TII subcells for the E7ad(E6xR) x E7sc(D6xA1) block of E7ad # cell#0 , |C| = 105 special orbit = A5b special rep = phi[105,12] , dim = 105 cell rep = phi[105,12] TII depth = 2 TII multiplicity polynomial = 105*X TII subcells: tii[18,1] := {0} tii[18,2] := {1} tii[18,3] := {7} tii[18,4] := {81} tii[18,5] := {39} tii[18,6] := {4} tii[18,7] := {14} tii[18,8] := {35} tii[18,9] := {23} tii[18,10] := {33} tii[18,11] := {48} tii[18,12] := {6} tii[18,13] := {61} tii[18,14] := {93} tii[18,15] := {10} tii[18,16] := {18} tii[18,17] := {12} tii[18,18] := {29} tii[18,19] := {57} tii[18,20] := {2} tii[18,21] := {41} tii[18,22] := {22} tii[18,23] := {55} tii[18,24] := {74} tii[18,25] := {3} tii[18,26] := {72} tii[18,27] := {8} tii[18,28] := {89} tii[18,29] := {99} tii[18,30] := {70} tii[18,31] := {11} tii[18,32] := {69} tii[18,33] := {85} tii[18,34] := {19} tii[18,35] := {96} tii[18,36] := {28} tii[18,37] := {16} tii[18,38] := {52} tii[18,39] := {25} tii[18,40] := {68} tii[18,41] := {37} tii[18,42] := {34} tii[18,43] := {49} tii[18,44] := {64} tii[18,45] := {51} tii[18,46] := {67} tii[18,47] := {50} tii[18,48] := {9} tii[18,49] := {84} tii[18,50] := {15} tii[18,51] := {83} tii[18,52] := {65} tii[18,53] := {24} tii[18,54] := {82} tii[18,55] := {95} tii[18,56] := {101} tii[18,57] := {87} tii[18,58] := {47} tii[18,59] := {98} tii[18,60] := {63} tii[18,61] := {80} tii[18,62] := {102} tii[18,63] := {104} tii[18,64] := {21} tii[18,65] := {32} tii[18,66] := {46} tii[18,67] := {31} tii[18,68] := {77} tii[18,69] := {43} tii[18,70] := {92} tii[18,71] := {59} tii[18,72] := {56} tii[18,73] := {17} tii[18,74] := {79} tii[18,75] := {73} tii[18,76] := {26} tii[18,77] := {88} tii[18,78] := {20} tii[18,79] := {30} tii[18,80] := {5} tii[18,81] := {42} tii[18,82] := {71} tii[18,83] := {13} tii[18,84] := {58} tii[18,85] := {86} tii[18,86] := {90} tii[18,87] := {97} tii[18,88] := {103} tii[18,89] := {44} tii[18,90] := {60} tii[18,91] := {76} tii[18,92] := {75} tii[18,93] := {27} tii[18,94] := {91} tii[18,95] := {54} tii[18,96] := {40} tii[18,97] := {100} tii[18,98] := {53} tii[18,99] := {36} tii[18,100] := {66} tii[18,101] := {94} tii[18,102] := {45} tii[18,103] := {62} tii[18,104] := {78} tii[18,105] := {38} cell#1 , |C| = 189 special orbit = A3b+A1b special rep = phi[189,20] , dim = 189 cell rep = phi[189,20] TII depth = 3 TII multiplicity polynomial = 189*X TII subcells: tii[11,1] := {55} tii[11,2] := {130} tii[11,3] := {90} tii[11,4] := {52} tii[11,5] := {76} tii[11,6] := {122} tii[11,7] := {38} tii[11,8] := {54} tii[11,9] := {77} tii[11,10] := {25} tii[11,11] := {68} tii[11,12] := {8} tii[11,13] := {23} tii[11,14] := {42} tii[11,15] := {43} tii[11,16] := {12} tii[11,17] := {88} tii[11,18] := {24} tii[11,19] := {44} tii[11,20] := {108} tii[11,21] := {86} tii[11,22] := {147} tii[11,23] := {129} tii[11,24] := {110} tii[11,25] := {178} tii[11,26] := {118} tii[11,27] := {156} tii[11,28] := {22} tii[11,29] := {97} tii[11,30] := {119} tii[11,31] := {182} tii[11,32] := {105} tii[11,33] := {176} tii[11,34] := {33} tii[11,35] := {53} tii[11,36] := {144} tii[11,37] := {83} tii[11,38] := {166} tii[11,39] := {15} tii[11,40] := {106} tii[11,41] := {20} tii[11,42] := {160} tii[11,43] := {63} tii[11,44] := {78} tii[11,45] := {101} tii[11,46] := {142} tii[11,47] := {39} tii[11,48] := {85} tii[11,49] := {107} tii[11,50] := {163} tii[11,51] := {148} tii[11,52] := {134} tii[11,53] := {70} tii[11,54] := {5} tii[11,55] := {165} tii[11,56] := {91} tii[11,57] := {111} tii[11,58] := {16} tii[11,59] := {132} tii[11,60] := {74} tii[11,61] := {34} tii[11,62] := {180} tii[11,63] := {140} tii[11,64] := {35} tii[11,65] := {98} tii[11,66] := {172} tii[11,67] := {99} tii[11,68] := {120} tii[11,69] := {121} tii[11,70] := {60} tii[11,71] := {57} tii[11,72] := {141} tii[11,73] := {80} tii[11,74] := {159} tii[11,75] := {100} tii[11,76] := {146} tii[11,77] := {186} tii[11,78] := {71} tii[11,79] := {116} tii[11,80] := {183} tii[11,81] := {49} tii[11,82] := {9} tii[11,83] := {177} tii[11,84] := {72} tii[11,85] := {27} tii[11,86] := {3} tii[11,87] := {179} tii[11,88] := {135} tii[11,89] := {31} tii[11,90] := {45} tii[11,91] := {14} tii[11,92] := {46} tii[11,93] := {67} tii[11,94] := {30} tii[11,95] := {114} tii[11,96] := {169} tii[11,97] := {13} tii[11,98] := {51} tii[11,99] := {157} tii[11,100] := {89} tii[11,101] := {50} tii[11,102] := {73} tii[11,103] := {0} tii[11,104] := {19} tii[11,105] := {2} tii[11,106] := {37} tii[11,107] := {11} tii[11,108] := {59} tii[11,109] := {81} tii[11,110] := {167} tii[11,111] := {64} tii[11,112] := {10} tii[11,113] := {87} tii[11,114] := {28} tii[11,115] := {149} tii[11,116] := {65} tii[11,117] := {26} tii[11,118] := {66} tii[11,119] := {109} tii[11,120] := {131} tii[11,121] := {47} tii[11,122] := {128} tii[11,123] := {69} tii[11,124] := {117} tii[11,125] := {164} tii[11,126] := {104} tii[11,127] := {188} tii[11,128] := {187} tii[11,129] := {168} tii[11,130] := {184} tii[11,131] := {153} tii[11,132] := {185} tii[11,133] := {137} tii[11,134] := {102} tii[11,135] := {170} tii[11,136] := {40} tii[11,137] := {7} tii[11,138] := {154} tii[11,139] := {181} tii[11,140] := {138} tii[11,141] := {155} tii[11,142] := {62} tii[11,143] := {79} tii[11,144] := {175} tii[11,145] := {171} tii[11,146] := {139} tii[11,147] := {41} tii[11,148] := {174} tii[11,149] := {124} tii[11,150] := {6} tii[11,151] := {143} tii[11,152] := {18} tii[11,153] := {161} tii[11,154] := {125} tii[11,155] := {32} tii[11,156] := {75} tii[11,157] := {145} tii[11,158] := {21} tii[11,159] := {162} tii[11,160] := {126} tii[11,161] := {36} tii[11,162] := {173} tii[11,163] := {61} tii[11,164] := {127} tii[11,165] := {150} tii[11,166] := {133} tii[11,167] := {1} tii[11,168] := {112} tii[11,169] := {151} tii[11,170] := {17} tii[11,171] := {113} tii[11,172] := {56} tii[11,173] := {96} tii[11,174] := {103} tii[11,175] := {158} tii[11,176] := {82} tii[11,177] := {92} tii[11,178] := {115} tii[11,179] := {93} tii[11,180] := {136} tii[11,181] := {4} tii[11,182] := {94} tii[11,183] := {152} tii[11,184] := {95} tii[11,185] := {29} tii[11,186] := {48} tii[11,187] := {58} tii[11,188] := {123} tii[11,189] := {84} cell#2 , |C| = 21 special orbit = 3*A1b special rep = phi[21,36] , dim = 21 cell rep = phi[21,36] TII depth = 2 TII multiplicity polynomial = 21*X TII subcells: tii[4,1] := {6} tii[4,2] := {13} tii[4,3] := {8} tii[4,4] := {15} tii[4,5] := {11} tii[4,6] := {7} tii[4,7] := {1} tii[4,8] := {10} tii[4,9] := {18} tii[4,10] := {16} tii[4,11] := {12} tii[4,12] := {9} tii[4,13] := {2} tii[4,14] := {20} tii[4,15] := {19} tii[4,16] := {3} tii[4,17] := {17} tii[4,18] := {14} tii[4,19] := {4} tii[4,20] := {5} tii[4,21] := {0}