TII subcells for the E7ad(E6xR) x E7sc(R) block of E7ad # cell#0 , |C| = 105 special orbit = A5b special rep = phi[105,12] , dim = 105 cell rep = phi[105,12] TII depth = 2 TII multiplicity polynomial = 105*X TII subcells: tii[18,1] := {0} tii[18,2] := {20} tii[18,3] := {49} tii[18,4] := {104} tii[18,5] := {92} tii[18,6] := {43} tii[18,7] := {67} tii[18,8] := {75} tii[18,9] := {79} tii[18,10] := {66} tii[18,11] := {50} tii[18,12] := {1} tii[18,13] := {101} tii[18,14] := {102} tii[18,15] := {14} tii[18,16] := {4} tii[18,17] := {63} tii[18,18] := {86} tii[18,19] := {89} tii[18,20] := {13} tii[18,21] := {95} tii[18,22] := {58} tii[18,23] := {85} tii[18,24] := {96} tii[18,25] := {31} tii[18,26] := {72} tii[18,27] := {21} tii[18,28] := {90} tii[18,29] := {78} tii[18,30] := {103} tii[18,31] := {24} tii[18,32] := {93} tii[18,33] := {100} tii[18,34] := {32} tii[18,35] := {94} tii[18,36] := {25} tii[18,37] := {3} tii[18,38] := {83} tii[18,39] := {15} tii[18,40] := {70} tii[18,41] := {6} tii[18,42] := {38} tii[18,43] := {18} tii[18,44] := {9} tii[18,45] := {99} tii[18,46] := {91} tii[18,47] := {80} tii[18,48] := {52} tii[18,49] := {82} tii[18,50] := {44} tii[18,51] := {81} tii[18,52] := {76} tii[18,53] := {61} tii[18,54] := {62} tii[18,55] := {69} tii[18,56] := {53} tii[18,57] := {60} tii[18,58] := {59} tii[18,59] := {42} tii[18,60] := {41} tii[18,61] := {22} tii[18,62] := {23} tii[18,63] := {12} tii[18,64] := {46} tii[18,65] := {56} tii[18,66] := {47} tii[18,67] := {27} tii[18,68] := {97} tii[18,69] := {34} tii[18,70] := {88} tii[18,71] := {28} tii[18,72] := {54} tii[18,73] := {37} tii[18,74] := {98} tii[18,75] := {35} tii[18,76] := {17} tii[18,77] := {29} tii[18,78] := {73} tii[18,79] := {64} tii[18,80] := {2} tii[18,81] := {77} tii[18,82] := {71} tii[18,83] := {40} tii[18,84] := {87} tii[18,85] := {55} tii[18,86] := {65} tii[18,87] := {36} tii[18,88] := {30} tii[18,89] := {5} tii[18,90] := {16} tii[18,91] := {8} tii[18,92] := {39} tii[18,93] := {51} tii[18,94] := {19} tii[18,95] := {84} tii[18,96] := {33} tii[18,97] := {10} tii[18,98] := {26} tii[18,99] := {68} tii[18,100] := {45} tii[18,101] := {11} tii[18,102] := {74} tii[18,103] := {57} tii[18,104] := {48} tii[18,105] := {7} cell#1 , |C| = 504 special orbit = A4 special rep = phi[420,13] , dim = 420 cell rep = phi[84,15]+phi[420,13] TII depth = 4 TII multiplicity polynomial = 336*X+84*X^2 TII subcells: tii[16,1] := {41} tii[16,2] := {141, 142} tii[16,3] := {470, 471} tii[16,4] := {322, 323} tii[16,5] := {73} tii[16,6] := {162} tii[16,7] := {195, 196} tii[16,8] := {280} tii[16,9] := {156} tii[16,10] := {254, 255} tii[16,11] := {276} tii[16,12] := {312, 313} tii[16,13] := {215} tii[16,14] := {372, 373} tii[16,15] := {278} tii[16,16] := {15} tii[16,17] := {460} tii[16,18] := {33} tii[16,19] := {362} tii[16,20] := {57} tii[16,21] := {394, 395} tii[16,22] := {76} tii[16,23] := {56} tii[16,24] := {484, 485} tii[16,25] := {463} tii[16,26] := {116} tii[16,27] := {88} tii[16,28] := {132} tii[16,29] := {123} tii[16,30] := {0} tii[16,31] := {266, 267} tii[16,32] := {235} tii[16,33] := {12} tii[16,34] := {11} tii[16,35] := {354} tii[16,36] := {38} tii[16,37] := {2} tii[16,38] := {6} tii[16,39] := {232} tii[16,40] := {296} tii[16,41] := {31} tii[16,42] := {30} tii[16,43] := {109} tii[16,44] := {326, 327} tii[16,45] := {97, 98} tii[16,46] := {211} tii[16,47] := {444, 445} tii[16,48] := {357} tii[16,49] := {249} tii[16,50] := {293} tii[16,51] := {384, 385} tii[16,52] := {414} tii[16,53] := {68} tii[16,54] := {52} tii[16,55] := {13} tii[16,56] := {70} tii[16,57] := {415} tii[16,58] := {62, 63} tii[16,59] := {440, 441} tii[16,60] := {108} tii[16,61] := {352} tii[16,62] := {82} tii[16,63] := {19} tii[16,64] := {309} tii[16,65] := {457} tii[16,66] := {105} tii[16,67] := {488} tii[16,68] := {369} tii[16,69] := {67} tii[16,70] := {405} tii[16,71] := {59} tii[16,72] := {436, 437} tii[16,73] := {121} tii[16,74] := {119} tii[16,75] := {350} tii[16,76] := {292} tii[16,77] := {92} tii[16,78] := {91} tii[16,79] := {205, 206} tii[16,80] := {137} tii[16,81] := {434, 435} tii[16,82] := {408} tii[16,83] := {173} tii[16,84] := {476, 477} tii[16,85] := {410} tii[16,86] := {175} tii[16,87] := {135} tii[16,88] := {495, 496} tii[16,89] := {454} tii[16,90] := {228} tii[16,91] := {183} tii[16,92] := {126} tii[16,93] := {125} tii[16,94] := {224} tii[16,95] := {380, 381} tii[16,96] := {214} tii[16,97] := {345} tii[16,98] := {181} tii[16,99] := {288} tii[16,100] := {180} tii[16,101] := {245} tii[16,102] := {346} tii[16,103] := {432, 433} tii[16,104] := {244} tii[16,105] := {274} tii[16,106] := {241} tii[16,107] := {286} tii[16,108] := {223} tii[16,109] := {336} tii[16,110] := {304} tii[16,111] := {363} tii[16,112] := {378, 379} tii[16,113] := {284} tii[16,114] := {55} tii[16,115] := {219} tii[16,116] := {54} tii[16,117] := {32} tii[16,118] := {145, 146} tii[16,119] := {376, 377} tii[16,120] := {182} tii[16,121] := {283} tii[16,122] := {430, 431} tii[16,123] := {344} tii[16,124] := {114} tii[16,125] := {342} tii[16,126] := {112} tii[16,127] := {86} tii[16,128] := {43} tii[16,129] := {343} tii[16,130] := {161} tii[16,131] := {474, 475} tii[16,132] := {407} tii[16,133] := {99, 100} tii[16,134] := {128} tii[16,135] := {472, 473} tii[16,136] := {406} tii[16,137] := {316, 317} tii[16,138] := {243} tii[16,139] := {402} tii[16,140] := {113} tii[16,141] := {158} tii[16,142] := {217} tii[16,143] := {256, 257} tii[16,144] := {451} tii[16,145] := {111} tii[16,146] := {306} tii[16,147] := {493, 494} tii[16,148] := {453} tii[16,149] := {160} tii[16,150] := {502, 503} tii[16,151] := {487} tii[16,152] := {130} tii[16,153] := {422} tii[16,154] := {370, 371} tii[16,155] := {337} tii[16,156] := {275} tii[16,157] := {212} tii[16,158] := {466} tii[16,159] := {213} tii[16,160] := {426, 427} tii[16,161] := {400} tii[16,162] := {155} tii[16,163] := {338} tii[16,164] := {468, 469} tii[16,165] := {399} tii[16,166] := {492} tii[16,167] := {339} tii[16,168] := {110} tii[16,169] := {501} tii[16,170] := {95} tii[16,171] := {421} tii[16,172] := {178} tii[16,173] := {179} tii[16,174] := {139} tii[16,175] := {23} tii[16,176] := {64, 65} tii[16,177] := {192} tii[16,178] := {272, 273} tii[16,179] := {465} tii[16,180] := {240} tii[16,181] := {191} tii[16,182] := {22} tii[16,183] := {16} tii[16,184] := {491} tii[16,185] := {300} tii[16,186] := {250} tii[16,187] := {21} tii[16,188] := {238} tii[16,189] := {186} tii[16,190] := {79} tii[16,191] := {298} tii[16,192] := {330, 331} tii[16,193] := {359} tii[16,194] := {297} tii[16,195] := {35} tii[16,196] := {446, 447} tii[16,197] := {147, 148} tii[16,198] := {90} tii[16,199] := {420} tii[16,200] := {118} tii[16,201] := {248} tii[16,202] := {47} tii[16,203] := {482, 483} tii[16,204] := {417} tii[16,205] := {464} tii[16,206] := {356} tii[16,207] := {46} tii[16,208] := {169} tii[16,209] := {310} tii[16,210] := {34} tii[16,211] := {353} tii[16,212] := {166} tii[16,213] := {386, 387} tii[16,214] := {308} tii[16,215] := {4} tii[16,216] := {303} tii[16,217] := {201, 202} tii[16,218] := {89} tii[16,219] := {117} tii[16,220] := {448, 449} tii[16,221] := {419} tii[16,222] := {8} tii[16,223] := {442, 443} tii[16,224] := {412} tii[16,225] := {361} tii[16,226] := {260, 261} tii[16,227] := {77} tii[16,228] := {368} tii[16,229] := {133} tii[16,230] := {115} tii[16,231] := {168} tii[16,232] := {456} tii[16,233] := {302} tii[16,234] := {424} tii[16,235] := {26} tii[16,236] := {167} tii[16,237] := {358} tii[16,238] := {94} tii[16,239] := {207, 208} tii[16,240] := {416} tii[16,241] := {138} tii[16,242] := {1} tii[16,243] := {10} tii[16,244] := {177} tii[16,245] := {151, 152} tii[16,246] := {234} tii[16,247] := {462} tii[16,248] := {188} tii[16,249] := {7} tii[16,250] := {461} tii[16,251] := {388, 389} tii[16,252] := {28} tii[16,253] := {176} tii[16,254] := {29} tii[16,255] := {294} tii[16,256] := {48} tii[16,257] := {490} tii[16,258] := {233} tii[16,259] := {49} tii[16,260] := {18} tii[16,261] := {328, 329} tii[16,262] := {500} tii[16,263] := {189} tii[16,264] := {24} tii[16,265] := {438, 439} tii[16,266] := {351} tii[16,267] := {413} tii[16,268] := {252, 253} tii[16,269] := {237} tii[16,270] := {53} tii[16,271] := {69} tii[16,272] := {187} tii[16,273] := {154} tii[16,274] := {390, 391} tii[16,275] := {478, 479} tii[16,276] := {355} tii[16,277] := {411} tii[16,278] := {458} tii[16,279] := {295} tii[16,280] := {83} tii[16,281] := {40} tii[16,282] := {107} tii[16,283] := {193, 194} tii[16,284] := {497, 498} tii[16,285] := {459} tii[16,286] := {311} tii[16,287] := {84} tii[16,288] := {455} tii[16,289] := {489} tii[16,290] := {39} tii[16,291] := {236} tii[16,292] := {143, 144} tii[16,293] := {106} tii[16,294] := {499} tii[16,295] := {190} tii[16,296] := {425} tii[16,297] := {247} tii[16,298] := {165} tii[16,299] := {307} tii[16,300] := {61} tii[16,301] := {81} tii[16,302] := {258, 259} tii[16,303] := {220} tii[16,304] := {349} tii[16,305] := {367} tii[16,306] := {409} tii[16,307] := {282} tii[16,308] := {60} tii[16,309] := {80} tii[16,310] := {366} tii[16,311] := {314, 315} tii[16,312] := {279} tii[16,313] := {262, 263} tii[16,314] := {225} tii[16,315] := {174} tii[16,316] := {231} tii[16,317] := {136} tii[16,318] := {14} tii[16,319] := {229} tii[16,320] := {324, 325} tii[16,321] := {348} tii[16,322] := {290} tii[16,323] := {374, 375} tii[16,324] := {20} tii[16,325] := {423} tii[16,326] := {382, 383} tii[16,327] := {149, 150} tii[16,328] := {227} tii[16,329] := {93} tii[16,330] := {120} tii[16,331] := {291} tii[16,332] := {184} tii[16,333] := {340} tii[16,334] := {172} tii[16,335] := {467} tii[16,336] := {264, 265} tii[16,337] := {230} tii[16,338] := {401} tii[16,339] := {347} tii[16,340] := {42} tii[16,341] := {226} tii[16,342] := {185} tii[16,343] := {5} tii[16,344] := {242} tii[16,345] := {9} tii[16,346] := {157} tii[16,347] := {305} tii[16,348] := {287} tii[16,349] := {364} tii[16,350] := {171} tii[16,351] := {277} tii[16,352] := {27} tii[16,353] := {51} tii[16,354] := {398} tii[16,355] := {341} tii[16,356] := {164} tii[16,357] := {87} tii[16,358] := {281} tii[16,359] := {403} tii[16,360] := {72} tii[16,361] := {127} tii[16,362] := {318, 319} tii[16,363] := {129} tii[16,364] := {218} tii[16,365] := {404} tii[16,366] := {452} tii[16,367] := {74} tii[16,368] := {159} tii[16,369] := {163} tii[16,370] := {197, 198} tii[16,371] := {246} tii[16,372] := {365} tii[16,373] := {131} tii[16,374] := {486} tii[16,375] := {216} tii[16,376] := {450} tii[16,377] := {85} tii[16,378] := {124} tii[16,379] := {96} tii[16,380] := {239} tii[16,381] := {301} tii[16,382] := {332, 333} tii[16,383] := {45} tii[16,384] := {140} tii[16,385] := {36, 37} tii[16,386] := {17} tii[16,387] := {209, 210} tii[16,388] := {360} tii[16,389] := {396, 397} tii[16,390] := {75} tii[16,391] := {299} tii[16,392] := {418} tii[16,393] := {251} tii[16,394] := {334, 335} tii[16,395] := {44} tii[16,396] := {170} tii[16,397] := {270, 271} tii[16,398] := {58} tii[16,399] := {103, 104} tii[16,400] := {222} tii[16,401] := {134} tii[16,402] := {392, 393} tii[16,403] := {203, 204} tii[16,404] := {78} tii[16,405] := {285} tii[16,406] := {480, 481} tii[16,407] := {50} tii[16,408] := {221} tii[16,409] := {3} tii[16,410] := {268, 269} tii[16,411] := {25} tii[16,412] := {66} tii[16,413] := {153} tii[16,414] := {199, 200} tii[16,415] := {320, 321} tii[16,416] := {122} tii[16,417] := {428, 429} tii[16,418] := {289} tii[16,419] := {71} tii[16,420] := {101, 102} cell#2 , |C| = 189 special orbit = A3b+A1b special rep = phi[189,20] , dim = 189 cell rep = phi[189,20] TII depth = 3 TII multiplicity polynomial = 189*X TII subcells: tii[11,1] := {164} tii[11,2] := {188} tii[11,3] := {180} tii[11,4] := {157} tii[11,5] := {175} tii[11,6] := {64} tii[11,7] := {145} tii[11,8] := {163} tii[11,9] := {176} tii[11,10] := {138} tii[11,11] := {102} tii[11,12] := {113} tii[11,13] := {94} tii[11,14] := {74} tii[11,15] := {154} tii[11,16] := {115} tii[11,17] := {76} tii[11,18] := {137} tii[11,19] := {155} tii[11,20] := {97} tii[11,21] := {119} tii[11,22] := {93} tii[11,23] := {114} tii[11,24] := {135} tii[11,25] := {22} tii[11,26] := {186} tii[11,27] := {39} tii[11,28] := {133} tii[11,29] := {182} tii[11,30] := {187} tii[11,31] := {29} tii[11,32] := {183} tii[11,33] := {41} tii[11,34] := {147} tii[11,35] := {88} tii[11,36] := {49} tii[11,37] := {178} tii[11,38] := {57} tii[11,39] := {126} tii[11,40] := {184} tii[11,41] := {131} tii[11,42] := {63} tii[11,43] := {167} tii[11,44] := {68} tii[11,45] := {52} tii[11,46] := {82} tii[11,47] := {149} tii[11,48] := {179} tii[11,49] := {185} tii[11,50] := {14} tii[11,51] := {9} tii[11,52] := {26} tii[11,53] := {170} tii[11,54] := {107} tii[11,55] := {11} tii[11,56] := {181} tii[11,57] := {35} tii[11,58] := {128} tii[11,59] := {25} tii[11,60] := {169} tii[11,61] := {148} tii[11,62] := {105} tii[11,63] := {83} tii[11,64] := {146} tii[11,65] := {47} tii[11,66] := {125} tii[11,67] := {48} tii[11,68] := {104} tii[11,69] := {33} tii[11,70] := {162} tii[11,71] := {165} tii[11,72] := {24} tii[11,73] := {177} tii[11,74] := {144} tii[11,75] := {84} tii[11,76] := {161} tii[11,77] := {40} tii[11,78] := {172} tii[11,79] := {60} tii[11,80] := {55} tii[11,81] := {159} tii[11,82] := {117} tii[11,83] := {72} tii[11,84] := {173} tii[11,85] := {95} tii[11,86] := {100} tii[11,87] := {71} tii[11,88] := {75} tii[11,89] := {142} tii[11,90] := {80} tii[11,91] := {122} tii[11,92] := {81} tii[11,93] := {62} tii[11,94] := {143} tii[11,95] := {96} tii[11,96] := {91} tii[11,97] := {121} tii[11,98] := {160} tii[11,99] := {112} tii[11,100] := {46} tii[11,101] := {123} tii[11,102] := {174} tii[11,103] := {78} tii[11,104] := {120} tii[11,105] := {99} tii[11,106] := {141} tii[11,107] := {79} tii[11,108] := {158} tii[11,109] := {171} tii[11,110] := {90} tii[11,111] := {58} tii[11,112] := {116} tii[11,113] := {44} tii[11,114] := {136} tii[11,115] := {111} tii[11,116] := {59} tii[11,117] := {139} tii[11,118] := {98} tii[11,119] := {32} tii[11,120] := {134} tii[11,121] := {156} tii[11,122] := {23} tii[11,123] := {140} tii[11,124] := {152} tii[11,125] := {13} tii[11,126] := {153} tii[11,127] := {51} tii[11,128] := {67} tii[11,129] := {15} tii[11,130] := {87} tii[11,131] := {20} tii[11,132] := {85} tii[11,133] := {5} tii[11,134] := {53} tii[11,135] := {31} tii[11,136] := {150} tii[11,137] := {110} tii[11,138] := {7} tii[11,139] := {106} tii[11,140] := {27} tii[11,141] := {42} tii[11,142] := {168} tii[11,143] := {38} tii[11,144] := {127} tii[11,145] := {12} tii[11,146] := {54} tii[11,147] := {151} tii[11,148] := {56} tii[11,149] := {2} tii[11,150] := {108} tii[11,151] := {3} tii[11,152] := {130} tii[11,153] := {73} tii[11,154] := {34} tii[11,155] := {69} tii[11,156] := {37} tii[11,157] := {92} tii[11,158] := {132} tii[11,159] := {6} tii[11,160] := {65} tii[11,161] := {109} tii[11,162] := {10} tii[11,163] := {89} tii[11,164] := {103} tii[11,165] := {21} tii[11,166] := {30} tii[11,167] := {86} tii[11,168] := {17} tii[11,169] := {18} tii[11,170] := {129} tii[11,171] := {36} tii[11,172] := {166} tii[11,173] := {50} tii[11,174] := {124} tii[11,175] := {16} tii[11,176] := {66} tii[11,177] := {0} tii[11,178] := {1} tii[11,179] := {45} tii[11,180] := {4} tii[11,181] := {101} tii[11,182] := {77} tii[11,183] := {8} tii[11,184] := {118} tii[11,185] := {61} tii[11,186] := {43} tii[11,187] := {28} tii[11,188] := {19} tii[11,189] := {70} cell#3 , |C| = 189 special orbit = A3b+A1b special rep = phi[189,20] , dim = 189 cell rep = phi[189,20] TII depth = 3 TII multiplicity polynomial = 189*X TII subcells: tii[11,1] := {172} tii[11,2] := {174} tii[11,3] := {164} tii[11,4] := {139} tii[11,5] := {153} tii[11,6] := {154} tii[11,7] := {120} tii[11,8] := {134} tii[11,9] := {109} tii[11,10] := {150} tii[11,11] := {151} tii[11,12] := {162} tii[11,13] := {176} tii[11,14] := {185} tii[11,15] := {124} tii[11,16] := {92} tii[11,17] := {125} tii[11,18] := {103} tii[11,19] := {82} tii[11,20] := {104} tii[11,21] := {83} tii[11,22] := {60} tii[11,23] := {41} tii[11,24] := {27} tii[11,25] := {160} tii[11,26] := {159} tii[11,27] := {147} tii[11,28] := {138} tii[11,29] := {140} tii[11,30] := {118} tii[11,31] := {143} tii[11,32] := {142} tii[11,33] := {122} tii[11,34] := {157} tii[11,35] := {173} tii[11,36] := {133} tii[11,37] := {121} tii[11,38] := {97} tii[11,39] := {135} tii[11,40] := {96} tii[11,41] := {98} tii[11,42] := {111} tii[11,43] := {99} tii[11,44] := {183} tii[11,45] := {188} tii[11,46] := {89} tii[11,47] := {77} tii[11,48] := {78} tii[11,49] := {58} tii[11,50] := {175} tii[11,51] := {177} tii[11,52] := {166} tii[11,53] := {148} tii[11,54] := {110} tii[11,55] := {186} tii[11,56] := {129} tii[11,57] := {178} tii[11,58] := {87} tii[11,59] := {187} tii[11,60] := {117} tii[11,61] := {65} tii[11,62] := {30} tii[11,63] := {86} tii[11,64] := {75} tii[11,65] := {169} tii[11,66] := {19} tii[11,67] := {132} tii[11,68] := {64} tii[11,69] := {182} tii[11,70] := {95} tii[11,71] := {55} tii[11,72] := {171} tii[11,73] := {39} tii[11,74] := {9} tii[11,75] := {44} tii[11,76] := {3} tii[11,77] := {116} tii[11,78] := {115} tii[11,79] := {102} tii[11,80] := {94} tii[11,81] := {93} tii[11,82] := {131} tii[11,83] := {71} tii[11,84] := {70} tii[11,85] := {105} tii[11,86] := {72} tii[11,87] := {74} tii[11,88] := {84} tii[11,89] := {73} tii[11,90] := {167} tii[11,91] := {85} tii[11,92] := {130} tii[11,93] := {181} tii[11,94] := {63} tii[11,95] := {62} tii[11,96] := {54} tii[11,97] := {52} tii[11,98] := {53} tii[11,99] := {38} tii[11,100] := {168} tii[11,101] := {43} tii[11,102] := {37} tii[11,103] := {49} tii[11,104] := {50} tii[11,105] := {33} tii[11,106] := {34} tii[11,107] := {22} tii[11,108] := {23} tii[11,109] := {13} tii[11,110] := {48} tii[11,111] := {144} tii[11,112] := {47} tii[11,113] := {161} tii[11,114] := {69} tii[11,115] := {32} tii[11,116] := {101} tii[11,117] := {31} tii[11,118] := {61} tii[11,119] := {146} tii[11,120] := {21} tii[11,121] := {20} tii[11,122] := {127} tii[11,123] := {10} tii[11,124] := {11} tii[11,125] := {80} tii[11,126] := {1} tii[11,127] := {6} tii[11,128] := {7} tii[11,129] := {141} tii[11,130] := {5} tii[11,131] := {119} tii[11,132] := {18} tii[11,133] := {163} tii[11,134] := {137} tii[11,135] := {100} tii[11,136] := {113} tii[11,137] := {114} tii[11,138] := {179} tii[11,139] := {8} tii[11,140] := {128} tii[11,141] := {79} tii[11,142] := {90} tii[11,143] := {112} tii[11,144] := {4} tii[11,145] := {165} tii[11,146] := {59} tii[11,147] := {68} tii[11,148] := {51} tii[11,149] := {152} tii[11,150] := {66} tii[11,151] := {170} tii[11,152] := {46} tii[11,153] := {35} tii[11,154] := {108} tii[11,155] := {156} tii[11,156] := {184} tii[11,157] := {24} tii[11,158] := {57} tii[11,159] := {155} tii[11,160] := {67} tii[11,161] := {28} tii[11,162] := {136} tii[11,163] := {17} tii[11,164] := {14} tii[11,165] := {76} tii[11,166] := {56} tii[11,167] := {88} tii[11,168] := {149} tii[11,169] := {180} tii[11,170] := {45} tii[11,171] := {40} tii[11,172] := {25} tii[11,173] := {26} tii[11,174] := {2} tii[11,175] := {107} tii[11,176] := {15} tii[11,177] := {123} tii[11,178] := {145} tii[11,179] := {81} tii[11,180] := {126} tii[11,181] := {36} tii[11,182] := {42} tii[11,183] := {106} tii[11,184] := {16} tii[11,185] := {12} tii[11,186] := {0} tii[11,187] := {91} tii[11,188] := {158} tii[11,189] := {29} cell#4 , |C| = 21 special orbit = 3*A1b special rep = phi[21,36] , dim = 21 cell rep = phi[21,36] TII depth = 2 TII multiplicity polynomial = 21*X TII subcells: tii[4,1] := {20} tii[4,2] := {19} tii[4,3] := {16} tii[4,4] := {17} tii[4,5] := {15} tii[4,6] := {12} tii[4,7] := {18} tii[4,8] := {4} tii[4,9] := {13} tii[4,10] := {11} tii[4,11] := {9} tii[4,12] := {7} tii[4,13] := {5} tii[4,14] := {0} tii[4,15] := {1} tii[4,16] := {14} tii[4,17] := {2} tii[4,18] := {3} tii[4,19] := {10} tii[4,20] := {6} tii[4,21] := {8} cell#5 , |C| = 210 special orbit = A3 special rep = phi[210,21] , dim = 210 cell rep = phi[210,21] TII depth = 3 TII multiplicity polynomial = 210*X TII subcells: tii[8,1] := {105} tii[8,2] := {151} tii[8,3] := {76} tii[8,4] := {104} tii[8,5] := {109} tii[8,6] := {155} tii[8,7] := {102} tii[8,8] := {131} tii[8,9] := {168} tii[8,10] := {107} tii[8,11] := {132} tii[8,12] := {182} tii[8,13] := {167} tii[8,14] := {200} tii[8,15] := {191} tii[8,16] := {181} tii[8,17] := {101} tii[8,18] := {83} tii[8,19] := {165} tii[8,20] := {111} tii[8,21] := {156} tii[8,22] := {36} tii[8,23] := {100} tii[8,24] := {125} tii[8,25] := {87} tii[8,26] := {178} tii[8,27] := {136} tii[8,28] := {179} tii[8,29] := {141} tii[8,30] := {171} tii[8,31] := {24} tii[8,32] := {62} tii[8,33] := {112} tii[8,34] := {177} tii[8,35] := {88} tii[8,36] := {135} tii[8,37] := {118} tii[8,38] := {183} tii[8,39] := {40} tii[8,40] := {99} tii[8,41] := {63} tii[8,42] := {170} tii[8,43] := {90} tii[8,44] := {124} tii[8,45] := {146} tii[8,46] := {144} tii[8,47] := {75} tii[8,48] := {122} tii[8,49] := {127} tii[8,50] := {28} tii[8,51] := {68} tii[8,52] := {94} tii[8,53] := {93} tii[8,54] := {108} tii[8,55] := {47} tii[8,56] := {46} tii[8,57] := {78} tii[8,58] := {69} tii[8,59] := {70} tii[8,60] := {49} tii[8,61] := {209} tii[8,62] := {166} tii[8,63] := {86} tii[8,64] := {29} tii[8,65] := {67} tii[8,66] := {208} tii[8,67] := {129} tii[8,68] := {150} tii[8,69] := {61} tii[8,70] := {51} tii[8,71] := {92} tii[8,72] := {120} tii[8,73] := {30} tii[8,74] := {205} tii[8,75] := {38} tii[8,76] := {128} tii[8,77] := {196} tii[8,78] := {189} tii[8,79] := {160} tii[8,80] := {185} tii[8,81] := {192} tii[8,82] := {79} tii[8,83] := {138} tii[8,84] := {8} tii[8,85] := {188} tii[8,86] := {110} tii[8,87] := {161} tii[8,88] := {201} tii[8,89] := {80} tii[8,90] := {195} tii[8,91] := {19} tii[8,92] := {113} tii[8,93] := {84} tii[8,94] := {133} tii[8,95] := {116} tii[8,96] := {184} tii[8,97] := {56} tii[8,98] := {33} tii[8,99] := {193} tii[8,100] := {137} tii[8,101] := {187} tii[8,102] := {140} tii[8,103] := {159} tii[8,104] := {34} tii[8,105] := {98} tii[8,106] := {74} tii[8,107] := {57} tii[8,108] := {123} tii[8,109] := {81} tii[8,110] := {145} tii[8,111] := {162} tii[8,112] := {53} tii[8,113] := {12} tii[8,114] := {206} tii[8,115] := {77} tii[8,116] := {32} tii[8,117] := {26} tii[8,118] := {202} tii[8,119] := {153} tii[8,120] := {106} tii[8,121] := {13} tii[8,122] := {154} tii[8,123] := {18} tii[8,124] := {194} tii[8,125] := {130} tii[8,126] := {152} tii[8,127] := {186} tii[8,128] := {175} tii[8,129] := {199} tii[8,130] := {203} tii[8,131] := {148} tii[8,132] := {60} tii[8,133] := {198} tii[8,134] := {37} tii[8,135] := {126} tii[8,136] := {207} tii[8,137] := {42} tii[8,138] := {97} tii[8,139] := {139} tii[8,140] := {58} tii[8,141] := {169} tii[8,142] := {71} tii[8,143] := {204} tii[8,144] := {134} tii[8,145] := {21} tii[8,146] := {66} tii[8,147] := {164} tii[8,148] := {82} tii[8,149] := {115} tii[8,150] := {197} tii[8,151] := {43} tii[8,152] := {50} tii[8,153] := {147} tii[8,154] := {59} tii[8,155] := {190} tii[8,156] := {73} tii[8,157] := {64} tii[8,158] := {52} tii[8,159] := {11} tii[8,160] := {91} tii[8,161] := {180} tii[8,162] := {117} tii[8,163] := {158} tii[8,164] := {176} tii[8,165] := {41} tii[8,166] := {65} tii[8,167] := {157} tii[8,168] := {31} tii[8,169] := {119} tii[8,170] := {16} tii[8,171] := {17} tii[8,172] := {89} tii[8,173] := {163} tii[8,174] := {149} tii[8,175] := {22} tii[8,176] := {143} tii[8,177] := {15} tii[8,178] := {103} tii[8,179] := {39} tii[8,180] := {48} tii[8,181] := {23} tii[8,182] := {54} tii[8,183] := {121} tii[8,184] := {95} tii[8,185] := {10} tii[8,186] := {96} tii[8,187] := {142} tii[8,188] := {7} tii[8,189] := {72} tii[8,190] := {45} tii[8,191] := {27} tii[8,192] := {3} tii[8,193] := {173} tii[8,194] := {35} tii[8,195] := {14} tii[8,196] := {20} tii[8,197] := {174} tii[8,198] := {5} tii[8,199] := {9} tii[8,200] := {172} tii[8,201] := {55} tii[8,202] := {6} tii[8,203] := {1} tii[8,204] := {2} tii[8,205] := {44} tii[8,206] := {0} tii[8,207] := {85} tii[8,208] := {25} tii[8,209] := {114} tii[8,210] := {4} cell#6 , |C| = 168 special orbit = 2*A2 special rep = phi[168,21] , dim = 168 cell rep = phi[168,21] TII depth = 3 TII multiplicity polynomial = 168*X TII subcells: tii[9,1] := {75} tii[9,2] := {109} tii[9,3] := {96} tii[9,4] := {136} tii[9,5] := {74} tii[9,6] := {97} tii[9,7] := {43} tii[9,8] := {88} tii[9,9] := {22} tii[9,10] := {41} tii[9,11] := {62} tii[9,12] := {63} tii[9,13] := {107} tii[9,14] := {42} tii[9,15] := {64} tii[9,16] := {124} tii[9,17] := {105} tii[9,18] := {155} tii[9,19] := {142} tii[9,20] := {126} tii[9,21] := {132} tii[9,22] := {71} tii[9,23] := {160} tii[9,24] := {40} tii[9,25] := {121} tii[9,26] := {53} tii[9,27] := {72} tii[9,28] := {58} tii[9,29] := {154} tii[9,30] := {102} tii[9,31] := {31} tii[9,32] := {122} tii[9,33] := {162} tii[9,34] := {38} tii[9,35] := {98} tii[9,36] := {119} tii[9,37] := {152} tii[9,38] := {59} tii[9,39] := {143} tii[9,40] := {156} tii[9,41] := {90} tii[9,42] := {145} tii[9,43] := {19} tii[9,44] := {165} tii[9,45] := {110} tii[9,46] := {127} tii[9,47] := {34} tii[9,48] := {144} tii[9,49] := {54} tii[9,50] := {15} tii[9,51] := {150} tii[9,52] := {16} tii[9,53] := {116} tii[9,54] := {117} tii[9,55] := {30} tii[9,56] := {134} tii[9,57] := {135} tii[9,58] := {32} tii[9,59] := {51} tii[9,60] := {17} tii[9,61] := {151} tii[9,62] := {118} tii[9,63] := {91} tii[9,64] := {27} tii[9,65] := {131} tii[9,66] := {68} tii[9,67] := {24} tii[9,68] := {92} tii[9,69] := {45} tii[9,70] := {49} tii[9,71] := {146} tii[9,72] := {13} tii[9,73] := {65} tii[9,74] := {29} tii[9,75] := {66} tii[9,76] := {87} tii[9,77] := {48} tii[9,78] := {129} tii[9,79] := {70} tii[9,80] := {28} tii[9,81] := {93} tii[9,82] := {108} tii[9,83] := {69} tii[9,84] := {6} tii[9,85] := {12} tii[9,86] := {26} tii[9,87] := {84} tii[9,88] := {25} tii[9,89] := {4} tii[9,90] := {106} tii[9,91] := {85} tii[9,92] := {44} tii[9,93] := {11} tii[9,94] := {86} tii[9,95] := {5} tii[9,96] := {125} tii[9,97] := {67} tii[9,98] := {141} tii[9,99] := {89} tii[9,100] := {164} tii[9,101] := {115} tii[9,102] := {3} tii[9,103] := {133} tii[9,104] := {7} tii[9,105] := {148} tii[9,106] := {120} tii[9,107] := {83} tii[9,108] := {60} tii[9,109] := {94} tii[9,110] := {21} tii[9,111] := {149} tii[9,112] := {159} tii[9,113] := {82} tii[9,114] := {18} tii[9,115] := {104} tii[9,116] := {99} tii[9,117] := {166} tii[9,118] := {61} tii[9,119] := {123} tii[9,120] := {37} tii[9,121] := {138} tii[9,122] := {20} tii[9,123] := {153} tii[9,124] := {80} tii[9,125] := {36} tii[9,126] := {57} tii[9,127] := {139} tii[9,128] := {50} tii[9,129] := {95} tii[9,130] := {79} tii[9,131] := {39} tii[9,132] := {140} tii[9,133] := {56} tii[9,134] := {163} tii[9,135] := {167} tii[9,136] := {101} tii[9,137] := {81} tii[9,138] := {55} tii[9,139] := {8} tii[9,140] := {128} tii[9,141] := {77} tii[9,142] := {157} tii[9,143] := {35} tii[9,144] := {100} tii[9,145] := {76} tii[9,146] := {73} tii[9,147] := {161} tii[9,148] := {52} tii[9,149] := {111} tii[9,150] := {130} tii[9,151] := {46} tii[9,152] := {112} tii[9,153] := {147} tii[9,154] := {14} tii[9,155] := {113} tii[9,156] := {114} tii[9,157] := {158} tii[9,158] := {2} tii[9,159] := {47} tii[9,160] := {23} tii[9,161] := {1} tii[9,162] := {9} tii[9,163] := {78} tii[9,164] := {33} tii[9,165] := {10} tii[9,166] := {137} tii[9,167] := {103} tii[9,168] := {0} cell#7 , |C| = 168 special orbit = 2*A2 special rep = phi[168,21] , dim = 168 cell rep = phi[168,21] TII depth = 3 TII multiplicity polynomial = 168*X TII subcells: tii[9,1] := {75} tii[9,2] := {109} tii[9,3] := {96} tii[9,4] := {136} tii[9,5] := {74} tii[9,6] := {97} tii[9,7] := {43} tii[9,8] := {88} tii[9,9] := {22} tii[9,10] := {41} tii[9,11] := {62} tii[9,12] := {63} tii[9,13] := {107} tii[9,14] := {42} tii[9,15] := {64} tii[9,16] := {124} tii[9,17] := {105} tii[9,18] := {155} tii[9,19] := {142} tii[9,20] := {126} tii[9,21] := {132} tii[9,22] := {71} tii[9,23] := {160} tii[9,24] := {40} tii[9,25] := {121} tii[9,26] := {53} tii[9,27] := {72} tii[9,28] := {58} tii[9,29] := {154} tii[9,30] := {102} tii[9,31] := {31} tii[9,32] := {122} tii[9,33] := {162} tii[9,34] := {38} tii[9,35] := {98} tii[9,36] := {119} tii[9,37] := {152} tii[9,38] := {59} tii[9,39] := {143} tii[9,40] := {156} tii[9,41] := {90} tii[9,42] := {145} tii[9,43] := {19} tii[9,44] := {165} tii[9,45] := {110} tii[9,46] := {127} tii[9,47] := {34} tii[9,48] := {144} tii[9,49] := {54} tii[9,50] := {15} tii[9,51] := {150} tii[9,52] := {16} tii[9,53] := {116} tii[9,54] := {117} tii[9,55] := {30} tii[9,56] := {134} tii[9,57] := {135} tii[9,58] := {32} tii[9,59] := {51} tii[9,60] := {17} tii[9,61] := {151} tii[9,62] := {118} tii[9,63] := {91} tii[9,64] := {27} tii[9,65] := {131} tii[9,66] := {68} tii[9,67] := {24} tii[9,68] := {92} tii[9,69] := {45} tii[9,70] := {49} tii[9,71] := {146} tii[9,72] := {13} tii[9,73] := {65} tii[9,74] := {29} tii[9,75] := {66} tii[9,76] := {87} tii[9,77] := {48} tii[9,78] := {129} tii[9,79] := {70} tii[9,80] := {28} tii[9,81] := {93} tii[9,82] := {108} tii[9,83] := {69} tii[9,84] := {6} tii[9,85] := {12} tii[9,86] := {26} tii[9,87] := {84} tii[9,88] := {25} tii[9,89] := {4} tii[9,90] := {106} tii[9,91] := {85} tii[9,92] := {44} tii[9,93] := {11} tii[9,94] := {86} tii[9,95] := {5} tii[9,96] := {125} tii[9,97] := {67} tii[9,98] := {141} tii[9,99] := {89} tii[9,100] := {164} tii[9,101] := {115} tii[9,102] := {3} tii[9,103] := {133} tii[9,104] := {7} tii[9,105] := {148} tii[9,106] := {120} tii[9,107] := {83} tii[9,108] := {60} tii[9,109] := {94} tii[9,110] := {21} tii[9,111] := {149} tii[9,112] := {159} tii[9,113] := {82} tii[9,114] := {18} tii[9,115] := {104} tii[9,116] := {99} tii[9,117] := {166} tii[9,118] := {61} tii[9,119] := {123} tii[9,120] := {37} tii[9,121] := {138} tii[9,122] := {20} tii[9,123] := {153} tii[9,124] := {80} tii[9,125] := {36} tii[9,126] := {57} tii[9,127] := {139} tii[9,128] := {50} tii[9,129] := {95} tii[9,130] := {79} tii[9,131] := {39} tii[9,132] := {140} tii[9,133] := {56} tii[9,134] := {163} tii[9,135] := {167} tii[9,136] := {101} tii[9,137] := {81} tii[9,138] := {55} tii[9,139] := {8} tii[9,140] := {128} tii[9,141] := {77} tii[9,142] := {157} tii[9,143] := {35} tii[9,144] := {100} tii[9,145] := {76} tii[9,146] := {73} tii[9,147] := {161} tii[9,148] := {52} tii[9,149] := {111} tii[9,150] := {130} tii[9,151] := {46} tii[9,152] := {112} tii[9,153] := {147} tii[9,154] := {14} tii[9,155] := {113} tii[9,156] := {114} tii[9,157] := {158} tii[9,158] := {2} tii[9,159] := {47} tii[9,160] := {23} tii[9,161] := {1} tii[9,162] := {9} tii[9,163] := {78} tii[9,164] := {33} tii[9,165] := {10} tii[9,166] := {137} tii[9,167] := {103} tii[9,168] := {0} cell#8 , |C| = 225 special orbit = A2+A1 special rep = phi[120,25] , dim = 120 cell rep = phi[105,26]+phi[120,25] TII depth = 3 TII multiplicity polynomial = 15*X+105*X^2 TII subcells: tii[6,1] := {158} tii[6,2] := {119} tii[6,3] := {48, 220} tii[6,4] := {108, 200} tii[6,5] := {23, 222} tii[6,6] := {45, 218} tii[6,7] := {73, 187} tii[6,8] := {74, 209} tii[6,9] := {101, 204} tii[6,10] := {133, 186} tii[6,11] := {75, 207} tii[6,12] := {47, 191} tii[6,13] := {136, 172} tii[6,14] := {76, 208} tii[6,15] := {147, 160} tii[6,16] := {134, 170} tii[6,17] := {33, 203} tii[6,18] := {130, 181} tii[6,19] := {131} tii[6,20] := {60, 182} tii[6,21] := {156, 157} tii[6,22] := {89, 159} tii[6,23] := {132, 183} tii[6,24] := {4, 224} tii[6,25] := {34, 153} tii[6,26] := {12, 223} tii[6,27] := {35, 219} tii[6,28] := {94} tii[6,29] := {37, 221} tii[6,30] := {62, 174} tii[6,31] := {65} tii[6,32] := {91, 152} tii[6,33] := {66, 214} tii[6,34] := {95, 201} tii[6,35] := {30, 196} tii[6,36] := {58, 175} tii[6,37] := {31, 154} tii[6,38] := {64, 210} tii[6,39] := {87, 143} tii[6,40] := {88} tii[6,41] := {93, 193} tii[6,42] := {117, 118} tii[6,43] := {90, 144} tii[6,44] := {120, 173} tii[6,45] := {145, 146} tii[6,46] := {115, 190} tii[6,47] := {10, 111} tii[6,48] := {16, 83} tii[6,49] := {25, 212} tii[6,50] := {6, 168} tii[6,51] := {39, 112} tii[6,52] := {50, 197} tii[6,53] := {40, 56} tii[6,54] := {138} tii[6,55] := {28, 178} tii[6,56] := {18, 189} tii[6,57] := {77, 213} tii[6,58] := {78, 179} tii[6,59] := {55, 198} tii[6,60] := {67, 85} tii[6,61] := {109, 199} tii[6,62] := {107} tii[6,63] := {42, 166} tii[6,64] := {96, 114} tii[6,65] := {84, 215} tii[6,66] := {139, 180} tii[6,67] := {26, 68} tii[6,68] := {71} tii[6,69] := {7, 163} tii[6,70] := {21, 217} tii[6,71] := {53, 97} tii[6,72] := {27, 185} tii[6,73] := {43} tii[6,74] := {46, 164} tii[6,75] := {44, 205} tii[6,76] := {22} tii[6,77] := {72, 188} tii[6,78] := {81, 125} tii[6,79] := {102, 165} tii[6,80] := {54, 206} tii[6,81] := {110, 150} tii[6,82] := {82, 216} tii[6,83] := {51, 167} tii[6,84] := {11, 24} tii[6,85] := {103, 192} tii[6,86] := {137, 171} tii[6,87] := {104, 148} tii[6,88] := {32, 49} tii[6,89] := {59, 79} tii[6,90] := {105, 194} tii[6,91] := {149, 161} tii[6,92] := {36, 106} tii[6,93] := {122, 184} tii[6,94] := {116, 129} tii[6,95] := {100, 202} tii[6,96] := {20, 135} tii[6,97] := {9, 98} tii[6,98] := {0, 123} tii[6,99] := {29, 128} tii[6,100] := {5, 151} tii[6,101] := {13, 124} tii[6,102] := {38} tii[6,103] := {57, 155} tii[6,104] := {17, 176} tii[6,105] := {63, 126} tii[6,106] := {86, 177} tii[6,107] := {41, 195} tii[6,108] := {14, 127} tii[6,109] := {70, 121} tii[6,110] := {15, 211} tii[6,111] := {3, 92} tii[6,112] := {61, 169} tii[6,113] := {1, 140} tii[6,114] := {80} tii[6,115] := {19, 141} tii[6,116] := {8} tii[6,117] := {69, 142} tii[6,118] := {113, 162} tii[6,119] := {52, 99} tii[6,120] := {2} cell#9 , |C| = 21 special orbit = 3*A1b special rep = phi[21,36] , dim = 21 cell rep = phi[21,36] TII depth = 2 TII multiplicity polynomial = 21*X TII subcells: tii[4,1] := {11} tii[4,2] := {17} tii[4,3] := {13} tii[4,4] := {18} tii[4,5] := {15} tii[4,6] := {12} tii[4,7] := {6} tii[4,8] := {5} tii[4,9] := {20} tii[4,10] := {19} tii[4,11] := {16} tii[4,12] := {14} tii[4,13] := {7} tii[4,14] := {0} tii[4,15] := {1} tii[4,16] := {8} tii[4,17] := {2} tii[4,18] := {3} tii[4,19] := {9} tii[4,20] := {10} tii[4,21] := {4} cell#10 , |C| = 27 special orbit = 2*A1 special rep = phi[27,37] , dim = 27 cell rep = phi[27,37] TII depth = 2 TII multiplicity polynomial = 27*X TII subcells: tii[3,1] := {6} tii[3,2] := {9} tii[3,3] := {11} tii[3,4] := {12} tii[3,5] := {13} tii[3,6] := {16} tii[3,7] := {5} tii[3,8] := {7} tii[3,9] := {4} tii[3,10] := {26} tii[3,11] := {15} tii[3,12] := {17} tii[3,13] := {20} tii[3,14] := {22} tii[3,15] := {24} tii[3,16] := {18} tii[3,17] := {3} tii[3,18] := {21} tii[3,19] := {23} tii[3,20] := {8} tii[3,21] := {2} tii[3,22] := {25} tii[3,23] := {14} tii[3,24] := {1} tii[3,25] := {19} tii[3,26] := {10} tii[3,27] := {0} cell#11 , |C| = 91 special orbit = A2 special rep = phi[56,30] , dim = 56 cell rep = phi[35,31]+phi[56,30] TII depth = 2 TII multiplicity polynomial = 21*X+35*X^2 TII subcells: tii[5,1] := {69, 70} tii[5,2] := {75, 76} tii[5,3] := {60, 61} tii[5,4] := {44, 45} tii[5,5] := {81, 82} tii[5,6] := {73, 74} tii[5,7] := {56, 57} tii[5,8] := {54, 55} tii[5,9] := {36, 37} tii[5,10] := {23, 24} tii[5,11] := {90} tii[5,12] := {88, 89} tii[5,13] := {87} tii[5,14] := {79} tii[5,15] := {58, 59} tii[5,16] := {85, 86} tii[5,17] := {80} tii[5,18] := {77, 78} tii[5,19] := {40, 41} tii[5,20] := {68} tii[5,21] := {51} tii[5,22] := {62, 63} tii[5,23] := {67} tii[5,24] := {52, 53} tii[5,25] := {46, 47} tii[5,26] := {50} tii[5,27] := {29, 30} tii[5,28] := {35} tii[5,29] := {22} tii[5,30] := {66} tii[5,31] := {38, 39} tii[5,32] := {49} tii[5,33] := {25, 26} tii[5,34] := {14, 15} tii[5,35] := {34} tii[5,36] := {21} tii[5,37] := {13} tii[5,38] := {48} tii[5,39] := {71, 72} tii[5,40] := {33} tii[5,41] := {42, 43} tii[5,42] := {20} tii[5,43] := {16, 17} tii[5,44] := {12} tii[5,45] := {4} tii[5,46] := {5} tii[5,47] := {83, 84} tii[5,48] := {27, 28} tii[5,49] := {64, 65} tii[5,50] := {18, 19} tii[5,51] := {6, 7} tii[5,52] := {31, 32} tii[5,53] := {2, 3} tii[5,54] := {10, 11} tii[5,55] := {8, 9} tii[5,56] := {0, 1} cell#12 , |C| = 27 special orbit = 2*A1 special rep = phi[27,37] , dim = 27 cell rep = phi[27,37] TII depth = 2 TII multiplicity polynomial = 27*X TII subcells: tii[3,1] := {3} tii[3,2] := {6} tii[3,3] := {13} tii[3,4] := {11} tii[3,5] := {16} tii[3,6] := {12} tii[3,7] := {1} tii[3,8] := {4} tii[3,9] := {10} tii[3,10] := {15} tii[3,11] := {17} tii[3,12] := {22} tii[3,13] := {18} tii[3,14] := {14} tii[3,15] := {5} tii[3,16] := {23} tii[3,17] := {0} tii[3,18] := {26} tii[3,19] := {24} tii[3,20] := {7} tii[3,21] := {19} tii[3,22] := {20} tii[3,23] := {8} tii[3,24] := {21} tii[3,25] := {9} tii[3,26] := {2} tii[3,27] := {25} cell#13 , |C| = 27 special orbit = 2*A1 special rep = phi[27,37] , dim = 27 cell rep = phi[27,37] TII depth = 2 TII multiplicity polynomial = 27*X TII subcells: tii[3,1] := {3} tii[3,2] := {6} tii[3,3] := {13} tii[3,4] := {11} tii[3,5] := {16} tii[3,6] := {12} tii[3,7] := {1} tii[3,8] := {4} tii[3,9] := {10} tii[3,10] := {15} tii[3,11] := {17} tii[3,12] := {22} tii[3,13] := {18} tii[3,14] := {14} tii[3,15] := {5} tii[3,16] := {23} tii[3,17] := {0} tii[3,18] := {26} tii[3,19] := {24} tii[3,20] := {7} tii[3,21] := {19} tii[3,22] := {20} tii[3,23] := {8} tii[3,24] := {21} tii[3,25] := {9} tii[3,26] := {2} tii[3,27] := {25} cell#14 , |C| = 7 special orbit = A1 special rep = phi[7,46] , dim = 7 cell rep = phi[7,46] TII depth = 1 TII multiplicity polynomial = 7*X TII subcells: tii[2,1] := {6} tii[2,2] := {5} tii[2,3] := {4} tii[2,4] := {3} tii[2,5] := {2} tii[2,6] := {1} tii[2,7] := {0} cell#15 , |C| = 1 special orbit = 0 special rep = phi[1,63] , dim = 1 cell rep = phi[1,63] TII depth = 1 TII multiplicity polynomial = X TII subcells: tii[1,1] := {0} cell#16 , |C| = 1 special orbit = 0 special rep = phi[1,63] , dim = 1 cell rep = phi[1,63] TII depth = 1 TII multiplicity polynomial = X TII subcells: tii[1,1] := {0}