TII subcells for the E6sc(F4) x E6ad(A5xA1) block of E6sc # cell#0 , |C| = 24 special orbit = 2*A2 special rep = phi[24,12] , dim = 24 cell rep = phi[24,12] TII depth = 2 TII multiplicity polynomial = 24*X TII subcells: tii[6,1] := {0} tii[6,2] := {5} tii[6,3] := {21} tii[6,4] := {11} tii[6,5] := {8} tii[6,6] := {13} tii[6,7] := {1} tii[6,8] := {4} tii[6,9] := {3} tii[6,10] := {6} tii[6,11] := {10} tii[6,12] := {20} tii[6,13] := {17} tii[6,14] := {22} tii[6,15] := {14} tii[6,16] := {2} tii[6,17] := {19} tii[6,18] := {23} tii[6,19] := {15} tii[6,20] := {18} tii[6,21] := {7} tii[6,22] := {12} tii[6,23] := {16} tii[6,24] := {9} cell#1 , |C| = 20 special orbit = 2*A1 special rep = phi[20,20] , dim = 20 cell rep = phi[20,20] TII depth = 2 TII multiplicity polynomial = 20*X TII subcells: tii[3,1] := {8} tii[3,2] := {11} tii[3,3] := {7} tii[3,4] := {1} tii[3,5] := {6} tii[3,6] := {10} tii[3,7] := {16} tii[3,8] := {12} tii[3,9] := {9} tii[3,10] := {2} tii[3,11] := {19} tii[3,12] := {3} tii[3,13] := {17} tii[3,14] := {13} tii[3,15] := {14} tii[3,16] := {4} tii[3,17] := {15} tii[3,18] := {5} tii[3,19] := {0} tii[3,20] := {18} cell#2 , |C| = 1 special orbit = 0 special rep = phi[1,36] , dim = 1 cell rep = phi[1,36] TII depth = 1 TII multiplicity polynomial = X TII subcells: tii[1,1] := {0}