := {301} tii[25,112] := {287} tii[25,113] := {302} tii[25,114] := {330} tii[25,115] := {267} tii[25,116] := {314} tii[25,117] := {270} tii[25,118] := {315} tii[25,119] := {182, 348} tii[25,120] := {336} tii[25,121] := {306} tii[25,122] := {331} tii[25,123] := {328} tii[25,124] := {329} tii[25,125] := {341} tii[25,126] := {347} tii[25,127] := {0} tii[25,128] := {16} tii[25,129] := {1} tii[25,130] := {3} tii[25,131] := {4} tii[25,132] := {23, 170} tii[25,133] := {38} tii[25,134] := {2} tii[25,135] := {70} tii[25,136] := {6} tii[25,137] := {74} tii[25,138] := {7} tii[25,139] := {44} tii[25,140] := {12} tii[25,141] := {48} tii[25,142] := {14} tii[25,143] := {30} tii[25,144] := {31} tii[25,145] := {5} tii[25,146] := {9, 281} tii[25,147] := {97} tii[25,148] := {11} tii[25,149] := {143} tii[25,150] := {13} tii[25,151] := {151} tii[25,152] := {25} tii[25,153] := {71} tii[25,154] := {195} tii[25,155] := {27} tii[25,156] := {75} tii[25,157] := {204} tii[25,158] := {51} tii[25,159] := {52} tii[25,160] := {85, 167} tii[25,161] := {256} tii[25,162] := {43} tii[25,163] := {148} tii[25,164] := {47} tii[25,165] := {156} tii[25,166] := {81} tii[25,167] := {83} tii[25,168] := {78, 162} tii[25,169] := {215} tii[25,170] := {169} tii[25,171] := {89} tii[25,172] := {10} tii[25,173] := {131} tii[25,174] := {24} tii[25,175] := {132} tii[25,176] := {26} tii[25,177] := {107} tii[25,178] := {177} tii[25,179] := {42} tii[25,180] := {113} tii[25,181] := {181} tii[25,182] := {46} tii[25,183] := {60, 346} tii[25,184] := {123, 213} tii[25,185] := {233} tii[25,186] := {80} tii[25,187] := {82} tii[25,188] := {147} tii[25,189] := {69} tii[25,190] := {196} tii[25,191] := {155} tii[25,192] := {73} tii[25,193] := {205} tii[25,194] := {77, 311} tii[25,195] := {37, 338} tii[25,196] := {117, 210} tii[25,197] := {119} tii[25,198] := {121} tii[25,199] := {214} tii[25,200] := {160, 251} tii[25,201] := {257} tii[25,202] := {261} tii[25,203] := {32, 319} tii[25,204] := {218} tii[25,205] := {104} tii[25,206] := {176} tii[25,207] := {110} tii[25,208] := {180} tii[25,209] := {92, 335} tii[25,210] := {159, 250} tii[25,211] := {163} tii[25,212] := {165} tii[25,213] := {232} tii[25,214] := {276} tii[25,215] := {59, 320} tii[25,216] := {260} tii[25,217] := {310} tii[25,218] := {21} tii[25,219] := {41} tii[25,220] := {45} tii[25,221] := {149} tii[25,222] := {68} tii[25,223] := {157} tii[25,224] := {72} tii[25,225] := {136, 231} tii[25,226] := {118} tii[25,227] := {120} tii[25,228] := {105} tii[25,229] := {241} tii[25,230] := {111} tii[25,231] := {247} tii[25,232] := {62, 344} tii[25,233] := {164} tii[25,234] := {166} tii[25,235] := {183, 272} tii[25,236] := {161, 252} tii[25,237] := {292} tii[25,238] := {55, 332} tii[25,239] := {259} tii[25,240] := {224} tii[25,241] := {145} tii[25,242] := {227} tii[25,243] := {153} tii[25,244] := {133, 345} tii[25,245] := {208, 289} tii[25,246] := {134, 230} tii[25,247] := {211} tii[25,248] := {212} tii[25,249] := {273} tii[25,250] := {84, 309} tii[25,251] := {94, 337} tii[25,252] := {308} tii[25,253] := {294} tii[25,254] := {333} tii[25,255] := {193} tii[25,256] := {202} tii[25,257] := {229, 305} tii[25,258] := {253} tii[25,259] := {254} tii[25,260] := {135, 342} tii[25,261] := {318} tii[25,262] := {343} tii[25,263] := {8} tii[25,264] := {15} tii[25,265] := {56, 122} tii[25,266] := {33, 87} tii[25,267] := {20, 322} tii[25,268] := {116, 209} tii[25,269] := {29} tii[25,270] := {17, 296} tii[25,271] := {54, 125} tii[25,272] := {19, 262} tii[25,273] := {93, 184} tii[25,274] := {50} tii[25,275] := {53, 277} tii[25,276] := {86, 168} tii[25,277] := {36, 297} tii[25,278] := {79} tii[25,279] := {124, 217} tii[25,280] := {61, 321} cell#51 , |C| = 35 special orbit = [9, 1, 1, 1, 1, 1, 1, 1] special rep = [[], [5, 1, 1, 1]] , dim = 35 cell rep = phi[[],[5, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 35*X TII subcells: tii[49,1] := {10} tii[49,2] := {7} tii[49,3] := {14} tii[49,4] := {22} tii[49,5] := {2} tii[49,6] := {6} tii[49,7] := {12} tii[49,8] := {13} tii[49,9] := {21} tii[49,10] := {27} tii[49,11] := {0} tii[49,12] := {1} tii[49,13] := {4} tii[49,14] := {5} tii[49,15] := {11} tii[49,16] := {20} tii[49,17] := {3} tii[49,18] := {9} tii[49,19] := {16} tii[49,20] := {8} tii[49,21] := {30} tii[49,22] := {24} tii[49,23] := {29} tii[49,24] := {33} tii[49,25] := {34} tii[49,26] := {15} tii[49,27] := {23} tii[49,28] := {28} tii[49,29] := {32} tii[49,30] := {19} tii[49,31] := {26} tii[49,32] := {31} tii[49,33] := {18} tii[49,34] := {25} tii[49,35] := {17} cell#52 , |C| = 35 special orbit = [9, 1, 1, 1, 1, 1, 1, 1] special rep = [[], [5, 1, 1, 1]] , dim = 35 cell rep = phi[[],[5, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 35*X TII subcells: tii[49,1] := {34} tii[49,2] := {33} tii[49,3] := {32} tii[49,4] := {25} tii[49,5] := {31} tii[49,6] := {27} tii[49,7] := {14} tii[49,8] := {30} tii[49,9] := {26} tii[49,10] := {29} tii[49,11] := {23} tii[49,12] := {16} tii[49,13] := {6} tii[49,14] := {22} tii[49,15] := {15} tii[49,16] := {21} tii[49,17] := {19} tii[49,18] := {10} tii[49,19] := {18} tii[49,20] := {8} tii[49,21] := {12} tii[49,22] := {5} tii[49,23] := {11} tii[49,24] := {24} tii[49,25] := {28} tii[49,26] := {0} tii[49,27] := {4} tii[49,28] := {13} tii[49,29] := {20} tii[49,30] := {2} tii[49,31] := {9} tii[49,32] := {17} tii[49,33] := {3} tii[49,34] := {7} tii[49,35] := {1} cell#53 , |C| = 250 special orbit = [7, 3, 1, 1, 1, 1, 1, 1] special rep = [[1], [4, 1, 1, 1]] , dim = 160 cell rep = phi[[],[4, 2, 1, 1]]+phi[[1],[4, 1, 1, 1]] TII depth = 2 TII multiplicity polynomial = 90*X^2+70*X TII subcells: tii[39,1] := {15, 199} tii[39,2] := {49, 193} tii[39,3] := {111, 187} tii[39,4] := {30, 220} tii[39,5] := {76, 226} tii[39,6] := {18, 185} tii[39,7] := {149, 222} tii[39,8] := {35, 162} tii[39,9] := {109, 238} tii[39,10] := {186, 239} tii[39,11] := {91, 219} tii[39,12] := {221, 246} tii[39,13] := {19, 202} tii[39,14] := {60, 213} tii[39,15] := {11, 165} tii[39,16] := {131, 207} tii[39,17] := {22, 142} tii[39,18] := {3, 127} tii[39,19] := {92, 228} tii[39,20] := {168, 232} tii[39,21] := {70, 201} tii[39,22] := {9, 104} tii[39,23] := {21, 126} tii[39,24] := {206, 240} tii[39,25] := {59, 195} tii[39,26] := {130, 208} tii[39,27] := {41, 160} tii[39,28] := {20, 124} tii[39,29] := {167, 223} tii[39,30] := {129, 188} tii[39,31] := {5} tii[39,32] := {16} tii[39,33] := {4, 166} tii[39,34] := {14, 121} tii[39,35] := {28} tii[39,36] := {52} tii[39,37] := {53} tii[39,38] := {31} tii[39,39] := {6, 147} tii[39,40] := {29, 161} tii[39,41] := {17, 122} tii[39,42] := {50} tii[39,43] := {79} tii[39,44] := {80} tii[39,45] := {34, 146} tii[39,46] := {77} tii[39,47] := {112} tii[39,48] := {114} tii[39,49] := {151} tii[39,50] := {153} tii[39,51] := {198} tii[39,52] := {54} tii[39,53] := {0, 90} tii[39,54] := {78} tii[39,55] := {51, 203} tii[39,56] := {2, 69} tii[39,57] := {113} tii[39,58] := {115} tii[39,59] := {8, 89} tii[39,60] := {61, 184} tii[39,61] := {110} tii[39,62] := {150} tii[39,63] := {152} tii[39,64] := {190} tii[39,65] := {192} tii[39,66] := {67, 118} tii[39,67] := {230} tii[39,68] := {1, 58} tii[39,69] := {148} tii[39,70] := {189} tii[39,71] := {191} tii[39,72] := {224} tii[39,73] := {225} tii[39,74] := {137, 197} tii[39,75] := {243} tii[39,76] := {241} tii[39,77] := {242} tii[39,78] := {205, 237} tii[39,79] := {247} tii[39,80] := {249} tii[39,81] := {37} tii[39,82] := {62} tii[39,83] := {36, 181} tii[39,84] := {96} tii[39,85] := {97} tii[39,86] := {42, 164} tii[39,87] := {94} tii[39,88] := {134} tii[39,89] := {136} tii[39,90] := {173} tii[39,91] := {177} tii[39,92] := {48, 101} tii[39,93] := {216} tii[39,94] := {7, 87} tii[39,95] := {128} tii[39,96] := {170} tii[39,97] := {174} tii[39,98] := {210} tii[39,99] := {212} tii[39,100] := {108, 180} tii[39,101] := {27, 64} tii[39,102] := {235} tii[39,103] := {233} tii[39,104] := {234} tii[39,105] := {182, 227} tii[39,106] := {47, 103} tii[39,107] := {245} tii[39,108] := {73, 125} tii[39,109] := {248} tii[39,110] := {93} tii[39,111] := {133} tii[39,112] := {135} tii[39,113] := {172} tii[39,114] := {176} tii[39,115] := {74, 139} tii[39,116] := {215} tii[39,117] := {209} tii[39,118] := {211} tii[39,119] := {143, 194} tii[39,120] := {46, 102} tii[39,121] := {236} tii[39,122] := {72, 123} tii[39,123] := {244} tii[39,124] := {171} tii[39,125] := {175} tii[39,126] := {105, 155} tii[39,127] := {217} tii[39,128] := {71, 120} tii[39,129] := {231} tii[39,130] := {204} tii[39,131] := {32, 83} tii[39,132] := {40, 82} tii[39,133] := {55, 117} tii[39,134] := {63, 119} tii[39,135] := {81, 156} tii[39,136] := {95, 145} tii[39,137] := {13, 38} tii[39,138] := {84, 157} tii[39,139] := {26, 66} tii[39,140] := {100, 158} tii[39,141] := {116, 196} tii[39,142] := {45, 88} tii[39,143] := {132, 183} tii[39,144] := {12, 39} tii[39,145] := {154, 229} tii[39,146] := {24, 57} tii[39,147] := {169, 218} tii[39,148] := {10, 33} tii[39,149] := {68, 140} tii[39,150] := {75, 141} tii[39,151] := {99, 179} tii[39,152] := {107, 163} tii[39,153] := {25, 65} tii[39,154] := {138, 214} tii[39,155] := {44, 86} tii[39,156] := {144, 200} tii[39,157] := {23, 56} tii[39,158] := {98, 178} tii[39,159] := {106, 159} tii[39,160] := {43, 85} cell#54 , |C| = 35 special orbit = [7, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[], [4, 1, 1, 1, 1]] , dim = 35 cell rep = phi[[],[4, 1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 35*X TII subcells: tii[38,1] := {22} tii[38,2] := {14} tii[38,3] := {24} tii[38,4] := {7} tii[38,5] := {13} tii[38,6] := {23} tii[38,7] := {2} tii[38,8] := {6} tii[38,9] := {12} tii[38,10] := {9} tii[38,11] := {0} tii[38,12] := {1} tii[38,13] := {5} tii[38,14] := {3} tii[38,15] := {4} tii[38,16] := {33} tii[38,17] := {29} tii[38,18] := {32} tii[38,19] := {34} tii[38,20] := {17} tii[38,21] := {28} tii[38,22] := {31} tii[38,23] := {21} tii[38,24] := {30} tii[38,25] := {18} tii[38,26] := {8} tii[38,27] := {16} tii[38,28] := {27} tii[38,29] := {11} tii[38,30] := {20} tii[38,31] := {10} tii[38,32] := {15} tii[38,33] := {26} tii[38,34] := {19} tii[38,35] := {25} cell#55 , |C| = 35 special orbit = [7, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[], [4, 1, 1, 1, 1]] , dim = 35 cell rep = phi[[],[4, 1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 35*X TII subcells: tii[38,1] := {34} tii[38,2] := {33} tii[38,3] := {32} tii[38,4] := {31} tii[38,5] := {28} tii[38,6] := {30} tii[38,7] := {25} tii[38,8] := {20} tii[38,9] := {24} tii[38,10] := {22} tii[38,11] := {17} tii[38,12] := {6} tii[38,13] := {16} tii[38,14] := {10} tii[38,15] := {15} tii[38,16] := {26} tii[38,17] := {18} tii[38,18] := {27} tii[38,19] := {29} tii[38,20] := {3} tii[38,21] := {19} tii[38,22] := {23} tii[38,23] := {11} tii[38,24] := {21} tii[38,25] := {7} tii[38,26] := {0} tii[38,27] := {5} tii[38,28] := {14} tii[38,29] := {2} tii[38,30] := {9} tii[38,31] := {1} tii[38,32] := {4} tii[38,33] := {13} tii[38,34] := {8} tii[38,35] := {12} cell#56 , |C| = 184 special orbit = [5, 3, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[1], [3, 1, 1, 1, 1]] , dim = 120 cell rep = phi[[],[3, 2, 1, 1, 1]]+phi[[1],[3, 1, 1, 1, 1]] TII depth = 3 TII multiplicity polynomial = 64*X^2+56*X TII subcells: tii[24,1] := {20, 135} tii[24,2] := {68, 129} tii[24,3] := {42, 154} tii[24,4] := {96, 156} tii[24,5] := {27, 125} tii[24,6] := {128, 173} tii[24,7] := {28, 138} tii[24,8] := {81, 143} tii[24,9] := {15, 109} tii[24,10] := {4, 78} tii[24,11] := {115, 158} tii[24,12] := {80, 130} tii[24,13] := {41, 153} tii[24,14] := {95, 155} tii[24,15] := {26, 124} tii[24,16] := {127, 172} tii[24,17] := {10, 93} tii[24,18] := {2, 65} tii[24,19] := {114, 157} tii[24,20] := {126, 171} tii[24,21] := {9} tii[24,22] := {8, 110} tii[24,23] := {21} tii[24,24] := {44} tii[24,25] := {45} tii[24,26] := {11, 94} tii[24,27] := {43} tii[24,28] := {69} tii[24,29] := {70} tii[24,30] := {99} tii[24,31] := {102} tii[24,32] := {141} tii[24,33] := {67} tii[24,34] := {1, 51} tii[24,35] := {98} tii[24,36] := {101} tii[24,37] := {132} tii[24,38] := {134} tii[24,39] := {57, 106} tii[24,40] := {166} tii[24,41] := {161} tii[24,42] := {164} tii[24,43] := {113, 152} tii[24,44] := {176} tii[24,45] := {183} tii[24,46] := {0, 40} tii[24,47] := {52} tii[24,48] := {85} tii[24,49] := {86} tii[24,50] := {117} tii[24,51] := {119} tii[24,52] := {37, 87} tii[24,53] := {148} tii[24,54] := {145} tii[24,55] := {147} tii[24,56] := {89, 137} tii[24,57] := {19, 59} tii[24,58] := {170} tii[24,59] := {35, 77} tii[24,60] := {179} tii[24,61] := {116} tii[24,62] := {118} tii[24,63] := {60, 103} tii[24,64] := {149} tii[24,65] := {34, 76} tii[24,66] := {168} tii[24,67] := {142} tii[24,68] := {66} tii[24,69] := {97} tii[24,70] := {100} tii[24,71] := {131} tii[24,72] := {133} tii[24,73] := {56, 105} tii[24,74] := {165} tii[24,75] := {160} tii[24,76] := {163} tii[24,77] := {112, 151} tii[24,78] := {31, 74} tii[24,79] := {175} tii[24,80] := {54, 91} tii[24,81] := {181} tii[24,82] := {144} tii[24,83] := {146} tii[24,84] := {14, 47} tii[24,85] := {88, 136} tii[24,86] := {169} tii[24,87] := {61, 107} tii[24,88] := {30, 64} tii[24,89] := {178} tii[24,90] := {17, 49} tii[24,91] := {167} tii[24,92] := {159} tii[24,93] := {162} tii[24,94] := {111, 150} tii[24,95] := {174} tii[24,96] := {82, 121} tii[24,97] := {180} tii[24,98] := {53, 90} tii[24,99] := {177} tii[24,100] := {182} tii[24,101] := {23, 73} tii[24,102] := {32, 75} tii[24,103] := {46, 104} tii[24,104] := {55, 92} tii[24,105] := {7, 33} tii[24,106] := {72, 140} tii[24,107] := {18, 50} tii[24,108] := {84, 123} tii[24,109] := {5, 24} tii[24,110] := {3, 22} tii[24,111] := {58, 120} tii[24,112] := {13, 39} tii[24,113] := {62, 108} tii[24,114] := {6, 25} tii[24,115] := {16, 48} tii[24,116] := {12, 38} tii[24,117] := {71, 139} tii[24,118] := {83, 122} tii[24,119] := {36, 79} tii[24,120] := {29, 63} cell#57 , |C| = 35 special orbit = [7, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[], [4, 1, 1, 1, 1]] , dim = 35 cell rep = phi[[],[4, 1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 35*X TII subcells: tii[38,1] := {0} tii[38,2] := {11} tii[38,3] := {24} tii[38,4] := {3} tii[38,5] := {13} tii[38,6] := {1} tii[38,7] := {10} tii[38,8] := {23} tii[38,9] := {12} tii[38,10] := {22} tii[38,11] := {4} tii[38,12] := {15} tii[38,13] := {7} tii[38,14] := {14} tii[38,15] := {2} tii[38,16] := {34} tii[38,17] := {27} tii[38,18] := {17} tii[38,19] := {5} tii[38,20] := {33} tii[38,21] := {26} tii[38,22] := {16} tii[38,23] := {32} tii[38,24] := {25} tii[38,25] := {31} tii[38,26] := {30} tii[38,27] := {21} tii[38,28] := {8} tii[38,29] := {29} tii[38,30] := {20} tii[38,31] := {28} tii[38,32] := {19} tii[38,33] := {9} tii[38,34] := {18} tii[38,35] := {6} cell#58 , |C| = 21 special orbit = [5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] special rep = [[], [3, 1, 1, 1, 1, 1]] , dim = 21 cell rep = phi[[],[3, 1, 1, 1, 1, 1]] TII depth = 1 TII multiplicity polynomial = 21*X TII subcells: tii[23,1] := {0} tii[23,2] := {8} tii[23,3] := {1} tii[23,4] := {7} tii[23,5] := {2} tii[23,6] := {6} tii[23,7] := {20} tii[23,8] := {11} tii[23,9] := {3} tii[23,10] := {19} tii[23,11] := {10} tii[23,12] := {17} tii[23,13] := {14} tii[23,14] := {5} tii[23,15] := {13} tii[23,16] := {4} tii[23,17] := {18} tii[23,18] := {9} tii[23,19] := {16} tii[23,20] := {12} tii[23,21] := {15}