TII subcells for the E6ad(D5xR) x E6sc(R) block of E6ad # cell#0 , |C| = 81 special orbit = A4 special rep = phi[81,6] , dim = 81 cell rep = phi[81,6] TII depth = 3 TII multiplicity polynomial = 81*X TII subcells: tii[10,1] := {44} tii[10,2] := {0} tii[10,3] := {8} tii[10,4] := {61} tii[10,5] := {18} tii[10,6] := {19} tii[10,7] := {65} tii[10,8] := {43} tii[10,9] := {77} tii[10,10] := {22} tii[10,11] := {60} tii[10,12] := {1} tii[10,13] := {75} tii[10,14] := {16} tii[10,15] := {6} tii[10,16] := {39} tii[10,17] := {68} tii[10,18] := {38} tii[10,19] := {57} tii[10,20] := {53} tii[10,21] := {59} tii[10,22] := {52} tii[10,23] := {62} tii[10,24] := {47} tii[10,25] := {37} tii[10,26] := {66} tii[10,27] := {36} tii[10,28] := {56} tii[10,29] := {20} tii[10,30] := {21} tii[10,31] := {11} tii[10,32] := {41} tii[10,33] := {72} tii[10,34] := {25} tii[10,35] := {4} tii[10,36] := {79} tii[10,37] := {31} tii[10,38] := {15} tii[10,39] := {80} tii[10,40] := {12} tii[10,41] := {26} tii[10,42] := {54} tii[10,43] := {2} tii[10,44] := {64} tii[10,45] := {73} tii[10,46] := {14} tii[10,47] := {48} tii[10,48] := {71} tii[10,49] := {35} tii[10,50] := {55} tii[10,51] := {50} tii[10,52] := {28} tii[10,53] := {32} tii[10,54] := {78} tii[10,55] := {74} tii[10,56] := {27} tii[10,57] := {5} tii[10,58] := {24} tii[10,59] := {17} tii[10,60] := {30} tii[10,61] := {70} tii[10,62] := {9} tii[10,63] := {76} tii[10,64] := {29} tii[10,65] := {23} tii[10,66] := {7} tii[10,67] := {69} tii[10,68] := {13} tii[10,69] := {34} tii[10,70] := {58} tii[10,71] := {46} tii[10,72] := {67} tii[10,73] := {40} tii[10,74] := {10} tii[10,75] := {63} tii[10,76] := {51} tii[10,77] := {49} tii[10,78] := {42} tii[10,79] := {3} tii[10,80] := {33} tii[10,81] := {45} cell#1 , |C| = 81 special orbit = A3 special rep = phi[81,10] , dim = 81 cell rep = phi[81,10] TII depth = 3 TII multiplicity polynomial = 81*X TII subcells: tii[8,1] := {24} tii[8,2] := {39} tii[8,3] := {67} tii[8,4] := {66} tii[8,5] := {75} tii[8,6] := {12} tii[8,7] := {21} tii[8,8] := {22} tii[8,9] := {33} tii[8,10] := {40} tii[8,11] := {32} tii[8,12] := {46} tii[8,13] := {1} tii[8,14] := {7} tii[8,15] := {8} tii[8,16] := {3} tii[8,17] := {73} tii[8,18] := {52} tii[8,19] := {19} tii[8,20] := {18} tii[8,21] := {27} tii[8,22] := {9} tii[8,23] := {78} tii[8,24] := {38} tii[8,25] := {80} tii[8,26] := {34} tii[8,27] := {35} tii[8,28] := {58} tii[8,29] := {57} tii[8,30] := {50} tii[8,31] := {48} tii[8,32] := {49} tii[8,33] := {69} tii[8,34] := {62} tii[8,35] := {63} tii[8,36] := {61} tii[8,37] := {60} tii[8,38] := {72} tii[8,39] := {71} tii[8,40] := {77} tii[8,41] := {30} tii[8,42] := {59} tii[8,43] := {29} tii[8,44] := {20} tii[8,45] := {54} tii[8,46] := {70} tii[8,47] := {43} tii[8,48] := {53} tii[8,49] := {76} tii[8,50] := {79} tii[8,51] := {51} tii[8,52] := {65} tii[8,53] := {11} tii[8,54] := {15} tii[8,55] := {74} tii[8,56] := {14} tii[8,57] := {13} tii[8,58] := {41} tii[8,59] := {31} tii[8,60] := {23} tii[8,61] := {45} tii[8,62] := {26} tii[8,63] := {56} tii[8,64] := {4} tii[8,65] := {47} tii[8,66] := {55} tii[8,67] := {0} tii[8,68] := {2} tii[8,69] := {6} tii[8,70] := {16} tii[8,71] := {17} tii[8,72] := {37} tii[8,73] := {28} tii[8,74] := {36} tii[8,75] := {42} tii[8,76] := {10} tii[8,77] := {64} tii[8,78] := {68} tii[8,79] := {5} tii[8,80] := {44} tii[8,81] := {25} cell#2 , |C| = 24 special orbit = 2*A2 special rep = phi[24,12] , dim = 24 cell rep = phi[24,12] TII depth = 2 TII multiplicity polynomial = 24*X TII subcells: tii[6,1] := {23} tii[6,2] := {21} tii[6,3] := {9} tii[6,4] := {15} tii[6,5] := {17} tii[6,6] := {14} tii[6,7] := {22} tii[6,8] := {20} tii[6,9] := {19} tii[6,10] := {16} tii[6,11] := {13} tii[6,12] := {8} tii[6,13] := {5} tii[6,14] := {7} tii[6,15] := {2} tii[6,16] := {18} tii[6,17] := {3} tii[6,18] := {6} tii[6,19] := {11} tii[6,20] := {10} tii[6,21] := {0} tii[6,22] := {1} tii[6,23] := {4} tii[6,24] := {12} cell#3 , |C| = 81 special orbit = A3 special rep = phi[81,10] , dim = 81 cell rep = phi[81,10] TII depth = 3 TII multiplicity polynomial = 81*X TII subcells: tii[8,1] := {75} tii[8,2] := {66} tii[8,3] := {67} tii[8,4] := {37} tii[8,5] := {24} tii[8,6] := {77} tii[8,7] := {73} tii[8,8] := {72} tii[8,9] := {63} tii[8,10] := {68} tii[8,11] := {64} tii[8,12] := {50} tii[8,13] := {79} tii[8,14] := {56} tii[8,15] := {76} tii[8,16] := {80} tii[8,17] := {16} tii[8,18] := {55} tii[8,19] := {71} tii[8,20] := {47} tii[8,21] := {35} tii[8,22] := {78} tii[8,23] := {7} tii[8,24] := {40} tii[8,25] := {3} tii[8,26] := {61} tii[8,27] := {60} tii[8,28] := {54} tii[8,29] := {53} tii[8,30] := {44} tii[8,31] := {46} tii[8,32] := {45} tii[8,33] := {39} tii[8,34] := {34} tii[8,35] := {33} tii[8,36] := {29} tii[8,37] := {30} tii[8,38] := {19} tii[8,39] := {20} tii[8,40] := {11} tii[8,41] := {59} tii[8,42] := {28} tii[8,43] := {27} tii[8,44] := {70} tii[8,45] := {52} tii[8,46] := {18} tii[8,47] := {17} tii[8,48] := {8} tii[8,49] := {9} tii[8,50] := {1} tii[8,51] := {5} tii[8,52] := {6} tii[8,53] := {65} tii[8,54] := {69} tii[8,55] := {4} tii[8,56] := {51} tii[8,57] := {58} tii[8,58] := {42} tii[8,59] := {31} tii[8,60] := {49} tii[8,61] := {21} tii[8,62] := {57} tii[8,63] := {25} tii[8,64] := {74} tii[8,65] := {15} tii[8,66] := {12} tii[8,67] := {48} tii[8,68] := {41} tii[8,69] := {36} tii[8,70] := {22} tii[8,71] := {23} tii[8,72] := {2} tii[8,73] := {13} tii[8,74] := {32} tii[8,75] := {38} tii[8,76] := {62} tii[8,77] := {10} tii[8,78] := {14} tii[8,79] := {43} tii[8,80] := {0} tii[8,81] := {26} cell#4 , |C| = 64 special orbit = A2+A1 special rep = phi[64,13] , dim = 64 cell rep = phi[64,13] TII depth = 4 TII multiplicity polynomial = 64*X TII subcells: tii[5,1] := {61} tii[5,2] := {51} tii[5,3] := {2} tii[5,4] := {21} tii[5,5] := {20} tii[5,6] := {35} tii[5,7] := {48} tii[5,8] := {34} tii[5,9] := {53} tii[5,10] := {33} tii[5,11] := {45} tii[5,12] := {55} tii[5,13] := {17} tii[5,14] := {32} tii[5,15] := {15} tii[5,16] := {31} tii[5,17] := {30} tii[5,18] := {43} tii[5,19] := {54} tii[5,20] := {60} tii[5,21] := {1} tii[5,22] := {12} tii[5,23] := {5} tii[5,24] := {59} tii[5,25] := {11} tii[5,26] := {25} tii[5,27] := {14} tii[5,28] := {63} tii[5,29] := {23} tii[5,30] := {13} tii[5,31] := {37} tii[5,32] := {58} tii[5,33] := {50} tii[5,34] := {36} tii[5,35] := {28} tii[5,36] := {41} tii[5,37] := {47} tii[5,38] := {39} tii[5,39] := {49} tii[5,40] := {0} tii[5,41] := {10} tii[5,42] := {4} tii[5,43] := {57} tii[5,44] := {9} tii[5,45] := {62} tii[5,46] := {46} tii[5,47] := {56} tii[5,48] := {22} tii[5,49] := {7} tii[5,50] := {27} tii[5,51] := {40} tii[5,52] := {16} tii[5,53] := {44} tii[5,54] := {52} tii[5,55] := {29} tii[5,56] := {19} tii[5,57] := {18} tii[5,58] := {26} tii[5,59] := {6} tii[5,60] := {42} tii[5,61] := {3} tii[5,62] := {38} tii[5,63] := {24} tii[5,64] := {8} cell#5 , |C| = 20 special orbit = 2*A1 special rep = phi[20,20] , dim = 20 cell rep = phi[20,20] TII depth = 2 TII multiplicity polynomial = 20*X TII subcells: tii[3,1] := {7} tii[3,2] := {8} tii[3,3] := {11} tii[3,4] := {4} tii[3,5] := {3} tii[3,6] := {19} tii[3,7] := {10} tii[3,8] := {13} tii[3,9] := {16} tii[3,10] := {18} tii[3,11] := {12} tii[3,12] := {5} tii[3,13] := {15} tii[3,14] := {2} tii[3,15] := {17} tii[3,16] := {9} tii[3,17] := {1} tii[3,18] := {14} tii[3,19] := {6} tii[3,20] := {0} cell#6 , |C| = 64 special orbit = A2+A1 special rep = phi[64,13] , dim = 64 cell rep = phi[64,13] TII depth = 4 TII multiplicity polynomial = 64*X TII subcells: tii[5,1] := {37} tii[5,2] := {58} tii[5,3] := {60} tii[5,4] := {54} tii[5,5] := {34} tii[5,6] := {48} tii[5,7] := {36} tii[5,8] := {49} tii[5,9] := {19} tii[5,10] := {46} tii[5,11] := {32} tii[5,12] := {47} tii[5,13] := {53} tii[5,14] := {61} tii[5,15] := {29} tii[5,16] := {15} tii[5,17] := {17} tii[5,18] := {30} tii[5,19] := {18} tii[5,20] := {2} tii[5,21] := {27} tii[5,22] := {52} tii[5,23] := {31} tii[5,24] := {25} tii[5,25] := {23} tii[5,26] := {40} tii[5,27] := {43} tii[5,28] := {39} tii[5,29] := {41} tii[5,30] := {20} tii[5,31] := {50} tii[5,32] := {51} tii[5,33] := {59} tii[5,34] := {28} tii[5,35] := {35} tii[5,36] := {22} tii[5,37] := {14} tii[5,38] := {63} tii[5,39] := {11} tii[5,40] := {45} tii[5,41] := {44} tii[5,42] := {55} tii[5,43] := {21} tii[5,44] := {62} tii[5,45] := {10} tii[5,46] := {9} tii[5,47] := {5} tii[5,48] := {57} tii[5,49] := {26} tii[5,50] := {6} tii[5,51] := {16} tii[5,52] := {13} tii[5,53] := {33} tii[5,54] := {7} tii[5,55] := {4} tii[5,56] := {56} tii[5,57] := {8} tii[5,58] := {1} tii[5,59] := {42} tii[5,60] := {0} tii[5,61] := {12} tii[5,62] := {24} tii[5,63] := {38} tii[5,64] := {3} cell#7 , |C| = 20 special orbit = 2*A1 special rep = phi[20,20] , dim = 20 cell rep = phi[20,20] TII depth = 2 TII multiplicity polynomial = 20*X TII subcells: tii[3,1] := {16} tii[3,2] := {14} tii[3,3] := {11} tii[3,4] := {18} tii[3,5] := {19} tii[3,6] := {3} tii[3,7] := {10} tii[3,8] := {8} tii[3,9] := {6} tii[3,10] := {4} tii[3,11] := {0} tii[3,12] := {13} tii[3,13] := {1} tii[3,14] := {17} tii[3,15] := {2} tii[3,16] := {9} tii[3,17] := {15} tii[3,18] := {5} tii[3,19] := {7} tii[3,20] := {12} cell#8 , |C| = 45 special orbit = A2 special rep = phi[30,15] , dim = 30 cell rep = phi[15,17]+phi[30,15] TII depth = 2 TII multiplicity polynomial = 15*X^2+15*X TII subcells: tii[4,1] := {35} tii[4,2] := {25} tii[4,3] := {37} tii[4,4] := {41} tii[4,5] := {36} tii[4,6] := {13, 34} tii[4,7] := {28} tii[4,8] := {6, 38} tii[4,9] := {12, 32} tii[4,10] := {30} tii[4,11] := {2, 42} tii[4,12] := {20} tii[4,13] := {8, 39} tii[4,14] := {14, 31} tii[4,15] := {4, 24} tii[4,16] := {9, 23} tii[4,17] := {16, 17} tii[4,18] := {10, 22} tii[4,19] := {0, 44} tii[4,20] := {27} tii[4,21] := {1, 43} tii[4,22] := {29} tii[4,23] := {5, 40} tii[4,24] := {11, 33} tii[4,25] := {3, 26} tii[4,26] := {19} tii[4,27] := {15} tii[4,28] := {18} tii[4,29] := {21} tii[4,30] := {7} cell#9 , |C| = 20 special orbit = 2*A1 special rep = phi[20,20] , dim = 20 cell rep = phi[20,20] TII depth = 2 TII multiplicity polynomial = 20*X TII subcells: tii[3,1] := {15} tii[3,2] := {8} tii[3,3] := {13} tii[3,4] := {17} tii[3,5] := {14} tii[3,6] := {11} tii[3,7] := {2} tii[3,8] := {5} tii[3,9] := {12} tii[3,10] := {16} tii[3,11] := {1} tii[3,12] := {9} tii[3,13] := {3} tii[3,14] := {10} tii[3,15] := {6} tii[3,16] := {18} tii[3,17] := {4} tii[3,18] := {7} tii[3,19] := {19} tii[3,20] := {0} cell#10 , |C| = 6 special orbit = A1 special rep = phi[6,25] , dim = 6 cell rep = phi[6,25] TII depth = 1 TII multiplicity polynomial = 6*X TII subcells: tii[2,1] := {5} tii[2,2] := {4} tii[2,3] := {3} tii[2,4] := {2} tii[2,5] := {1} tii[2,6] := {0} cell#11 , |C| = 6 special orbit = A1 special rep = phi[6,25] , dim = 6 cell rep = phi[6,25] TII depth = 1 TII multiplicity polynomial = 6*X TII subcells: tii[2,1] := {0} tii[2,2] := {2} tii[2,3] := {3} tii[2,4] := {4} tii[2,5] := {1} tii[2,6] := {5} cell#12 , |C| = 1 special orbit = 0 special rep = phi[1,36] , dim = 1 cell rep = phi[1,36] TII depth = 1 TII multiplicity polynomial = X TII subcells: tii[1,1] := {0}