TII subcells for the E6ad(R) x E6sc(D5xR) block of E6ad # cell#0 , |C| = 1 special orbit = E6 special rep = phi[1,0] , dim = 1 cell rep = phi[1,0] TII depth = 1 TII multiplicity polynomial = X TII subcells: tii[17,1] := {0} cell#1 , |C| = 6 special orbit = E6(a1) special rep = phi[6,1] , dim = 6 cell rep = phi[6,1] TII depth = 1 TII multiplicity polynomial = 6*X TII subcells: tii[16,1] := {5} tii[16,2] := {4} tii[16,3] := {3} tii[16,4] := {2} tii[16,5] := {1} tii[16,6] := {0} cell#2 , |C| = 6 special orbit = E6(a1) special rep = phi[6,1] , dim = 6 cell rep = phi[6,1] TII depth = 1 TII multiplicity polynomial = 6*X TII subcells: tii[16,1] := {0} tii[16,2] := {4} tii[16,3] := {1} tii[16,4] := {2} tii[16,5] := {3} tii[16,6] := {5} cell#3 , |C| = 20 special orbit = D5 special rep = phi[20,2] , dim = 20 cell rep = phi[20,2] TII depth = 2 TII multiplicity polynomial = 20*X TII subcells: tii[15,1] := {19} tii[15,2] := {0} tii[15,3] := {12} tii[15,4] := {15} tii[15,5] := {1} tii[15,6] := {9} tii[15,7] := {13} tii[15,8] := {10} tii[15,9] := {16} tii[15,10] := {18} tii[15,11] := {3} tii[15,12] := {7} tii[15,13] := {14} tii[15,14] := {17} tii[15,15] := {8} tii[15,16] := {5} tii[15,17] := {2} tii[15,18] := {6} tii[15,19] := {11} tii[15,20] := {4} cell#4 , |C| = 45 special orbit = E6(a3) special rep = phi[30,3] , dim = 30 cell rep = phi[15,5]+phi[30,3] TII depth = 2 TII multiplicity polynomial = 15*X^2+15*X TII subcells: tii[14,1] := {37} tii[14,2] := {23} tii[14,3] := {26} tii[14,4] := {29} tii[14,5] := {25} tii[14,6] := {18, 41} tii[14,7] := {12, 33} tii[14,8] := {15} tii[14,9] := {4, 39} tii[14,10] := {17} tii[14,11] := {1, 43} tii[14,12] := {0, 44} tii[14,13] := {21, 34} tii[14,14] := {27, 28} tii[14,15] := {22, 35} tii[14,16] := {20, 40} tii[14,17] := {10, 30} tii[14,18] := {24} tii[14,19] := {5, 36} tii[14,20] := {14} tii[14,21] := {2, 42} tii[14,22] := {11, 32} tii[14,23] := {16} tii[14,24] := {6, 38} tii[14,25] := {13, 31} tii[14,26] := {8} tii[14,27] := {3} tii[14,28] := {7} tii[14,29] := {19} tii[14,30] := {9} cell#5 , |C| = 20 special orbit = D5 special rep = phi[20,2] , dim = 20 cell rep = phi[20,2] TII depth = 2 TII multiplicity polynomial = 20*X TII subcells: tii[15,1] := {19} tii[15,2] := {13} tii[15,3] := {5} tii[15,4] := {18} tii[15,5] := {10} tii[15,6] := {17} tii[15,7] := {2} tii[15,8] := {14} tii[15,9] := {4} tii[15,10] := {7} tii[15,11] := {1} tii[15,12] := {3} tii[15,13] := {6} tii[15,14] := {9} tii[15,15] := {0} tii[15,16] := {16} tii[15,17] := {15} tii[15,18] := {8} tii[15,19] := {11} tii[15,20] := {12} cell#6 , |C| = 64 special orbit = D5(a1) special rep = phi[64,4] , dim = 64 cell rep = phi[64,4] TII depth = 4 TII multiplicity polynomial = 64*X TII subcells: tii[13,1] := {55} tii[13,2] := {25} tii[13,3] := {39} tii[13,4] := {60} tii[13,5] := {57} tii[13,6] := {21} tii[13,7] := {37} tii[13,8] := {45} tii[13,9] := {44} tii[13,10] := {11} tii[13,11] := {34} tii[13,12] := {19} tii[13,13] := {23} tii[13,14] := {47} tii[13,15] := {56} tii[13,16] := {36} tii[13,17] := {17} tii[13,18] := {41} tii[13,19] := {7} tii[13,20] := {1} tii[13,21] := {54} tii[13,22] := {53} tii[13,23] := {6} tii[13,24] := {59} tii[13,25] := {14} tii[13,26] := {63} tii[13,27] := {24} tii[13,28] := {22} tii[13,29] := {16} tii[13,30] := {13} tii[13,31] := {5} tii[13,32] := {27} tii[13,33] := {35} tii[13,34] := {26} tii[13,35] := {40} tii[13,36] := {50} tii[13,37] := {0} tii[13,38] := {38} tii[13,39] := {49} tii[13,40] := {52} tii[13,41] := {4} tii[13,42] := {51} tii[13,43] := {58} tii[13,44] := {62} tii[13,45] := {3} tii[13,46] := {9} tii[13,47] := {33} tii[13,48] := {20} tii[13,49] := {48} tii[13,50] := {32} tii[13,51] := {31} tii[13,52] := {46} tii[13,53] := {8} tii[13,54] := {30} tii[13,55] := {18} tii[13,56] := {10} tii[13,57] := {15} tii[13,58] := {29} tii[13,59] := {43} tii[13,60] := {28} tii[13,61] := {42} tii[13,62] := {61} tii[13,63] := {12} tii[13,64] := {2} cell#7 , |C| = 20 special orbit = D5 special rep = phi[20,2] , dim = 20 cell rep = phi[20,2] TII depth = 2 TII multiplicity polynomial = 20*X TII subcells: tii[15,1] := {7} tii[15,2] := {12} tii[15,3] := {14} tii[15,4] := {4} tii[15,5] := {10} tii[15,6] := {2} tii[15,7] := {17} tii[15,8] := {6} tii[15,9] := {18} tii[15,10] := {19} tii[15,11] := {15} tii[15,12] := {13} tii[15,13] := {11} tii[15,14] := {9} tii[15,15] := {16} tii[15,16] := {0} tii[15,17] := {1} tii[15,18] := {8} tii[15,19] := {5} tii[15,20] := {3} cell#8 , |C| = 64 special orbit = D5(a1) special rep = phi[64,4] , dim = 64 cell rep = phi[64,4] TII depth = 4 TII multiplicity polynomial = 64*X TII subcells: tii[13,1] := {60} tii[13,2] := {39} tii[13,3] := {25} tii[13,4] := {51} tii[13,5] := {21} tii[13,6] := {63} tii[13,7] := {62} tii[13,8] := {55} tii[13,9] := {7} tii[13,10] := {56} tii[13,11] := {59} tii[13,12] := {30} tii[13,13] := {47} tii[13,14] := {50} tii[13,15] := {37} tii[13,16] := {57} tii[13,17] := {54} tii[13,18] := {6} tii[13,19] := {58} tii[13,20] := {53} tii[13,21] := {1} tii[13,22] := {19} tii[13,23] := {42} tii[13,24] := {8} tii[13,25] := {52} tii[13,26] := {18} tii[13,27] := {0} tii[13,28] := {41} tii[13,29] := {49} tii[13,30] := {4} tii[13,31] := {12} tii[13,32] := {35} tii[13,33] := {28} tii[13,34] := {13} tii[13,35] := {22} tii[13,36] := {43} tii[13,37] := {24} tii[13,38] := {23} tii[13,39] := {20} tii[13,40] := {40} tii[13,41] := {38} tii[13,42] := {11} tii[13,43] := {32} tii[13,44] := {36} tii[13,45] := {61} tii[13,46] := {45} tii[13,47] := {46} tii[13,48] := {33} tii[13,49] := {34} tii[13,50] := {48} tii[13,51] := {2} tii[13,52] := {10} tii[13,53] := {16} tii[13,54] := {17} tii[13,55] := {31} tii[13,56] := {44} tii[13,57] := {27} tii[13,58] := {14} tii[13,59] := {29} tii[13,60] := {15} tii[13,61] := {9} tii[13,62] := {3} tii[13,63] := {5} tii[13,64] := {26} cell#9 , |C| = 24 special orbit = D4 special rep = phi[24,6] , dim = 24 cell rep = phi[24,6] TII depth = 2 TII multiplicity polynomial = 24*X TII subcells: tii[11,1] := {11} tii[11,2] := {19} tii[11,3] := {22} tii[11,4] := {23} tii[11,5] := {13} tii[11,6] := {12} tii[11,7] := {17} tii[11,8] := {5} tii[11,9] := {20} tii[11,10] := {21} tii[11,11] := {16} tii[11,12] := {18} tii[11,13] := {15} tii[11,14] := {10} tii[11,15] := {7} tii[11,16] := {4} tii[11,17] := {3} tii[11,18] := {1} tii[11,19] := {9} tii[11,20] := {6} tii[11,21] := {8} tii[11,22] := {14} tii[11,23] := {2} tii[11,24] := {0} cell#10 , |C| = 81 special orbit = A4 special rep = phi[81,6] , dim = 81 cell rep = phi[81,6] TII depth = 3 TII multiplicity polynomial = 81*X TII subcells: tii[10,1] := {55} tii[10,2] := {37} tii[10,3] := {80} tii[10,4] := {12} tii[10,5] := {18} tii[10,6] := {70} tii[10,7] := {38} tii[10,8] := {46} tii[10,9] := {43} tii[10,10] := {53} tii[10,11] := {63} tii[10,12] := {64} tii[10,13] := {77} tii[10,14] := {74} tii[10,15] := {75} tii[10,16] := {79} tii[10,17] := {25} tii[10,18] := {35} tii[10,19] := {59} tii[10,20] := {54} tii[10,21] := {33} tii[10,22] := {24} tii[10,23] := {39} tii[10,24] := {47} tii[10,25] := {6} tii[10,26] := {69} tii[10,27] := {66} tii[10,28] := {65} tii[10,29] := {67} tii[10,30] := {15} tii[10,31] := {29} tii[10,32] := {1} tii[10,33] := {27} tii[10,34] := {3} tii[10,35] := {60} tii[10,36] := {36} tii[10,37] := {8} tii[10,38] := {26} tii[10,39] := {50} tii[10,40] := {51} tii[10,41] := {19} tii[10,42] := {4} tii[10,43] := {10} tii[10,44] := {9} tii[10,45] := {20} tii[10,46] := {21} tii[10,47] := {16} tii[10,48] := {17} tii[10,49] := {11} tii[10,50] := {23} tii[10,51] := {22} tii[10,52] := {32} tii[10,53] := {30} tii[10,54] := {31} tii[10,55] := {45} tii[10,56] := {44} tii[10,57] := {0} tii[10,58] := {71} tii[10,59] := {2} tii[10,60] := {42} tii[10,61] := {52} tii[10,62] := {7} tii[10,63] := {61} tii[10,64] := {62} tii[10,65] := {28} tii[10,66] := {78} tii[10,67] := {72} tii[10,68] := {73} tii[10,69] := {76} tii[10,70] := {34} tii[10,71] := {49} tii[10,72] := {48} tii[10,73] := {40} tii[10,74] := {57} tii[10,75] := {58} tii[10,76] := {68} tii[10,77] := {5} tii[10,78] := {14} tii[10,79] := {13} tii[10,80] := {41} tii[10,81] := {56} cell#11 , |C| = 81 special orbit = A4 special rep = phi[81,6] , dim = 81 cell rep = phi[81,6] TII depth = 3 TII multiplicity polynomial = 81*X TII subcells: tii[10,1] := {54} tii[10,2] := {75} tii[10,3] := {37} tii[10,4] := {66} tii[10,5] := {68} tii[10,6] := {18} tii[10,7] := {42} tii[10,8] := {46} tii[10,9] := {77} tii[10,10] := {67} tii[10,11] := {57} tii[10,12] := {58} tii[10,13] := {39} tii[10,14] := {45} tii[10,15] := {33} tii[10,16] := {6} tii[10,17] := {70} tii[10,18] := {65} tii[10,19] := {29} tii[10,20] := {23} tii[10,21] := {61} tii[10,22] := {55} tii[10,23] := {38} tii[10,24] := {51} tii[10,25] := {79} tii[10,26] := {22} tii[10,27] := {31} tii[10,28] := {11} tii[10,29] := {17} tii[10,30] := {74} tii[10,31] := {80} tii[10,32] := {76} tii[10,33] := {71} tii[10,34] := {72} tii[10,35] := {10} tii[10,36] := {62} tii[10,37] := {63} tii[10,38] := {28} tii[10,39] := {52} tii[10,40] := {19} tii[10,41] := {53} tii[10,42] := {69} tii[10,43] := {59} tii[10,44] := {60} tii[10,45] := {50} tii[10,46] := {49} tii[10,47] := {48} tii[10,48] := {47} tii[10,49] := {41} tii[10,50] := {27} tii[10,51] := {26} tii[10,52] := {34} tii[10,53] := {36} tii[10,54] := {35} tii[10,55] := {20} tii[10,56] := {21} tii[10,57] := {78} tii[10,58] := {2} tii[10,59] := {73} tii[10,60] := {40} tii[10,61] := {44} tii[10,62] := {64} tii[10,63] := {32} tii[10,64] := {7} tii[10,65] := {25} tii[10,66] := {0} tii[10,67] := {24} tii[10,68] := {3} tii[10,69] := {1} tii[10,70] := {30} tii[10,71] := {15} tii[10,72] := {16} tii[10,73] := {12} tii[10,74] := {9} tii[10,75] := {8} tii[10,76] := {4} tii[10,77] := {56} tii[10,78] := {43} tii[10,79] := {13} tii[10,80] := {14} tii[10,81] := {5} cell#12 , |C| = 81 special orbit = A3 special rep = phi[81,10] , dim = 81 cell rep = phi[81,10] TII depth = 3 TII multiplicity polynomial = 81*X TII subcells: tii[8,1] := {35} tii[8,2] := {46} tii[8,3] := {72} tii[8,4] := {39} tii[8,5] := {31} tii[8,6] := {30} tii[8,7] := {79} tii[8,8] := {18} tii[8,9] := {34} tii[8,10] := {42} tii[8,11] := {13} tii[8,12] := {22} tii[8,13] := {47} tii[8,14] := {11} tii[8,15] := {67} tii[8,16] := {76} tii[8,17] := {78} tii[8,18] := {57} tii[8,19] := {51} tii[8,20] := {4} tii[8,21] := {10} tii[8,22] := {58} tii[8,23] := {65} tii[8,24] := {50} tii[8,25] := {74} tii[8,26] := {55} tii[8,27] := {7} tii[8,28] := {29} tii[8,29] := {26} tii[8,30] := {52} tii[8,31] := {48} tii[8,32] := {2} tii[8,33] := {43} tii[8,34] := {32} tii[8,35] := {9} tii[8,36] := {68} tii[8,37] := {6} tii[8,38] := {71} tii[8,39] := {15} tii[8,40] := {25} tii[8,41] := {66} tii[8,42] := {54} tii[8,43] := {0} tii[8,44] := {73} tii[8,45] := {63} tii[8,46] := {49} tii[8,47] := {1} tii[8,48] := {8} tii[8,49] := {53} tii[8,50] := {38} tii[8,51] := {80} tii[8,52] := {62} tii[8,53] := {61} tii[8,54] := {24} tii[8,55] := {45} tii[8,56] := {44} tii[8,57] := {14} tii[8,58] := {17} tii[8,59] := {33} tii[8,60] := {23} tii[8,61] := {21} tii[8,62] := {28} tii[8,63] := {27} tii[8,64] := {41} tii[8,65] := {40} tii[8,66] := {12} tii[8,67] := {75} tii[8,68] := {5} tii[8,69] := {64} tii[8,70] := {20} tii[8,71] := {70} tii[8,72] := {3} tii[8,73] := {56} tii[8,74] := {37} tii[8,75] := {16} tii[8,76] := {60} tii[8,77] := {59} tii[8,78] := {19} tii[8,79] := {77} tii[8,80] := {69} tii[8,81] := {36}