TII subcells for the E6ad(A5xA1) x E6sc(F4) block of E6ad # cell#0 , |C| = 1 special orbit = E6 special rep = phi[1,0] , dim = 1 cell rep = phi[1,0] TII depth = 1 TII multiplicity polynomial = X TII subcells: tii[17,1] := {0} cell#1 , |C| = 20 special orbit = D5 special rep = phi[20,2] , dim = 20 cell rep = phi[20,2] TII depth = 2 TII multiplicity polynomial = 20*X TII subcells: tii[15,1] := {1} tii[15,2] := {19} tii[15,3] := {14} tii[15,4] := {4} tii[15,5] := {15} tii[15,6] := {6} tii[15,7] := {5} tii[15,8] := {16} tii[15,9] := {2} tii[15,10] := {0} tii[15,11] := {17} tii[15,12] := {10} tii[15,13] := {7} tii[15,14] := {3} tii[15,15] := {9} tii[15,16] := {13} tii[15,17] := {18} tii[15,18] := {12} tii[15,19] := {8} tii[15,20] := {11} cell#2 , |C| = 24 special orbit = D4 special rep = phi[24,6] , dim = 24 cell rep = phi[24,6] TII depth = 2 TII multiplicity polynomial = 24*X TII subcells: tii[11,1] := {14} tii[11,2] := {7} tii[11,3] := {11} tii[11,4] := {16} tii[11,5] := {5} tii[11,6] := {8} tii[11,7] := {0} tii[11,8] := {21} tii[11,9] := {4} tii[11,10] := {9} tii[11,11] := {1} tii[11,12] := {6} tii[11,13] := {3} tii[11,14] := {13} tii[11,15] := {17} tii[11,16] := {20} tii[11,17] := {19} tii[11,18] := {22} tii[11,19] := {10} tii[11,20] := {15} tii[11,21] := {12} tii[11,22] := {2} tii[11,23] := {18} tii[11,24] := {23}