TII subcells for the E6ad(A5xA1) x E6sc(R) block of E6ad # cell#0 , |C| = 1 special orbit = E6 special rep = phi[1,0] , dim = 1 cell rep = phi[1,0] TII depth = 1 TII multiplicity polynomial = X TII subcells: tii[17,1] := {0} cell#1 , |C| = 20 special orbit = D5 special rep = phi[20,2] , dim = 20 cell rep = phi[20,2] TII depth = 2 TII multiplicity polynomial = 20*X TII subcells: tii[15,1] := {12} tii[15,2] := {5} tii[15,3] := {19} tii[15,4] := {0} tii[15,5] := {11} tii[15,6] := {9} tii[15,7] := {10} tii[15,8] := {18} tii[15,9] := {1} tii[15,10] := {6} tii[15,11] := {14} tii[15,12] := {17} tii[15,13] := {13} tii[15,14] := {16} tii[15,15] := {4} tii[15,16] := {2} tii[15,17] := {8} tii[15,18] := {3} tii[15,19] := {7} tii[15,20] := {15} cell#2 , |C| = 6 special orbit = E6(a1) special rep = phi[6,1] , dim = 6 cell rep = phi[6,1] TII depth = 1 TII multiplicity polynomial = 6*X TII subcells: tii[16,1] := {1} tii[16,2] := {5} tii[16,3] := {4} tii[16,4] := {0} tii[16,5] := {3} tii[16,6] := {2} cell#3 , |C| = 20 special orbit = D5 special rep = phi[20,2] , dim = 20 cell rep = phi[20,2] TII depth = 2 TII multiplicity polynomial = 20*X TII subcells: tii[15,1] := {19} tii[15,2] := {17} tii[15,3] := {5} tii[15,4] := {16} tii[15,5] := {13} tii[15,6] := {12} tii[15,7] := {14} tii[15,8] := {3} tii[15,9] := {15} tii[15,10] := {18} tii[15,11] := {7} tii[15,12] := {0} tii[15,13] := {4} tii[15,14] := {2} tii[15,15] := {11} tii[15,16] := {10} tii[15,17] := {8} tii[15,18] := {9} tii[15,19] := {6} tii[15,20] := {1} cell#4 , |C| = 45 special orbit = E6(a3) special rep = phi[30,3] , dim = 30 cell rep = phi[15,4]+phi[30,3] TII depth = 2 TII multiplicity polynomial = 15*X^2+15*X TII subcells: tii[14,1] := {36, 44} tii[14,2] := {14, 38} tii[14,3] := {2, 28} tii[14,4] := {32, 43} tii[14,5] := {13, 37} tii[14,6] := {26} tii[14,7] := {11} tii[14,8] := {6, 34} tii[14,9] := {19} tii[14,10] := {21, 41} tii[14,11] := {25} tii[14,12] := {30} tii[14,13] := {18} tii[14,14] := {10} tii[14,15] := {17} tii[14,16] := {23} tii[14,17] := {9} tii[14,18] := {27, 42} tii[14,19] := {16} tii[14,20] := {20, 40} tii[14,21] := {22} tii[14,22] := {8} tii[14,23] := {4, 33} tii[14,24] := {15} tii[14,25] := {7} tii[14,26] := {3, 31} tii[14,27] := {5, 35} tii[14,28] := {12, 39} tii[14,29] := {0, 24} tii[14,30] := {1, 29} cell#5 , |C| = 64 special orbit = D5(a1) special rep = phi[64,4] , dim = 64 cell rep = phi[64,4] TII depth = 4 TII multiplicity polynomial = 64*X TII subcells: tii[13,1] := {42} tii[13,2] := {25} tii[13,3] := {50} tii[13,4] := {59} tii[13,5] := {49} tii[13,6] := {15} tii[13,7] := {22} tii[13,8] := {34} tii[13,9] := {38} tii[13,10] := {39} tii[13,11] := {9} tii[13,12] := {13} tii[13,13] := {47} tii[13,14] := {14} tii[13,15] := {11} tii[13,16] := {54} tii[13,17] := {36} tii[13,18] := {53} tii[13,19] := {7} tii[13,20] := {20} tii[13,21] := {58} tii[13,22] := {33} tii[13,23] := {32} tii[13,24] := {61} tii[13,25] := {41} tii[13,26] := {63} tii[13,27] := {44} tii[13,28] := {45} tii[13,29] := {0} tii[13,30] := {35} tii[13,31] := {4} tii[13,32] := {5} tii[13,33] := {51} tii[13,34] := {43} tii[13,35] := {2} tii[13,36] := {57} tii[13,37] := {18} tii[13,38] := {19} tii[13,39] := {55} tii[13,40] := {56} tii[13,41] := {31} tii[13,42] := {6} tii[13,43] := {60} tii[13,44] := {62} tii[13,45] := {30} tii[13,46] := {29} tii[13,47] := {24} tii[13,48] := {40} tii[13,49] := {16} tii[13,50] := {48} tii[13,51] := {28} tii[13,52] := {23} tii[13,53] := {27} tii[13,54] := {10} tii[13,55] := {37} tii[13,56] := {26} tii[13,57] := {12} tii[13,58] := {46} tii[13,59] := {52} tii[13,60] := {8} tii[13,61] := {21} tii[13,62] := {3} tii[13,63] := {1} tii[13,64] := {17} cell#6 , |C| = 64 special orbit = D5(a1) special rep = phi[64,4] , dim = 64 cell rep = phi[64,4] TII depth = 4 TII multiplicity polynomial = 64*X TII subcells: tii[13,1] := {59} tii[13,2] := {50} tii[13,3] := {25} tii[13,4] := {42} tii[13,5] := {41} tii[13,6] := {63} tii[13,7] := {62} tii[13,8] := {57} tii[13,9] := {33} tii[13,10] := {7} tii[13,11] := {61} tii[13,12] := {48} tii[13,13] := {2} tii[13,14] := {58} tii[13,15] := {53} tii[13,16] := {6} tii[13,17] := {32} tii[13,18] := {31} tii[13,19] := {60} tii[13,20] := {56} tii[13,21] := {21} tii[13,22] := {38} tii[13,23] := {52} tii[13,24] := {10} tii[13,25] := {46} tii[13,26] := {14} tii[13,27] := {19} tii[13,28] := {20} tii[13,29] := {55} tii[13,30] := {8} tii[13,31] := {37} tii[13,32] := {51} tii[13,33] := {9} tii[13,34] := {12} tii[13,35] := {45} tii[13,36] := {13} tii[13,37] := {44} tii[13,38] := {43} tii[13,39] := {0} tii[13,40] := {34} tii[13,41] := {36} tii[13,42] := {35} tii[13,43] := {4} tii[13,44] := {17} tii[13,45] := {3} tii[13,46] := {22} tii[13,47] := {54} tii[13,48] := {11} tii[13,49] := {49} tii[13,50] := {15} tii[13,51] := {23} tii[13,52] := {30} tii[13,53] := {1} tii[13,54] := {40} tii[13,55] := {5} tii[13,56] := {18} tii[13,57] := {47} tii[13,58] := {16} tii[13,59] := {24} tii[13,60] := {39} tii[13,61] := {29} tii[13,62] := {28} tii[13,63] := {27} tii[13,64] := {26} cell#7 , |C| = 81 special orbit = A4 special rep = phi[81,6] , dim = 81 cell rep = phi[81,6] TII depth = 3 TII multiplicity polynomial = 81*X TII subcells: tii[10,1] := {61} tii[10,2] := {80} tii[10,3] := {52} tii[10,4] := {29} tii[10,5] := {78} tii[10,6] := {44} tii[10,7] := {50} tii[10,8] := {67} tii[10,9] := {28} tii[10,10] := {77} tii[10,11] := {8} tii[10,12] := {73} tii[10,13] := {25} tii[10,14] := {76} tii[10,15] := {79} tii[10,16] := {24} tii[10,17] := {39} tii[10,18] := {71} tii[10,19] := {53} tii[10,20] := {62} tii[10,21] := {54} tii[10,22] := {63} tii[10,23] := {47} tii[10,24] := {66} tii[10,25] := {22} tii[10,26] := {37} tii[10,27] := {70} tii[10,28] := {23} tii[10,29] := {75} tii[10,30] := {36} tii[10,31] := {46} tii[10,32] := {31} tii[10,33] := {15} tii[10,34] := {45} tii[10,35] := {60} tii[10,36] := {6} tii[10,37] := {59} tii[10,38] := {35} tii[10,39] := {10} tii[10,40] := {69} tii[10,41] := {68} tii[10,42] := {18} tii[10,43] := {74} tii[10,44] := {9} tii[10,45] := {14} tii[10,46] := {65} tii[10,47] := {43} tii[10,48] := {3} tii[10,49] := {51} tii[10,50] := {34} tii[10,51] := {33} tii[10,52] := {58} tii[10,53] := {57} tii[10,54] := {5} tii[10,55] := {13} tii[10,56] := {64} tii[10,57] := {27} tii[10,58] := {42} tii[10,59] := {41} tii[10,60] := {49} tii[10,61] := {2} tii[10,62] := {55} tii[10,63] := {4} tii[10,64] := {56} tii[10,65] := {32} tii[10,66] := {26} tii[10,67] := {12} tii[10,68] := {40} tii[10,69] := {30} tii[10,70] := {0} tii[10,71] := {38} tii[10,72] := {1} tii[10,73] := {48} tii[10,74] := {72} tii[10,75] := {7} tii[10,76] := {17} tii[10,77] := {16} tii[10,78] := {21} tii[10,79] := {20} tii[10,80] := {19} tii[10,81] := {11} cell#8 , |C| = 24 special orbit = D4 special rep = phi[24,6] , dim = 24 cell rep = phi[24,6] TII depth = 2 TII multiplicity polynomial = 24*X TII subcells: tii[11,1] := {16} tii[11,2] := {20} tii[11,3] := {22} tii[11,4] := {23} tii[11,5] := {7} tii[11,6] := {4} tii[11,7] := {13} tii[11,8] := {19} tii[11,9] := {18} tii[11,10] := {21} tii[11,11] := {11} tii[11,12] := {17} tii[11,13] := {15} tii[11,14] := {0} tii[11,15] := {5} tii[11,16] := {2} tii[11,17] := {12} tii[11,18] := {6} tii[11,19] := {9} tii[11,20] := {8} tii[11,21] := {1} tii[11,22] := {10} tii[11,23] := {14} tii[11,24] := {3} cell#9 , |C| = 24 special orbit = D4 special rep = phi[24,6] , dim = 24 cell rep = phi[24,6] TII depth = 2 TII multiplicity polynomial = 24*X TII subcells: tii[11,1] := {11} tii[11,2] := {20} tii[11,3] := {22} tii[11,4] := {23} tii[11,5] := {13} tii[11,6] := {12} tii[11,7] := {15} tii[11,8] := {5} tii[11,9] := {19} tii[11,10] := {21} tii[11,11] := {14} tii[11,12] := {18} tii[11,13] := {17} tii[11,14] := {10} tii[11,15] := {7} tii[11,16] := {4} tii[11,17] := {3} tii[11,18] := {1} tii[11,19] := {9} tii[11,20] := {6} tii[11,21] := {8} tii[11,22] := {16} tii[11,23] := {2} tii[11,24] := {0} cell#10 , |C| = 230 special orbit = D4(a1) special rep = phi[80,7] , dim = 80 cell rep = phi[60,8]+phi[80,7]+phi[90,8] TII depth = 3 TII multiplicity polynomial = 10*X^2+70*X^3 TII subcells: tii[9,1] := {186, 227} tii[9,2] := {28, 138, 139} tii[9,3] := {39, 158, 209} tii[9,4] := {73, 191, 192} tii[9,5] := {106, 201, 225} tii[9,6] := {36, 200, 229} tii[9,7] := {101, 199, 223} tii[9,8] := {11, 99, 166} tii[9,9] := {65, 180, 216} tii[9,10] := {135, 211} tii[9,11] := {33, 162, 204} tii[9,12] := {35, 165, 206} tii[9,13] := {64, 187, 188} tii[9,14] := {10, 98, 163} tii[9,15] := {60, 179, 214} tii[9,16] := {20, 132, 133} tii[9,17] := {32, 155, 208} tii[9,18] := {80, 81, 150} tii[9,19] := {78, 184, 219} tii[9,20] := {56, 57, 122} tii[9,21] := {7, 114, 177} tii[9,22] := {140, 213} tii[9,23] := {115, 160, 224} tii[9,24] := {91, 92, 93} tii[9,25] := {143, 185, 220} tii[9,26] := {124, 125, 126} tii[9,27] := {42, 43, 167} tii[9,28] := {55, 95, 205} tii[9,29] := {75, 76, 151} tii[9,30] := {111, 112, 175} tii[9,31] := {17, 137, 193} tii[9,32] := {74, 129, 215} tii[9,33] := {107, 202} tii[9,34] := {53, 54, 123} tii[9,35] := {40, 171, 172} tii[9,36] := {38, 169, 170} tii[9,37] := {110, 159, 210} tii[9,38] := {72, 183} tii[9,39] := {88, 89, 154} tii[9,40] := {108, 109, 178} tii[9,41] := {26, 27, 83} tii[9,42] := {168, 222} tii[9,43] := {4, 71, 149} tii[9,44] := {3, 69, 147} tii[9,45] := {50, 51, 52} tii[9,46] := {70, 182, 228} tii[9,47] := {136, 212} tii[9,48] := {6, 105, 173} tii[9,49] := {104, 157, 226} tii[9,50] := {85, 86, 87} tii[9,51] := {24, 25, 82} tii[9,52] := {68, 181, 218} tii[9,53] := {48, 49, 118} tii[9,54] := {66, 67, 146} tii[9,55] := {22, 23, 84} tii[9,56] := {34, 156, 221} tii[9,57] := {15, 134, 189} tii[9,58] := {63, 127, 217} tii[9,59] := {100, 198} tii[9,60] := {45, 46, 120} tii[9,61] := {47, 94, 207} tii[9,62] := {61, 62, 148} tii[9,63] := {30, 31, 164} tii[9,64] := {12, 116, 117} tii[9,65] := {19, 131, 196} tii[9,66] := {18, 144, 145} tii[9,67] := {13, 97, 174} tii[9,68] := {0, 44, 121} tii[9,69] := {113, 203} tii[9,70] := {5, 79, 153} tii[9,71] := {2, 77, 152} tii[9,72] := {16, 141, 142} tii[9,73] := {9, 96, 176} tii[9,74] := {29, 59, 190} tii[9,75] := {90, 130, 197} tii[9,76] := {21, 58, 194} tii[9,77] := {1, 37, 119} tii[9,78] := {14, 128, 195} tii[9,79] := {8, 102, 103} tii[9,80] := {41, 161} cell#11 , |C| = 45 special orbit = E6(a3) special rep = phi[30,3] , dim = 30 cell rep = phi[15,4]+phi[30,3] TII depth = 2 TII multiplicity polynomial = 15*X^2+15*X TII subcells: tii[14,1] := {14, 44} tii[14,2] := {13, 39} tii[14,3] := {11, 30} tii[14,4] := {9, 43} tii[14,5] := {12, 37} tii[14,6] := {29} tii[14,7] := {19} tii[14,8] := {8, 35} tii[14,9] := {24} tii[14,10] := {1, 40} tii[14,11] := {28} tii[14,12] := {32} tii[14,13] := {23} tii[14,14] := {17} tii[14,15] := {22} tii[14,16] := {26} tii[14,17] := {16} tii[14,18] := {4, 42} tii[14,19] := {21} tii[14,20] := {2, 41} tii[14,21] := {25} tii[14,22] := {15} tii[14,23] := {10, 34} tii[14,24] := {20} tii[14,25] := {18} tii[14,26] := {5, 33} tii[14,27] := {3, 36} tii[14,28] := {0, 38} tii[14,29] := {7, 27} tii[14,30] := {6, 31} cell#12 , |C| = 60 special orbit = A4+A1 special rep = phi[60,5] , dim = 60 cell rep = phi[60,5] TII depth = 3 TII multiplicity polynomial = 60*X TII subcells: tii[12,1] := {59} tii[12,2] := {55} tii[12,3] := {32} tii[12,4] := {37} tii[12,5] := {49} tii[12,6] := {57} tii[12,7] := {58} tii[12,8] := {2} tii[12,9] := {54} tii[12,10] := {8} tii[12,11] := {51} tii[12,12] := {16} tii[12,13] := {53} tii[12,14] := {47} tii[12,15] := {43} tii[12,16] := {39} tii[12,17] := {30} tii[12,18] := {46} tii[12,19] := {6} tii[12,20] := {42} tii[12,21] := {14} tii[12,22] := {38} tii[12,23] := {20} tii[12,24] := {29} tii[12,25] := {23} tii[12,26] := {28} tii[12,27] := {34} tii[12,28] := {41} tii[12,29] := {26} tii[12,30] := {19} tii[12,31] := {7} tii[12,32] := {56} tii[12,33] := {15} tii[12,34] := {21} tii[12,35] := {52} tii[12,36] := {24} tii[12,37] := {48} tii[12,38] := {40} tii[12,39] := {27} tii[12,40] := {5} tii[12,41] := {3} tii[12,42] := {18} tii[12,43] := {45} tii[12,44] := {13} tii[12,45] := {4} tii[12,46] := {50} tii[12,47] := {25} tii[12,48] := {31} tii[12,49] := {33} tii[12,50] := {44} tii[12,51] := {22} tii[12,52] := {36} tii[12,53] := {10} tii[12,54] := {35} tii[12,55] := {9} tii[12,56] := {0} tii[12,57] := {1} tii[12,58] := {12} tii[12,59] := {11} tii[12,60] := {17} cell#13 , |C| = 60 special orbit = A4+A1 special rep = phi[60,5] , dim = 60 cell rep = phi[60,5] TII depth = 3 TII multiplicity polynomial = 60*X TII subcells: tii[12,1] := {49} tii[12,2] := {32} tii[12,3] := {55} tii[12,4] := {37} tii[12,5] := {59} tii[12,6] := {31} tii[12,7] := {41} tii[12,8] := {26} tii[12,9] := {20} tii[12,10] := {30} tii[12,11] := {24} tii[12,12] := {43} tii[12,13] := {39} tii[12,14] := {48} tii[12,15] := {14} tii[12,16] := {54} tii[12,17] := {57} tii[12,18] := {27} tii[12,19] := {34} tii[12,20] := {13} tii[12,21] := {42} tii[12,22] := {18} tii[12,23] := {38} tii[12,24] := {8} tii[12,25] := {50} tii[12,26] := {46} tii[12,27] := {4} tii[12,28] := {58} tii[12,29] := {1} tii[12,30] := {53} tii[12,31] := {36} tii[12,32] := {33} tii[12,33] := {45} tii[12,34] := {22} tii[12,35] := {25} tii[12,36] := {52} tii[12,37] := {10} tii[12,38] := {7} tii[12,39] := {9} tii[12,40] := {35} tii[12,41] := {21} tii[12,42] := {3} tii[12,43] := {16} tii[12,44] := {44} tii[12,45] := {40} tii[12,46] := {23} tii[12,47] := {51} tii[12,48] := {29} tii[12,49] := {56} tii[12,50] := {15} tii[12,51] := {19} tii[12,52] := {6} tii[12,53] := {28} tii[12,54] := {5} tii[12,55] := {47} tii[12,56] := {17} tii[12,57] := {12} tii[12,58] := {11} tii[12,59] := {2} tii[12,60] := {0} cell#14 , |C| = 81 special orbit = A4 special rep = phi[81,6] , dim = 81 cell rep = phi[81,6] TII depth = 3 TII multiplicity polynomial = 81*X TII subcells: tii[10,1] := {74} tii[10,2] := {80} tii[10,3] := {54} tii[10,4] := {31} tii[10,5] := {75} tii[10,6] := {38} tii[10,7] := {58} tii[10,8] := {63} tii[10,9] := {51} tii[10,10] := {77} tii[10,11] := {22} tii[10,12] := {79} tii[10,13] := {50} tii[10,14] := {76} tii[10,15] := {78} tii[10,16] := {21} tii[10,17] := {44} tii[10,18] := {72} tii[10,19] := {48} tii[10,20] := {66} tii[10,21] := {49} tii[10,22] := {67} tii[10,23] := {57} tii[10,24] := {60} tii[10,25] := {20} tii[10,26] := {43} tii[10,27] := {71} tii[10,28] := {30} tii[10,29] := {73} tii[10,30] := {34} tii[10,31] := {47} tii[10,32] := {8} tii[10,33] := {39} tii[10,34] := {15} tii[10,35] := {28} tii[10,36] := {29} tii[10,37] := {27} tii[10,38] := {65} tii[10,39] := {42} tii[10,40] := {41} tii[10,41] := {40} tii[10,42] := {1} tii[10,43] := {70} tii[10,44] := {7} tii[10,45] := {17} tii[10,46] := {64} tii[10,47] := {37} tii[10,48] := {14} tii[10,49] := {59} tii[10,50] := {45} tii[10,51] := {46} tii[10,52] := {53} tii[10,53] := {52} tii[10,54] := {26} tii[10,55] := {18} tii[10,56] := {62} tii[10,57] := {4} tii[10,58] := {12} tii[10,59] := {11} tii[10,60] := {69} tii[10,61] := {13} tii[10,62] := {23} tii[10,63] := {25} tii[10,64] := {24} tii[10,65] := {61} tii[10,66] := {3} tii[10,67] := {36} tii[10,68] := {10} tii[10,69] := {6} tii[10,70] := {2} tii[10,71] := {35} tii[10,72] := {9} tii[10,73] := {56} tii[10,74] := {68} tii[10,75] := {5} tii[10,76] := {0} tii[10,77] := {19} tii[10,78] := {32} tii[10,79] := {55} tii[10,80] := {33} tii[10,81] := {16} cell#15 , |C| = 150 special orbit = D4(a1) special rep = phi[80,7] , dim = 80 cell rep = phi[10,9]+phi[60,8]+phi[80,7] TII depth = 3 TII multiplicity polynomial = 50*X^2+10*X^3+20*X TII subcells: tii[9,1] := {25, 118, 149} tii[9,2] := {49, 109} tii[9,3] := {40, 128} tii[9,4] := {89, 134} tii[9,5] := {68, 144} tii[9,6] := {31, 130} tii[9,7] := {67, 143} tii[9,8] := {30, 97} tii[9,9] := {55, 136} tii[9,10] := {6, 92, 145} tii[9,11] := {65, 125} tii[9,12] := {66, 126} tii[9,13] := {86, 132} tii[9,14] := {29, 96} tii[9,15] := {54, 135} tii[9,16] := {45, 108} tii[9,17] := {39, 124} tii[9,18] := {85} tii[9,19] := {50, 139} tii[9,20] := {63} tii[9,21] := {36, 102} tii[9,22] := {7, 91, 147} tii[9,23] := {38, 131} tii[9,24] := {76} tii[9,25] := {53, 138} tii[9,26] := {94} tii[9,27] := {71} tii[9,28] := {16, 106} tii[9,29] := {82} tii[9,30] := {100} tii[9,31] := {48, 114} tii[9,32] := {23, 119} tii[9,33] := {2, 74, 141} tii[9,34] := {61} tii[9,35] := {70, 122} tii[9,36] := {69, 121} tii[9,37] := {35, 127} tii[9,38] := {1, 56, 133} tii[9,39] := {81} tii[9,40] := {99} tii[9,41] := {44} tii[9,42] := {15, 105, 148} tii[9,43] := {21, 80} tii[9,44] := {20, 79} tii[9,45] := {57} tii[9,46] := {22, 120} tii[9,47] := {8, 87, 146} tii[9,48] := {33, 98} tii[9,49] := {34, 129} tii[9,50] := {75} tii[9,51] := {43} tii[9,52] := {47, 137} tii[9,53] := {59} tii[9,54] := {78} tii[9,55] := {42} tii[9,56] := {10, 107} tii[9,57] := {46, 112} tii[9,58] := {18, 117} tii[9,59] := {3, 73, 140} tii[9,60] := {58} tii[9,61] := {13, 104} tii[9,62] := {77} tii[9,63] := {64} tii[9,64] := {37, 95} tii[9,65] := {28, 116} tii[9,66] := {52, 111} tii[9,67] := {17, 103} tii[9,68] := {11, 62} tii[9,69] := {4, 72, 142} tii[9,70] := {24, 84} tii[9,71] := {19, 83} tii[9,72] := {51, 110} tii[9,73] := {14, 101} tii[9,74] := {9, 90} tii[9,75] := {27, 115} tii[9,76] := {5, 88} tii[9,77] := {12, 60} tii[9,78] := {26, 113} tii[9,79] := {32, 93} tii[9,80] := {0, 41, 123} cell#16 , |C| = 230 special orbit = D4(a1) special rep = phi[80,7] , dim = 80 cell rep = phi[60,8]+phi[80,7]+phi[90,8] TII depth = 3 TII multiplicity polynomial = 10*X^2+70*X^3 TII subcells: tii[9,1] := {91, 223} tii[9,2] := {49, 107, 164} tii[9,3] := {35, 133, 211} tii[9,4] := {103, 163, 203} tii[9,5] := {88, 184, 209} tii[9,6] := {86, 126, 225} tii[9,7] := {87, 183, 212} tii[9,8] := {23, 122, 125} tii[9,9] := {57, 158, 194} tii[9,10] := {42, 199} tii[9,11] := {61, 175, 179} tii[9,12] := {66, 174, 181} tii[9,13] := {94, 157, 200} tii[9,14] := {22, 121, 123} tii[9,15] := {56, 153, 195} tii[9,16] := {37, 90, 154} tii[9,17] := {32, 124, 210} tii[9,18] := {55, 120, 171} tii[9,19] := {60, 165, 222} tii[9,20] := {82, 142, 148} tii[9,21] := {30, 138, 176} tii[9,22] := {52, 207} tii[9,23] := {36, 140, 228} tii[9,24] := {112, 113, 173} tii[9,25] := {19, 167, 229} tii[9,26] := {139, 141, 193} tii[9,27] := {28, 89, 189} tii[9,28] := {8, 78, 216} tii[9,29] := {50, 109, 205} tii[9,30] := {79, 137, 217} tii[9,31] := {48, 150, 161} tii[9,32] := {18, 105, 220} tii[9,33] := {27, 185} tii[9,34] := {75, 76, 187} tii[9,35] := {77, 136, 188} tii[9,36] := {73, 132, 186} tii[9,37] := {7, 135, 227} tii[9,38] := {13, 162} tii[9,39] := {104, 106, 204} tii[9,40] := {74, 134, 215} tii[9,41] := {45, 100, 118} tii[9,42] := {72, 214} tii[9,43] := {12, 102, 152} tii[9,44] := {11, 96, 149} tii[9,45] := {69, 70, 147} tii[9,46] := {59, 99, 219} tii[9,47] := {46, 201} tii[9,48] := {26, 131, 177} tii[9,49] := {34, 129, 226} tii[9,50] := {97, 98, 172} tii[9,51] := {44, 95, 117} tii[9,52] := {58, 160, 221} tii[9,53] := {67, 127, 146} tii[9,54] := {43, 119, 159} tii[9,55] := {39, 40, 155} tii[9,56] := {33, 64, 208} tii[9,57] := {41, 151, 156} tii[9,58] := {16, 93, 218} tii[9,59] := {24, 182} tii[9,60] := {62, 63, 180} tii[9,61] := {6, 65, 213} tii[9,62] := {38, 92, 198} tii[9,63] := {21, 85, 178} tii[9,64] := {31, 83, 145} tii[9,65] := {20, 115, 197} tii[9,66] := {54, 116, 170} tii[9,67] := {10, 84, 192} tii[9,68] := {4, 81, 143} tii[9,69] := {29, 190} tii[9,70] := {15, 114, 168} tii[9,71] := {14, 110, 169} tii[9,72] := {53, 111, 166} tii[9,73] := {9, 80, 191} tii[9,74] := {1, 51, 206} tii[9,75] := {2, 108, 224} tii[9,76] := {0, 47, 202} tii[9,77] := {3, 71, 130} tii[9,78] := {17, 101, 196} tii[9,79] := {25, 68, 128} tii[9,80] := {5, 144} cell#17 , |C| = 60 special orbit = A2+2*A1 special rep = phi[60,11] , dim = 60 cell rep = phi[60,11] TII depth = 3 TII multiplicity polynomial = 60*X TII subcells: tii[7,1] := {25} tii[7,2] := {32} tii[7,3] := {46} tii[7,4] := {57} tii[7,5] := {59} tii[7,6] := {35} tii[7,7] := {51} tii[7,8] := {17} tii[7,9] := {12} tii[7,10] := {33} tii[7,11] := {42} tii[7,12] := {10} tii[7,13] := {6} tii[7,14] := {43} tii[7,15] := {34} tii[7,16] := {41} tii[7,17] := {30} tii[7,18] := {54} tii[7,19] := {9} tii[7,20] := {48} tii[7,21] := {38} tii[7,22] := {55} tii[7,23] := {14} tii[7,24] := {22} tii[7,25] := {4} tii[7,26] := {40} tii[7,27] := {39} tii[7,28] := {2} tii[7,29] := {47} tii[7,30] := {53} tii[7,31] := {20} tii[7,32] := {27} tii[7,33] := {29} tii[7,34] := {13} tii[7,35] := {37} tii[7,36] := {23} tii[7,37] := {44} tii[7,38] := {11} tii[7,39] := {52} tii[7,40] := {45} tii[7,41] := {31} tii[7,42] := {56} tii[7,43] := {24} tii[7,44] := {19} tii[7,45] := {7} tii[7,46] := {26} tii[7,47] := {18} tii[7,48] := {50} tii[7,49] := {16} tii[7,50] := {5} tii[7,51] := {49} tii[7,52] := {1} tii[7,53] := {58} tii[7,54] := {15} tii[7,55] := {8} tii[7,56] := {21} tii[7,57] := {3} tii[7,58] := {36} tii[7,59] := {28} tii[7,60] := {0} cell#18 , |C| = 60 special orbit = A2+2*A1 special rep = phi[60,11] , dim = 60 cell rep = phi[60,11] TII depth = 3 TII multiplicity polynomial = 60*X TII subcells: tii[7,1] := {59} tii[7,2] := {57} tii[7,3] := {46} tii[7,4] := {32} tii[7,5] := {25} tii[7,6] := {23} tii[7,7] := {38} tii[7,8] := {55} tii[7,9] := {54} tii[7,10] := {3} tii[7,11] := {43} tii[7,12] := {49} tii[7,13] := {44} tii[7,14] := {4} tii[7,15] := {35} tii[7,16] := {14} tii[7,17] := {53} tii[7,18] := {30} tii[7,19] := {47} tii[7,20] := {10} tii[7,21] := {48} tii[7,22] := {15} tii[7,23] := {41} tii[7,24] := {34} tii[7,25] := {39} tii[7,26] := {5} tii[7,27] := {40} tii[7,28] := {33} tii[7,29] := {8} tii[7,30] := {12} tii[7,31] := {58} tii[7,32] := {1} tii[7,33] := {17} tii[7,34] := {56} tii[7,35] := {24} tii[7,36] := {51} tii[7,37] := {6} tii[7,38] := {52} tii[7,39] := {9} tii[7,40] := {31} tii[7,41] := {45} tii[7,42] := {13} tii[7,43] := {37} tii[7,44] := {11} tii[7,45] := {50} tii[7,46] := {16} tii[7,47] := {21} tii[7,48] := {7} tii[7,49] := {28} tii[7,50] := {42} tii[7,51] := {22} tii[7,52] := {26} tii[7,53] := {20} tii[7,54] := {27} tii[7,55] := {18} tii[7,56] := {0} tii[7,57] := {36} tii[7,58] := {2} tii[7,59] := {29} tii[7,60] := {19} cell#19 , |C| = 81 special orbit = A3 special rep = phi[81,10] , dim = 81 cell rep = phi[81,10] TII depth = 3 TII multiplicity polynomial = 81*X TII subcells: tii[8,1] := {63} tii[8,2] := {45} tii[8,3] := {70} tii[8,4] := {44} tii[8,5] := {59} tii[8,6] := {58} tii[8,7] := {24} tii[8,8] := {68} tii[8,9] := {40} tii[8,10] := {51} tii[8,11] := {75} tii[8,12] := {79} tii[8,13] := {43} tii[8,14] := {78} tii[8,15] := {36} tii[8,16] := {50} tii[8,17] := {20} tii[8,18] := {62} tii[8,19] := {21} tii[8,20] := {72} tii[8,21] := {77} tii[8,22] := {35} tii[8,23] := {34} tii[8,24] := {49} tii[8,25] := {48} tii[8,26] := {7} tii[8,27] := {57} tii[8,28] := {33} tii[8,29] := {30} tii[8,30] := {19} tii[8,31] := {16} tii[8,32] := {67} tii[8,33] := {47} tii[8,34] := {31} tii[8,35] := {74} tii[8,36] := {6} tii[8,37] := {56} tii[8,38] := {17} tii[8,39] := {66} tii[8,40] := {55} tii[8,41] := {5} tii[8,42] := {4} tii[8,43] := {60} tii[8,44] := {15} tii[8,45] := {61} tii[8,46] := {14} tii[8,47] := {69} tii[8,48] := {76} tii[8,49] := {29} tii[8,50] := {42} tii[8,51] := {3} tii[8,52] := {12} tii[8,53] := {13} tii[8,54] := {54} tii[8,55] := {27} tii[8,56] := {28} tii[8,57] := {65} tii[8,58] := {23} tii[8,59] := {37} tii[8,60] := {53} tii[8,61] := {52} tii[8,62] := {39} tii[8,63] := {38} tii[8,64] := {25} tii[8,65] := {26} tii[8,66] := {64} tii[8,67] := {2} tii[8,68] := {73} tii[8,69] := {11} tii[8,70] := {80} tii[8,71] := {22} tii[8,72] := {71} tii[8,73] := {10} tii[8,74] := {32} tii[8,75] := {18} tii[8,76] := {8} tii[8,77] := {9} tii[8,78] := {46} tii[8,79] := {1} tii[8,80] := {0} tii[8,81] := {41} cell#20 , |C| = 45 special orbit = A2 special rep = phi[30,15] , dim = 30 cell rep = phi[15,16]+phi[30,15] TII depth = 2 TII multiplicity polynomial = 15*X^2+15*X TII subcells: tii[4,1] := {13, 38} tii[4,2] := {19, 34} tii[4,3] := {6, 44} tii[4,4] := {8, 41} tii[4,5] := {12, 39} tii[4,6] := {27} tii[4,7] := {10, 35} tii[4,8] := {21} tii[4,9] := {26} tii[4,10] := {3, 42} tii[4,11] := {16} tii[4,12] := {2, 40} tii[4,13] := {22} tii[4,14] := {28} tii[4,15] := {18} tii[4,16] := {23} tii[4,17] := {29} tii[4,18] := {24} tii[4,19] := {11} tii[4,20] := {4, 43} tii[4,21] := {15} tii[4,22] := {9, 36} tii[4,23] := {20} tii[4,24] := {25} tii[4,25] := {17} tii[4,26] := {7, 31} tii[4,27] := {1, 37} tii[4,28] := {14, 30} tii[4,29] := {5, 32} tii[4,30] := {0, 33} cell#21 , |C| = 81 special orbit = A3 special rep = phi[81,10] , dim = 81 cell rep = phi[81,10] TII depth = 3 TII multiplicity polynomial = 81*X TII subcells: tii[8,1] := {68} tii[8,2] := {55} tii[8,3] := {56} tii[8,4] := {54} tii[8,5] := {62} tii[8,6] := {70} tii[8,7] := {14} tii[8,8] := {76} tii[8,9] := {51} tii[8,10] := {39} tii[8,11] := {79} tii[8,12] := {80} tii[8,13] := {59} tii[8,14] := {69} tii[8,15] := {49} tii[8,16] := {38} tii[8,17] := {12} tii[8,18] := {48} tii[8,19] := {37} tii[8,20] := {74} tii[8,21] := {78} tii[8,22] := {25} tii[8,23] := {24} tii[8,24] := {36} tii[8,25] := {35} tii[8,26] := {23} tii[8,27] := {67} tii[8,28] := {46} tii[8,29] := {45} tii[8,30] := {31} tii[8,31] := {33} tii[8,32] := {73} tii[8,33] := {32} tii[8,34] := {47} tii[8,35] := {77} tii[8,36] := {21} tii[8,37] := {66} tii[8,38] := {11} tii[8,39] := {72} tii[8,40] := {65} tii[8,41] := {19} tii[8,42] := {20} tii[8,43] := {63} tii[8,44] := {10} tii[8,45] := {44} tii[8,46] := {30} tii[8,47] := {71} tii[8,48] := {64} tii[8,49] := {43} tii[8,50] := {53} tii[8,51] := {3} tii[8,52] := {8} tii[8,53] := {9} tii[8,54] := {61} tii[8,55] := {17} tii[8,56] := {18} tii[8,57] := {52} tii[8,58] := {40} tii[8,59] := {26} tii[8,60] := {42} tii[8,61] := {41} tii[8,62] := {28} tii[8,63] := {27} tii[8,64] := {15} tii[8,65] := {16} tii[8,66] := {50} tii[8,67] := {2} tii[8,68] := {60} tii[8,69] := {7} tii[8,70] := {75} tii[8,71] := {13} tii[8,72] := {58} tii[8,73] := {6} tii[8,74] := {22} tii[8,75] := {34} tii[8,76] := {4} tii[8,77] := {5} tii[8,78] := {57} tii[8,79] := {1} tii[8,80] := {0} tii[8,81] := {29} cell#22 , |C| = 60 special orbit = A2+2*A1 special rep = phi[60,11] , dim = 60 cell rep = phi[60,11] TII depth = 3 TII multiplicity polynomial = 60*X TII subcells: tii[7,1] := {48} tii[7,2] := {53} tii[7,3] := {59} tii[7,4] := {52} tii[7,5] := {45} tii[7,6] := {42} tii[7,7] := {56} tii[7,8] := {33} tii[7,9] := {30} tii[7,10] := {5} tii[7,11] := {58} tii[7,12] := {19} tii[7,13] := {12} tii[7,14] := {11} tii[7,15] := {55} tii[7,16] := {27} tii[7,17] := {47} tii[7,18] := {46} tii[7,19] := {16} tii[7,20] := {17} tii[7,21] := {54} tii[7,22] := {28} tii[7,23] := {25} tii[7,24] := {36} tii[7,25] := {8} tii[7,26] := {9} tii[7,27] := {57} tii[7,28] := {4} tii[7,29] := {15} tii[7,30] := {24} tii[7,31] := {43} tii[7,32] := {3} tii[7,33] := {34} tii[7,34] := {35} tii[7,35] := {44} tii[7,36] := {40} tii[7,37] := {13} tii[7,38] := {23} tii[7,39] := {22} tii[7,40] := {50} tii[7,41] := {49} tii[7,42] := {32} tii[7,43] := {41} tii[7,44] := {20} tii[7,45] := {21} tii[7,46] := {31} tii[7,47] := {39} tii[7,48] := {18} tii[7,49] := {29} tii[7,50] := {10} tii[7,51] := {37} tii[7,52] := {2} tii[7,53] := {38} tii[7,54] := {26} tii[7,55] := {14} tii[7,56] := {1} tii[7,57] := {7} tii[7,58] := {6} tii[7,59] := {51} tii[7,60] := {0} cell#23 , |C| = 24 special orbit = 2*A2 special rep = phi[24,12] , dim = 24 cell rep = phi[24,12] TII depth = 2 TII multiplicity polynomial = 24*X TII subcells: tii[6,1] := {23} tii[6,2] := {21} tii[6,3] := {7} tii[6,4] := {15} tii[6,5] := {17} tii[6,6] := {14} tii[6,7] := {22} tii[6,8] := {20} tii[6,9] := {19} tii[6,10] := {16} tii[6,11] := {13} tii[6,12] := {6} tii[6,13] := {5} tii[6,14] := {9} tii[6,15] := {2} tii[6,16] := {18} tii[6,17] := {4} tii[6,18] := {8} tii[6,19] := {11} tii[6,20] := {10} tii[6,21] := {0} tii[6,22] := {1} tii[6,23] := {3} tii[6,24] := {12} cell#24 , |C| = 64 special orbit = A2+A1 special rep = phi[64,13] , dim = 64 cell rep = phi[64,13] TII depth = 4 TII multiplicity polynomial = 64*X TII subcells: tii[5,1] := {55} tii[5,2] := {63} tii[5,3] := {53} tii[5,4] := {61} tii[5,5] := {18} tii[5,6] := {59} tii[5,7] := {52} tii[5,8] := {24} tii[5,9] := {46} tii[5,10] := {58} tii[5,11] := {36} tii[5,12] := {41} tii[5,13] := {62} tii[5,14] := {57} tii[5,15] := {49} tii[5,16] := {25} tii[5,17] := {40} tii[5,18] := {29} tii[5,19] := {19} tii[5,20] := {8} tii[5,21] := {3} tii[5,22] := {44} tii[5,23] := {5} tii[5,24] := {47} tii[5,25] := {12} tii[5,26] := {48} tii[5,27] := {9} tii[5,28] := {54} tii[5,29] := {33} tii[5,30] := {2} tii[5,31] := {27} tii[5,32] := {60} tii[5,33] := {35} tii[5,34] := {38} tii[5,35] := {6} tii[5,36] := {11} tii[5,37] := {32} tii[5,38] := {45} tii[5,39] := {37} tii[5,40] := {10} tii[5,41] := {56} tii[5,42] := {17} tii[5,43] := {42} tii[5,44] := {26} tii[5,45] := {31} tii[5,46] := {15} tii[5,47] := {22} tii[5,48] := {34} tii[5,49] := {21} tii[5,50] := {0} tii[5,51] := {1} tii[5,52] := {28} tii[5,53] := {51} tii[5,54] := {4} tii[5,55] := {20} tii[5,56] := {50} tii[5,57] := {30} tii[5,58] := {14} tii[5,59] := {39} tii[5,60] := {13} tii[5,61] := {7} tii[5,62] := {43} tii[5,63] := {16} tii[5,64] := {23} cell#25 , |C| = 64 special orbit = A2+A1 special rep = phi[64,13] , dim = 64 cell rep = phi[64,13] TII depth = 4 TII multiplicity polynomial = 64*X TII subcells: tii[5,1] := {60} tii[5,2] := {43} tii[5,3] := {8} tii[5,4] := {20} tii[5,5] := {41} tii[5,6] := {30} tii[5,7] := {25} tii[5,8] := {51} tii[5,9] := {63} tii[5,10] := {35} tii[5,11] := {58} tii[5,12] := {62} tii[5,13] := {46} tii[5,14] := {55} tii[5,15] := {24} tii[5,16] := {50} tii[5,17] := {18} tii[5,18] := {57} tii[5,19] := {61} tii[5,20] := {49} tii[5,21] := {15} tii[5,22] := {6} tii[5,23] := {22} tii[5,24] := {54} tii[5,25] := {32} tii[5,26] := {11} tii[5,27] := {33} tii[5,28] := {47} tii[5,29] := {2} tii[5,30] := {28} tii[5,31] := {53} tii[5,32] := {37} tii[5,33] := {59} tii[5,34] := {5} tii[5,35] := {38} tii[5,36] := {48} tii[5,37] := {10} tii[5,38] := {52} tii[5,39] := {42} tii[5,40] := {14} tii[5,41] := {13} tii[5,42] := {21} tii[5,43] := {36} tii[5,44] := {31} tii[5,45] := {26} tii[5,46] := {56} tii[5,47] := {16} tii[5,48] := {40} tii[5,49] := {0} tii[5,50] := {19} tii[5,51] := {29} tii[5,52] := {1} tii[5,53] := {27} tii[5,54] := {39} tii[5,55] := {4} tii[5,56] := {45} tii[5,57] := {12} tii[5,58] := {3} tii[5,59] := {34} tii[5,60] := {9} tii[5,61] := {23} tii[5,62] := {17} tii[5,63] := {44} tii[5,64] := {7} cell#26 , |C| = 45 special orbit = A2 special rep = phi[30,15] , dim = 30 cell rep = phi[15,16]+phi[30,15] TII depth = 2 TII multiplicity polynomial = 15*X^2+15*X TII subcells: tii[4,1] := {14, 40} tii[4,2] := {22, 44} tii[4,3] := {5, 42} tii[4,4] := {8, 43} tii[4,5] := {12, 39} tii[4,6] := {20} tii[4,7] := {10, 34} tii[4,8] := {30} tii[4,9] := {38} tii[4,10] := {4, 36} tii[4,11] := {23} tii[4,12] := {2, 29} tii[4,13] := {31} tii[4,14] := {37} tii[4,15] := {18} tii[4,16] := {28} tii[4,17] := {33} tii[4,18] := {27} tii[4,19] := {13} tii[4,20] := {3, 35} tii[4,21] := {21} tii[4,22] := {9, 32} tii[4,23] := {26} tii[4,24] := {17} tii[4,25] := {16} tii[4,26] := {7, 25} tii[4,27] := {1, 19} tii[4,28] := {15, 41} tii[4,29] := {6, 24} tii[4,30] := {0, 11} cell#27 , |C| = 45 special orbit = A2 special rep = phi[30,15] , dim = 30 cell rep = phi[15,16]+phi[30,15] TII depth = 2 TII multiplicity polynomial = 15*X^2+15*X TII subcells: tii[4,1] := {18, 32} tii[4,2] := {26, 39} tii[4,3] := {6, 41} tii[4,4] := {9, 38} tii[4,5] := {16, 31} tii[4,6] := {15} tii[4,7] := {14, 29} tii[4,8] := {22} tii[4,9] := {30} tii[4,10] := {4, 37} tii[4,11] := {13} tii[4,12] := {2, 42} tii[4,13] := {20} tii[4,14] := {28} tii[4,15] := {27} tii[4,16] := {34} tii[4,17] := {40} tii[4,18] := {33} tii[4,19] := {5} tii[4,20] := {3, 36} tii[4,21] := {11} tii[4,22] := {12, 25} tii[4,23] := {17} tii[4,24] := {10} tii[4,25] := {24} tii[4,26] := {8, 23} tii[4,27] := {1, 44} tii[4,28] := {21, 35} tii[4,29] := {7, 19} tii[4,30] := {0, 43} cell#28 , |C| = 20 special orbit = 2*A1 special rep = phi[20,20] , dim = 20 cell rep = phi[20,20] TII depth = 2 TII multiplicity polynomial = 20*X TII subcells: tii[3,1] := {15} tii[3,2] := {17} tii[3,3] := {19} tii[3,4] := {10} tii[3,5] := {7} tii[3,6] := {6} tii[3,7] := {12} tii[3,8] := {16} tii[3,9] := {13} tii[3,10] := {8} tii[3,11] := {1} tii[3,12] := {11} tii[3,13] := {2} tii[3,14] := {5} tii[3,15] := {4} tii[3,16] := {18} tii[3,17] := {3} tii[3,18] := {9} tii[3,19] := {14} tii[3,20] := {0} cell#29 , |C| = 20 special orbit = 2*A1 special rep = phi[20,20] , dim = 20 cell rep = phi[20,20] TII depth = 2 TII multiplicity polynomial = 20*X TII subcells: tii[3,1] := {14} tii[3,2] := {16} tii[3,3] := {19} tii[3,4] := {9} tii[3,5] := {7} tii[3,6] := {6} tii[3,7] := {18} tii[3,8] := {15} tii[3,9] := {12} tii[3,10] := {8} tii[3,11] := {1} tii[3,12] := {11} tii[3,13] := {3} tii[3,14] := {5} tii[3,15] := {4} tii[3,16] := {17} tii[3,17] := {2} tii[3,18] := {10} tii[3,19] := {13} tii[3,20] := {0} cell#30 , |C| = 6 special orbit = A1 special rep = phi[6,25] , dim = 6 cell rep = phi[6,25] TII depth = 1 TII multiplicity polynomial = 6*X TII subcells: tii[2,1] := {1} tii[2,2] := {3} tii[2,3] := {4} tii[2,4] := {2} tii[2,5] := {5} tii[2,6] := {0} cell#31 , |C| = 1 special orbit = 0 special rep = phi[1,36] , dim = 1 cell rep = phi[1,36] TII depth = 1 TII multiplicity polynomial = X TII subcells: tii[1,1] := {0}