TII subcells for the E7sc(R) x E7ad(D6xA1) block of E7sc # cell#0 , |C| = 1 special orbit = E7 special rep = phi[1,0] , dim = 1 cell rep = phi[1,0] TII depth = 1 TII multiplicity polynomial = X TII subcells: tii[35,1] := {0} cell#1 , |C| = 7 special orbit = E7(a1) special rep = phi[7,1] , dim = 7 cell rep = phi[7,1] TII depth = 1 TII multiplicity polynomial = 7*X TII subcells: tii[34,1] := {0} tii[34,2] := {4} tii[34,3] := {1} tii[34,4] := {2} tii[34,5] := {3} tii[34,6] := {5} tii[34,7] := {6} cell#2 , |C| = 27 special orbit = E7(a2) special rep = phi[27,2] , dim = 27 cell rep = phi[27,2] TII depth = 2 TII multiplicity polynomial = 27*X TII subcells: tii[33,1] := {10} tii[33,2] := {18} tii[33,3] := {20} tii[33,4] := {3} tii[33,5] := {15} tii[33,6] := {0} tii[33,7] := {23} tii[33,8] := {6} tii[33,9] := {24} tii[33,10] := {1} tii[33,11] := {25} tii[33,12] := {26} tii[33,13] := {21} tii[33,14] := {19} tii[33,15] := {16} tii[33,16] := {14} tii[33,17] := {17} tii[33,18] := {22} tii[33,19] := {5} tii[33,20] := {9} tii[33,21] := {13} tii[33,22] := {11} tii[33,23] := {8} tii[33,24] := {12} tii[33,25] := {2} tii[33,26] := {7} tii[33,27] := {4} cell#3 , |C| = 27 special orbit = E7(a2) special rep = phi[27,2] , dim = 27 cell rep = phi[27,2] TII depth = 2 TII multiplicity polynomial = 27*X TII subcells: tii[33,1] := {7} tii[33,2] := {18} tii[33,3] := {20} tii[33,4] := {3} tii[33,5] := {14} tii[33,6] := {2} tii[33,7] := {23} tii[33,8] := {8} tii[33,9] := {24} tii[33,10] := {17} tii[33,11] := {25} tii[33,12] := {26} tii[33,13] := {21} tii[33,14] := {19} tii[33,15] := {15} tii[33,16] := {12} tii[33,17] := {16} tii[33,18] := {22} tii[33,19] := {0} tii[33,20] := {1} tii[33,21] := {4} tii[33,22] := {10} tii[33,23] := {6} tii[33,24] := {11} tii[33,25] := {5} tii[33,26] := {9} tii[33,27] := {13} cell#4 , |C| = 91 special orbit = E7(a3) special rep = phi[56,3] , dim = 56 cell rep = phi[35,4]+phi[56,3] TII depth = 3 TII multiplicity polynomial = 35*X^2+21*X TII subcells: tii[32,1] := {1, 90} tii[32,2] := {51, 81} tii[32,3] := {10, 54} tii[32,4] := {0, 89} tii[32,5] := {27, 46} tii[32,6] := {36, 75} tii[32,7] := {2, 88} tii[32,8] := {47, 66} tii[32,9] := {15, 85} tii[32,10] := {68, 79} tii[32,11] := {25} tii[32,12] := {6} tii[32,13] := {4, 45} tii[32,14] := {12} tii[32,15] := {21, 64} tii[32,16] := {22} tii[32,17] := {33} tii[32,18] := {5, 78} tii[32,19] := {43} tii[32,20] := {32} tii[32,21] := {40} tii[32,22] := {9, 87} tii[32,23] := {52} tii[32,24] := {17, 86} tii[32,25] := {61} tii[32,26] := {70} tii[32,27] := {26, 84} tii[32,28] := {19} tii[32,29] := {28, 71} tii[32,30] := {29} tii[32,31] := {3, 82} tii[32,32] := {18, 63} tii[32,33] := {39} tii[32,34] := {30, 72} tii[32,35] := {50} tii[32,36] := {37} tii[32,37] := {38, 57} tii[32,38] := {7, 83} tii[32,39] := {48} tii[32,40] := {49, 67} tii[32,41] := {16, 80} tii[32,42] := {60} tii[32,43] := {58} tii[32,44] := {59, 74} tii[32,45] := {69} tii[32,46] := {76} tii[32,47] := {14, 35} tii[32,48] := {24, 44} tii[32,49] := {34, 55} tii[32,50] := {11, 56} tii[32,51] := {23, 65} tii[32,52] := {13, 73} tii[32,53] := {20, 42} tii[32,54] := {31, 53} tii[32,55] := {41, 62} tii[32,56] := {8, 77} cell#5 , |C| = 91 special orbit = E7(a3) special rep = phi[56,3] , dim = 56 cell rep = phi[35,4]+phi[56,3] TII depth = 3 TII multiplicity polynomial = 35*X^2+21*X TII subcells: tii[32,1] := {70, 90} tii[32,2] := {54, 82} tii[32,3] := {4, 56} tii[32,4] := {60, 89} tii[32,5] := {25, 26} tii[32,6] := {38, 77} tii[32,7] := {46, 88} tii[32,8] := {50, 51} tii[32,9] := {17, 85} tii[32,10] := {71, 72} tii[32,11] := {37} tii[32,12] := {16} tii[32,13] := {0, 43} tii[32,14] := {22} tii[32,15] := {10, 65} tii[32,16] := {36} tii[32,17] := {49} tii[32,18] := {1, 78} tii[32,19] := {62} tii[32,20] := {21} tii[32,21] := {35} tii[32,22] := {33, 87} tii[32,23] := {45} tii[32,24] := {20, 86} tii[32,25] := {58} tii[32,26] := {68} tii[32,27] := {34, 84} tii[32,28] := {8} tii[32,29] := {23, 74} tii[32,30] := {19} tii[32,31] := {2, 81} tii[32,32] := {12, 67} tii[32,33] := {31} tii[32,34] := {24, 75} tii[32,35] := {47} tii[32,36] := {32} tii[32,37] := {39, 40} tii[32,38] := {7, 83} tii[32,39] := {48} tii[32,40] := {52, 53} tii[32,41] := {18, 80} tii[32,42] := {61} tii[32,43] := {59} tii[32,44] := {63, 64} tii[32,45] := {69} tii[32,46] := {76} tii[32,47] := {6, 30} tii[32,48] := {13, 44} tii[32,49] := {27, 57} tii[32,50] := {3, 55} tii[32,51] := {11, 66} tii[32,52] := {5, 73} tii[32,53] := {14, 15} tii[32,54] := {28, 29} tii[32,55] := {41, 42} tii[32,56] := {9, 79} cell#6 , |C| = 225 special orbit = E6(a1) special rep = phi[120,4] , dim = 120 cell rep = phi[105,5]+phi[120,4] TII depth = 4 TII multiplicity polynomial = 105*X^2+15*X TII subcells: tii[30,1] := {183} tii[30,2] := {77, 173} tii[30,3] := {27, 128} tii[30,4] := {100, 203} tii[30,5] := {167} tii[30,6] := {98} tii[30,7] := {145, 215} tii[30,8] := {180, 221} tii[30,9] := {116, 144} tii[30,10] := {43, 198} tii[30,11] := {113, 143} tii[30,12] := {62, 154} tii[30,13] := {155, 177} tii[30,14] := {23, 185} tii[30,15] := {88, 121} tii[30,16] := {20, 152} tii[30,17] := {132} tii[30,18] := {169, 189} tii[30,19] := {110, 111} tii[30,20] := {64, 153} tii[30,21] := {87, 122} tii[30,22] := {184, 200} tii[30,23] := {109, 142} tii[30,24] := {195, 207} tii[30,25] := {107, 179} tii[30,26] := {67, 205} tii[30,27] := {82, 120} tii[30,28] := {93, 211} tii[30,29] := {57, 141} tii[30,30] := {34, 78} tii[30,31] := {117, 216} tii[30,32] := {33, 159} tii[30,33] := {31, 80} tii[30,34] := {56, 175} tii[30,35] := {138, 220} tii[30,36] := {79, 188} tii[30,37] := {157, 223} tii[30,38] := {129, 191} tii[30,39] := {42, 197} tii[30,40] := {52, 95} tii[30,41] := {151} tii[30,42] := {53, 187} tii[30,43] := {4, 126} tii[30,44] := {73, 74} tii[30,45] := {148, 201} tii[30,46] := {130} tii[30,47] := {76, 196} tii[30,48] := {29, 127} tii[30,49] := {51, 96} tii[30,50] := {166, 208} tii[30,51] := {103, 202} tii[30,52] := {104} tii[30,53] := {72, 119} tii[30,54] := {182, 213} tii[30,55] := {46, 48} tii[30,56] := {12, 150} tii[30,57] := {124, 209} tii[30,58] := {71} tii[30,59] := {11, 99} tii[30,60] := {26, 168} tii[30,61] := {25, 68} tii[30,62] := {125, 210} tii[30,63] := {146, 214} tii[30,64] := {49} tii[30,65] := {47, 174} tii[30,66] := {45, 94} tii[30,67] := {147, 212} tii[30,68] := {165, 218} tii[30,69] := {2, 123} tii[30,70] := {163, 219} tii[30,71] := {10, 139} tii[30,72] := {164, 217} tii[30,73] := {181, 222} tii[30,74] := {194, 224} tii[30,75] := {137, 162} tii[30,76] := {90, 161} tii[30,77] := {40, 136} tii[30,78] := {65, 178} tii[30,79] := {91} tii[30,80] := {22, 115} tii[30,81] := {89, 192} tii[30,82] := {41, 92} tii[30,83] := {114, 199} tii[30,84] := {8, 172} tii[30,85] := {1, 156} tii[30,86] := {9, 135} tii[30,87] := {37, 171} tii[30,88] := {108} tii[30,89] := {61, 186} tii[30,90] := {7, 134} tii[30,91] := {85} tii[30,92] := {84, 190} tii[30,93] := {21, 112} tii[30,94] := {38, 170} tii[30,95] := {39, 133} tii[30,96] := {63, 176} tii[30,97] := {86, 160} tii[30,98] := {17, 105} tii[30,99] := {83, 193} tii[30,100] := {59} tii[30,101] := {106, 204} tii[30,102] := {6, 81} tii[30,103] := {131, 206} tii[30,104] := {18, 60} tii[30,105] := {19, 55} tii[30,106] := {32, 36} tii[30,107] := {15, 44} tii[30,108] := {30, 69} tii[30,109] := {16, 58} tii[30,110] := {54, 97} tii[30,111] := {0, 102} tii[30,112] := {5, 75} tii[30,113] := {13, 149} tii[30,114] := {28, 158} tii[30,115] := {14, 101} tii[30,116] := {50, 140} tii[30,117] := {3, 70} tii[30,118] := {24, 118} tii[30,119] := {66} tii[30,120] := {35} cell#7 , |C| = 189 special orbit = E7(a4) special rep = phi[189,5] , dim = 189 cell rep = phi[189,5] TII depth = 5 TII multiplicity polynomial = 189*X TII subcells: tii[29,1] := {188} tii[29,2] := {168} tii[29,3] := {179} tii[29,4] := {140} tii[29,5] := {27} tii[29,6] := {49} tii[29,7] := {161} tii[29,8] := {187} tii[29,9] := {113} tii[29,10] := {176} tii[29,11] := {60} tii[29,12] := {104} tii[29,13] := {185} tii[29,14] := {118} tii[29,15] := {184} tii[29,16] := {159} tii[29,17] := {173} tii[29,18] := {1} tii[29,19] := {92} tii[29,20] := {181} tii[29,21] := {13} tii[29,22] := {150} tii[29,23] := {126} tii[29,24] := {183} tii[29,25] := {175} tii[29,26] := {158} tii[29,27] := {39} tii[29,28] := {166} tii[29,29] := {174} tii[29,30] := {12} tii[29,31] := {87} tii[29,32] := {180} tii[29,33] := {172} tii[29,34] := {72} tii[29,35] := {135} tii[29,36] := {162} tii[29,37] := {56} tii[29,38] := {107} tii[29,39] := {144} tii[29,40] := {96} tii[29,41] := {71} tii[29,42] := {148} tii[29,43] := {93} tii[29,44] := {156} tii[29,45] := {65} tii[29,46] := {6} tii[29,47] := {171} tii[29,48] := {186} tii[29,49] := {10} tii[29,50] := {46} tii[29,51] := {131} tii[29,52] := {25} tii[29,53] := {98} tii[29,54] := {164} tii[29,55] := {85} tii[29,56] := {139} tii[29,57] := {182} tii[29,58] := {20} tii[29,59] := {57} tii[29,60] := {55} tii[29,61] := {154} tii[29,62] := {76} tii[29,63] := {34} tii[29,64] := {177} tii[29,65] := {163} tii[29,66] := {38} tii[29,67] := {152} tii[29,68] := {147} tii[29,69] := {79} tii[29,70] := {90} tii[29,71] := {167} tii[29,72] := {59} tii[29,73] := {74} tii[29,74] := {48} tii[29,75] := {137} tii[29,76] := {42} tii[29,77] := {130} tii[29,78] := {125} tii[29,79] := {80} tii[29,80] := {68} tii[29,81] := {155} tii[29,82] := {138} tii[29,83] := {67} tii[29,84] := {151} tii[29,85] := {61} tii[29,86] := {95} tii[29,87] := {142} tii[29,88] := {112} tii[29,89] := {81} tii[29,90] := {124} tii[29,91] := {4} tii[29,92] := {145} tii[29,93] := {165} tii[29,94] := {8} tii[29,95] := {21} tii[29,96] := {170} tii[29,97] := {129} tii[29,98] := {153} tii[29,99] := {16} tii[29,100] := {52} tii[29,101] := {146} tii[29,102] := {29} tii[29,103] := {136} tii[29,104] := {70} tii[29,105] := {114} tii[29,106] := {82} tii[29,107] := {105} tii[29,108] := {31} tii[29,109] := {3} tii[29,110] := {178} tii[29,111] := {5} tii[29,112] := {133} tii[29,113] := {41} tii[29,114] := {66} tii[29,115] := {9} tii[29,116] := {106} tii[29,117] := {58} tii[29,118] := {169} tii[29,119] := {115} tii[29,120] := {14} tii[29,121] := {19} tii[29,122] := {127} tii[29,123] := {88} tii[29,124] := {18} tii[29,125] := {143} tii[29,126] := {101} tii[29,127] := {24} tii[29,128] := {32} tii[29,129] := {50} tii[29,130] := {122} tii[29,131] := {17} tii[29,132] := {36} tii[29,133] := {149} tii[29,134] := {73} tii[29,135] := {157} tii[29,136] := {30} tii[29,137] := {100} tii[29,138] := {132} tii[29,139] := {23} tii[29,140] := {45} tii[29,141] := {123} tii[29,142] := {37} tii[29,143] := {111} tii[29,144] := {117} tii[29,145] := {83} tii[29,146] := {94} tii[29,147] := {108} tii[29,148] := {119} tii[29,149] := {128} tii[29,150] := {134} tii[29,151] := {75} tii[29,152] := {116} tii[29,153] := {110} tii[29,154] := {15} tii[29,155] := {77} tii[29,156] := {99} tii[29,157] := {86} tii[29,158] := {26} tii[29,159] := {109} tii[29,160] := {33} tii[29,161] := {120} tii[29,162] := {121} tii[29,163] := {64} tii[29,164] := {51} tii[29,165] := {40} tii[29,166] := {97} tii[29,167] := {69} tii[29,168] := {102} tii[29,169] := {54} tii[29,170] := {103} tii[29,171] := {89} tii[29,172] := {0} tii[29,173] := {2} tii[29,174] := {7} tii[29,175] := {11} tii[29,176] := {22} tii[29,177] := {28} tii[29,178] := {160} tii[29,179] := {43} tii[29,180] := {35} tii[29,181] := {62} tii[29,182] := {91} tii[29,183] := {47} tii[29,184] := {78} tii[29,185] := {44} tii[29,186] := {53} tii[29,187] := {63} tii[29,188] := {141} tii[29,189] := {84} cell#8 , |C| = 168 special orbit = D5+A1 special rep = phi[168,6] , dim = 168 cell rep = phi[168,6] TII depth = 4 TII multiplicity polynomial = 168*X TII subcells: tii[27,1] := {91} tii[27,2] := {57} tii[27,3] := {142} tii[27,4] := {131} tii[27,5] := {68} tii[27,6] := {114} tii[27,7] := {157} tii[27,8] := {166} tii[27,9] := {97} tii[27,10] := {81} tii[27,11] := {93} tii[27,12] := {79} tii[27,13] := {156} tii[27,14] := {94} tii[27,15] := {45} tii[27,16] := {161} tii[27,17] := {20} tii[27,18] := {92} tii[27,19] := {165} tii[27,20] := {167} tii[27,21] := {155} tii[27,22] := {123} tii[27,23] := {74} tii[27,24] := {88} tii[27,25] := {27} tii[27,26] := {133} tii[27,27] := {105} tii[27,28] := {56} tii[27,29] := {135} tii[27,30] := {119} tii[27,31] := {134} tii[27,32] := {143} tii[27,33] := {55} tii[27,34] := {104} tii[27,35] := {103} tii[27,36] := {24} tii[27,37] := {118} tii[27,38] := {39} tii[27,39] := {69} tii[27,40] := {152} tii[27,41] := {70} tii[27,42] := {7} tii[27,43] := {26} tii[27,44] := {132} tii[27,45] := {102} tii[27,46] := {160} tii[27,47] := {144} tii[27,48] := {40} tii[27,49] := {164} tii[27,50] := {83} tii[27,51] := {141} tii[27,52] := {13} tii[27,53] := {100} tii[27,54] := {6} tii[27,55] := {37} tii[27,56] := {2} tii[27,57] := {116} tii[27,58] := {98} tii[27,59] := {150} tii[27,60] := {151} tii[27,61] := {84} tii[27,62] := {14} tii[27,63] := {115} tii[27,64] := {158} tii[27,65] := {159} tii[27,66] := {129} tii[27,67] := {140} tii[27,68] := {163} tii[27,69] := {162} tii[27,70] := {149} tii[27,71] := {112} tii[27,72] := {66} tii[27,73] := {139} tii[27,74] := {127} tii[27,75] := {48} tii[27,76] := {50} tii[27,77] := {128} tii[27,78] := {138} tii[27,79] := {80} tii[27,80] := {36} tii[27,81] := {148} tii[27,82] := {113} tii[27,83] := {63} tii[27,84] := {47} tii[27,85] := {33} tii[27,86] := {126} tii[27,87] := {30} tii[27,88] := {109} tii[27,89] := {60} tii[27,90] := {19} tii[27,91] := {111} tii[27,92] := {77} tii[27,93] := {124} tii[27,94] := {32} tii[27,95] := {31} tii[27,96] := {96} tii[27,97] := {61} tii[27,98] := {137} tii[27,99] := {21} tii[27,100] := {76} tii[27,101] := {110} tii[27,102] := {11} tii[27,103] := {62} tii[27,104] := {75} tii[27,105] := {125} tii[27,106] := {108} tii[27,107] := {42} tii[27,108] := {136} tii[27,109] := {122} tii[27,110] := {58} tii[27,111] := {89} tii[27,112] := {147} tii[27,113] := {29} tii[27,114] := {107} tii[27,115] := {43} tii[27,116] := {154} tii[27,117] := {18} tii[27,118] := {59} tii[27,119] := {90} tii[27,120] := {121} tii[27,121] := {16} tii[27,122] := {106} tii[27,123] := {28} tii[27,124] := {1} tii[27,125] := {145} tii[27,126] := {41} tii[27,127] := {153} tii[27,128] := {120} tii[27,129] := {4} tii[27,130] := {146} tii[27,131] := {87} tii[27,132] := {53} tii[27,133] := {15} tii[27,134] := {71} tii[27,135] := {8} tii[27,136] := {72} tii[27,137] := {52} tii[27,138] := {85} tii[27,139] := {54} tii[27,140] := {3} tii[27,141] := {38} tii[27,142] := {101} tii[27,143] := {86} tii[27,144] := {117} tii[27,145] := {23} tii[27,146] := {0} tii[27,147] := {99} tii[27,148] := {130} tii[27,149] := {82} tii[27,150] := {67} tii[27,151] := {51} tii[27,152] := {34} tii[27,153] := {49} tii[27,154] := {12} tii[27,155] := {22} tii[27,156] := {65} tii[27,157] := {35} tii[27,158] := {95} tii[27,159] := {78} tii[27,160] := {64} tii[27,161] := {44} tii[27,162] := {46} tii[27,163] := {5} tii[27,164] := {73} tii[27,165] := {10} tii[27,166] := {17} tii[27,167] := {9} tii[27,168] := {25} cell#9 , |C| = 189 special orbit = E7(a4) special rep = phi[189,5] , dim = 189 cell rep = phi[189,5] TII depth = 5 TII multiplicity polynomial = 189*X TII subcells: tii[29,1] := {186} tii[29,2] := {157} tii[29,3] := {29} tii[29,4] := {126} tii[29,5] := {176} tii[29,6] := {111} tii[29,7] := {26} tii[29,8] := {183} tii[29,9] := {81} tii[29,10] := {166} tii[29,11] := {184} tii[29,12] := {188} tii[29,13] := {101} tii[29,14] := {141} tii[29,15] := {56} tii[29,16] := {147} tii[29,17] := {22} tii[29,18] := {138} tii[29,19] := {120} tii[29,20] := {76} tii[29,21] := {135} tii[29,22] := {4} tii[29,23] := {116} tii[29,24] := {175} tii[29,25] := {96} tii[29,26] := {148} tii[29,27] := {136} tii[29,28] := {117} tii[29,29] := {137} tii[29,30] := {165} tii[29,31] := {115} tii[29,32] := {73} tii[29,33] := {48} tii[29,34] := {133} tii[29,35] := {31} tii[29,36] := {30} tii[29,37] := {146} tii[29,38] := {91} tii[29,39] := {131} tii[29,40] := {71} tii[29,41] := {158} tii[29,42] := {47} tii[29,43] := {168} tii[29,44] := {69} tii[29,45] := {89} tii[29,46] := {152} tii[29,47] := {44} tii[29,48] := {180} tii[29,49] := {162} tii[29,50] := {68} tii[29,51] := {7} tii[29,52] := {108} tii[29,53] := {85} tii[29,54] := {64} tii[29,55] := {28} tii[29,56] := {127} tii[29,57] := {174} tii[29,58] := {171} tii[29,59] := {46} tii[29,60] := {109} tii[29,61] := {86} tii[29,62] := {67} tii[29,63] := {177} tii[29,64] := {167} tii[29,65] := {110} tii[29,66] := {129} tii[29,67] := {40} tii[29,68] := {14} tii[29,69] := {59} tii[29,70] := {63} tii[29,71] := {155} tii[29,72] := {42} tii[29,73] := {82} tii[29,74] := {144} tii[29,75] := {60} tii[29,76] := {181} tii[29,77] := {25} tii[29,78] := {103} tii[29,79] := {62} tii[29,80] := {43} tii[29,81] := {142} tii[29,82] := {41} tii[29,83] := {156} tii[29,84] := {83} tii[29,85] := {185} tii[29,86] := {104} tii[29,87] := {124} tii[29,88] := {125} tii[29,89] := {187} tii[29,90] := {105} tii[29,91] := {154} tii[29,92] := {139} tii[29,93] := {12} tii[29,94] := {164} tii[29,95] := {78} tii[29,96] := {163} tii[29,97] := {122} tii[29,98] := {6} tii[29,99] := {172} tii[29,100] := {38} tii[29,101] := {140} tii[29,102] := {178} tii[29,103] := {13} tii[29,104] := {100} tii[29,105] := {0} tii[29,106] := {77} tii[29,107] := {99} tii[29,108] := {55} tii[29,109] := {150} tii[29,110] := {169} tii[29,111] := {121} tii[29,112] := {1} tii[29,113] := {36} tii[29,114] := {21} tii[29,115] := {161} tii[29,116] := {97} tii[29,117] := {54} tii[29,118] := {159} tii[29,119] := {5} tii[29,120] := {98} tii[29,121] := {170} tii[29,122] := {119} tii[29,123] := {10} tii[29,124] := {149} tii[29,125] := {134} tii[29,126] := {20} tii[29,127] := {118} tii[29,128] := {160} tii[29,129] := {151} tii[29,130] := {113} tii[29,131] := {173} tii[29,132] := {95} tii[29,133] := {18} tii[29,134] := {52} tii[29,135] := {145} tii[29,136] := {179} tii[29,137] := {94} tii[29,138] := {9} tii[29,139] := {75} tii[29,140] := {182} tii[29,141] := {114} tii[29,142] := {53} tii[29,143] := {19} tii[29,144] := {17} tii[29,145] := {70} tii[29,146] := {32} tii[29,147] := {92} tii[29,148] := {49} tii[29,149] := {112} tii[29,150] := {72} tii[29,151] := {50} tii[29,152] := {93} tii[29,153] := {3} tii[29,154] := {90} tii[29,155] := {65} tii[29,156] := {88} tii[29,157] := {8} tii[29,158] := {66} tii[29,159] := {15} tii[29,160] := {128} tii[29,161] := {27} tii[29,162] := {107} tii[29,163] := {16} tii[29,164] := {143} tii[29,165] := {87} tii[29,166] := {45} tii[29,167] := {130} tii[29,168] := {80} tii[29,169] := {61} tii[29,170] := {84} tii[29,171] := {106} tii[29,172] := {123} tii[29,173] := {102} tii[29,174] := {79} tii[29,175] := {58} tii[29,176] := {39} tii[29,177] := {23} tii[29,178] := {153} tii[29,179] := {37} tii[29,180] := {24} tii[29,181] := {57} tii[29,182] := {2} tii[29,183] := {11} tii[29,184] := {35} tii[29,185] := {33} tii[29,186] := {34} tii[29,187] := {51} tii[29,188] := {132} tii[29,189] := {74} cell#10 , |C| = 210 special orbit = D6(a1) special rep = phi[210,6] , dim = 210 cell rep = phi[210,6] TII depth = 5 TII multiplicity polynomial = 210*X TII subcells: tii[28,1] := {175} tii[28,2] := {99} tii[28,3] := {168} tii[28,4] := {151} tii[28,5] := {89} tii[28,6] := {204} tii[28,7] := {16} tii[28,8] := {190} tii[28,9] := {162} tii[28,10] := {125} tii[28,11] := {61} tii[28,12] := {7} tii[28,13] := {197} tii[28,14] := {132} tii[28,15] := {124} tii[28,16] := {25} tii[28,17] := {203} tii[28,18] := {65} tii[28,19] := {166} tii[28,20] := {207} tii[28,21] := {209} tii[28,22] := {128} tii[28,23] := {103} tii[28,24] := {195} tii[28,25] := {82} tii[28,26] := {121} tii[28,27] := {184} tii[28,28] := {38} tii[28,29] := {171} tii[28,30] := {174} tii[28,31] := {139} tii[28,32] := {81} tii[28,33] := {172} tii[28,34] := {157} tii[28,35] := {155} tii[28,36] := {148} tii[28,37] := {173} tii[28,38] := {143} tii[28,39] := {1} tii[28,40] := {80} tii[28,41] := {183} tii[28,42] := {11} tii[28,43] := {161} tii[28,44] := {57} tii[28,45] := {138} tii[28,46] := {112} tii[28,47] := {193} tii[28,48] := {100} tii[28,49] := {39} tii[28,50] := {146} tii[28,51] := {177} tii[28,52] := {47} tii[28,53] := {200} tii[28,54] := {68} tii[28,55] := {188} tii[28,56] := {205} tii[28,57] := {187} tii[28,58] := {154} tii[28,59] := {117} tii[28,60] := {181} tii[28,61] := {21} tii[28,62] := {137} tii[28,63] := {17} tii[28,64] := {54} tii[28,65] := {152} tii[28,66] := {136} tii[28,67] := {134} tii[28,68] := {192} tii[28,69] := {196} tii[28,70] := {28} tii[28,71] := {118} tii[28,72] := {131} tii[28,73] := {153} tii[28,74] := {199} tii[28,75] := {202} tii[28,76] := {201} tii[28,77] := {76} tii[28,78] := {169} tii[28,79] := {182} tii[28,80] := {67} tii[28,81] := {206} tii[28,82] := {208} tii[28,83] := {127} tii[28,84] := {110} tii[28,85] := {145} tii[28,86] := {4} tii[28,87] := {90} tii[28,88] := {144} tii[28,89] := {163} tii[28,90] := {64} tii[28,91] := {10} tii[28,92] := {75} tii[28,93] := {108} tii[28,94] := {126} tii[28,95] := {178} tii[28,96] := {20} tii[28,97] := {97} tii[28,98] := {189} tii[28,99] := {109} tii[28,100] := {107} tii[28,101] := {43} tii[28,102] := {87} tii[28,103] := {91} tii[28,104] := {27} tii[28,105] := {73} tii[28,106] := {44} tii[28,107] := {96} tii[28,108] := {142} tii[28,109] := {62} tii[28,110] := {41} tii[28,111] := {115} tii[28,112] := {105} tii[28,113] := {32} tii[28,114] := {84} tii[28,115] := {160} tii[28,116] := {15} tii[28,117] := {51} tii[28,118] := {50} tii[28,119] := {85} tii[28,120] := {133} tii[28,121] := {176} tii[28,122] := {26} tii[28,123] := {72} tii[28,124] := {63} tii[28,125] := {104} tii[28,126] := {149} tii[28,127] := {42} tii[28,128] := {95} tii[28,129] := {86} tii[28,130] := {150} tii[28,131] := {167} tii[28,132] := {106} tii[28,133] := {180} tii[28,134] := {164} tii[28,135] := {0} tii[28,136] := {179} tii[28,137] := {83} tii[28,138] := {59} tii[28,139] := {159} tii[28,140] := {122} tii[28,141] := {191} tii[28,142] := {3} tii[28,143] := {49} tii[28,144] := {70} tii[28,145] := {141} tii[28,146] := {198} tii[28,147] := {9} tii[28,148] := {69} tii[28,149] := {94} tii[28,150] := {123} tii[28,151] := {2} tii[28,152] := {158} tii[28,153] := {30} tii[28,154] := {6} tii[28,155] := {140} tii[28,156] := {48} tii[28,157] := {14} tii[28,158] := {185} tii[28,159] := {12} tii[28,160] := {58} tii[28,161] := {194} tii[28,162] := {24} tii[28,163] := {156} tii[28,164] := {40} tii[28,165] := {186} tii[28,166] := {36} tii[28,167] := {5} tii[28,168] := {120} tii[28,169] := {92} tii[28,170] := {29} tii[28,171] := {101} tii[28,172] := {13} tii[28,173] := {46} tii[28,174] := {113} tii[28,175] := {119} tii[28,176] := {129} tii[28,177] := {37} tii[28,178] := {114} tii[28,179] := {23} tii[28,180] := {56} tii[28,181] := {79} tii[28,182] := {130} tii[28,183] := {147} tii[28,184] := {93} tii[28,185] := {78} tii[28,186] := {165} tii[28,187] := {22} tii[28,188] := {34} tii[28,189] := {35} tii[28,190] := {135} tii[28,191] := {45} tii[28,192] := {170} tii[28,193] := {55} tii[28,194] := {77} tii[28,195] := {111} tii[28,196] := {98} tii[28,197] := {116} tii[28,198] := {52} tii[28,199] := {74} tii[28,200] := {19} tii[28,201] := {33} tii[28,202] := {88} tii[28,203] := {53} tii[28,204] := {66} tii[28,205] := {60} tii[28,206] := {71} tii[28,207] := {8} tii[28,208] := {102} tii[28,209] := {18} tii[28,210] := {31} cell#11 , |C| = 875 special orbit = E7(a5) special rep = phi[315,7] , dim = 315 cell rep = phi[280,8]+phi[280,9]+phi[315,7] TII depth = 4 TII multiplicity polynomial = 70*X^2+245*X^3 TII subcells: tii[25,1] := {486, 871} tii[25,2] := {364, 547} tii[25,3] := {293, 856} tii[25,4] := {183, 629, 849} tii[25,5] := {623, 750} tii[25,6] := {112, 809, 874} tii[25,7] := {4, 604, 873} tii[25,8] := {32, 105, 583} tii[25,9] := {421, 867} tii[25,10] := {156, 496, 657} tii[25,11] := {59, 773, 869} tii[25,12] := {3, 515, 870} tii[25,13] := {101, 231, 721} tii[25,14] := {232, 847} tii[25,15] := {25, 668, 852} tii[25,16] := {395, 438, 801} tii[25,17] := {229, 405, 804} tii[25,18] := {83, 777, 820} tii[25,19] := {302, 654, 741} tii[25,20] := {153, 765, 868} tii[25,21] := {295, 473, 611} tii[25,22] := {217, 710, 862} tii[25,23] := {149, 826} tii[25,24] := {327, 452, 467} tii[25,25] := {46, 375, 781} tii[25,26] := {289, 647, 858} tii[25,27] := {290, 763} tii[25,28] := {507, 620, 640} tii[25,29] := {374, 714, 866} tii[25,30] := {466, 764, 872} tii[25,31] := {66, 138, 458} tii[25,32] := {0, 385, 861} tii[25,33] := {211, 556, 708} tii[25,34] := {95, 706, 860} tii[25,35] := {6, 565, 833} tii[25,36] := {341, 459, 823} tii[25,37] := {165, 274, 632} tii[25,38] := {144, 822} tii[25,39] := {284, 639, 759} tii[25,40] := {77, 650, 850} tii[25,41] := {209, 368} tii[25,42] := {366, 553} tii[25,43] := {462, 522, 824} tii[25,44] := {57, 766} tii[25,45] := {42, 713, 784} tii[25,46] := {319, 449, 755} tii[25,47] := {369, 707, 796} tii[25,48] := {124, 575, 834} tii[25,49] := {463, 758, 825} tii[25,50] := {186, 653, 813} tii[25,51] := {312, 455, 628} tii[25,52] := {19, 470, 811} tii[25,53] := {256, 548, 842} tii[25,54] := {226, 356, 542} tii[25,55] := {91, 792} tii[25,56] := {545, 700} tii[25,57] := {204, 703} tii[25,58] := {18, 642, 744} tii[25,59] := {55, 754} tii[25,60] := {402, 543, 697} tii[25,61] := {494, 627, 752} tii[25,62] := {40, 379, 779} tii[25,63] := {189, 273, 456} tii[25,64] := {400, 533, 694} tii[25,65] := {340, 633, 855} tii[25,66] := {74, 471, 735} tii[25,67] := {263, 357, 546} tii[25,68] := {495, 626, 753} tii[25,69] := {457, 631} tii[25,70] := {92, 699} tii[25,71] := {432, 704, 865} tii[25,72] := {489, 614, 748} tii[25,73] := {580, 692, 791} tii[25,74] := {655, 749, 821} tii[25,75] := {437, 532, 693} tii[25,76] := {39, 431, 734} tii[25,77] := {243, 594, 689} tii[25,78] := {68, 516, 671} tii[25,79] := {333, 859} tii[25,80] := {12, 425, 864} tii[25,81] := {172, 512, 666} tii[25,82] := {113, 596, 603} tii[25,83] := {241, 415} tii[25,84] := {170, 519, 621} tii[25,85] := {87, 503, 819} tii[25,86] := {196, 334, 747} tii[25,87] := {413, 590} tii[25,88] := {249, 848} tii[25,89] := {174, 667, 674} tii[25,90] := {242, 440, 541} tii[25,91] := {28, 514, 854} tii[25,92] := {331, 502, 775} tii[25,93] := {326, 525, 622} tii[25,94] := {248, 728, 732} tii[25,95] := {53, 597, 841} tii[25,96] := {173, 832} tii[25,97] := {15, 322, 662} tii[25,98] := {33, 730, 863} tii[25,99] := {62, 321, 498} tii[25,100] := {35, 409, 724} tii[25,101] := {166, 194, 660} tii[25,102] := {64, 499, 774} tii[25,103] := {109, 810} tii[25,104] := {14, 675, 853} tii[25,105] := {108, 585, 807} tii[25,106] := {34, 733, 840} tii[25,107] := {224, 581, 719} tii[25,108] := {99, 410, 536} tii[25,109] := {60, 501, 658} tii[25,110] := {154, 306} tii[25,111] := {48, 589, 838} tii[25,112] := {313, 349, 769} tii[25,113] := {31, 725} tii[25,114] := {398, 436, 802} tii[25,115] := {307, 656, 767} tii[25,116] := {155, 351, 451} tii[25,117] := {61, 163, 659} tii[25,118] := {162, 831} tii[25,119] := {81, 510, 817} tii[25,120] := {304, 491} tii[25,121] := {131, 233, 685} tii[25,122] := {103, 586, 722} tii[25,123] := {100, 227} tii[25,124] := {11, 598, 839} tii[25,125] := {399, 718, 803} tii[25,126] := {129, 593, 786} tii[25,127] := {225, 439, 537} tii[25,128] := {104, 235, 723} tii[25,129] := {157, 311} tii[25,130] := {102, 806} tii[25,131] := {26, 669, 818} tii[25,132] := {161, 661, 772} tii[25,133] := {228, 264, 720} tii[25,134] := {191, 316, 742} tii[25,135] := {406, 577} tii[25,136] := {158, 618, 770} tii[25,137] := {488, 524, 828} tii[25,138] := {265, 407, 684} tii[25,139] := {159, 315, 771} tii[25,140] := {49, 729, 789} tii[25,141] := {578, 606, 846} tii[25,142] := {230, 686, 805} tii[25,143] := {317, 490} tii[25,144] := {314, 743, 830} tii[25,145] := {119, 386, 568} tii[25,146] := {300, 482} tii[25,147] := {2, 297, 851} tii[25,148] := {180, 475, 485} tii[25,149] := {218, 845} tii[25,150] := {51, 90, 389} tii[25,151] := {127, 570, 837} tii[25,152] := {251, 382, 563} tii[25,153] := {220, 391, 530} tii[25,154] := {480, 651} tii[25,155] := {428, 569, 711} tii[25,156] := {126, 219, 682} tii[25,157] := {86, 141, 483} tii[25,158] := {152, 827} tii[25,159] := {254, 564, 574} tii[25,160] := {221, 392} tii[25,161] := {10, 384, 836} tii[25,162] := {187, 487, 816} tii[25,163] := {301, 345, 444} tii[25,164] := {303, 484} tii[25,165] := {134, 202, 573} tii[25,166] := {24, 476, 815} tii[25,167] := {339, 645, 652} tii[25,168] := {97, 800} tii[25,169] := {390, 435, 531} tii[25,170] := {261, 393, 785} tii[25,171] := {8, 215, 835} tii[25,172] := {203, 376, 420} tii[25,173] := {78, 294, 737} tii[25,174] := {96, 799} tii[25,175] := {269, 360, 381} tii[25,176] := {21, 292, 814} tii[25,177] := {278, 469, 509} tii[25,178] := {352, 453, 472} tii[25,179] := {44, 378, 782} tii[25,180] := {125, 216, 679} tii[25,181] := {150, 761} tii[25,182] := {363, 560, 592} tii[25,183] := {9, 559, 687} tii[25,184] := {41, 213, 783} tii[25,185] := {362, 417, 557} tii[25,186] := {418, 538, 558} tii[25,187] := {75, 291, 738} tii[25,188] := {454, 508, 641} tii[25,189] := {214, 715} tii[25,190] := {22, 468, 619} tii[25,191] := {540, 591, 709} tii[25,192] := {121, 377, 680} tii[25,193] := {111, 372, 549} tii[25,194] := {147, 286, 442} tii[25,195] := {76, 145, 609} tii[25,196] := {210, 260, 354} tii[25,197] := {258, 373, 798} tii[25,198] := {110, 199, 550} tii[25,199] := {1, 477, 812} tii[25,200] := {168, 464, 635} tii[25,201] := {94, 795} tii[25,202] := {148, 287} tii[25,203] := {169, 275, 636} tii[25,204] := {285, 343, 443} tii[25,205] := {56, 757} tii[25,206] := {288, 344, 760} tii[25,207] := {7, 566, 780} tii[25,208] := {240, 555, 705} tii[25,209] := {212, 371} tii[25,210] := {280, 637} tii[25,211] := {433, 551, 843} tii[25,212] := {185, 271, 282} tii[25,213] := {236, 529, 701} tii[25,214] := {122, 206, 677} tii[25,215] := {283, 461} tii[25,216] := {521, 638, 857} tii[25,217] := {370, 434, 797} tii[25,218] := {20, 646, 740} tii[25,219] := {237, 358, 702} tii[25,220] := {259, 353, 367} tii[25,221] := {184, 281, 608} tii[25,222] := {320, 610, 756} tii[25,223] := {29, 717} tii[25,224] := {207, 552} tii[25,225] := {342, 441, 460} tii[25,226] := {554, 605, 844} tii[25,227] := {408, 678, 794} tii[25,228] := {73, 142, 736} tii[25,229] := {309, 448, 624} tii[25,230] := {5, 561, 688} tii[25,231] := {143, 634} tii[25,232] := {120, 205, 676} tii[25,233] := {403, 544, 698} tii[25,234] := {310, 446, 625} tii[25,235] := {401, 534, 695} tii[25,236] := {582, 696, 793} tii[25,237] := {347, 447, 630} tii[25,238] := {182, 279, 607} tii[25,239] := {493, 615, 751} tii[25,240] := {579, 683, 790} tii[25,241] := {115, 430, 600} tii[25,242] := {17, 71, 518} tii[25,243] := {252, 270, 731} tii[25,244] := {38, 117, 601} tii[25,245] := {72, 338, 520} tii[25,246] := {70, 179, 673} tii[25,247] := {118, 253, 602} tii[25,248] := {27, 54, 325} tii[25,249] := {135, 422, 787} tii[25,250] := {114, 427, 599} tii[25,251] := {50, 89, 416} tii[25,252] := {171, 328} tii[25,253] := {195, 329, 745} tii[25,254] := {175, 330, 670} tii[25,255] := {85, 140, 506} tii[25,256] := {244, 419} tii[25,257] := {245, 595, 726} tii[25,258] := {16, 663} tii[25,259] := {52, 424, 788} tii[25,260] := {82, 139, 323} tii[25,261] := {137, 247, 690} tii[25,262] := {324, 505} tii[25,263] := {88, 513, 746} tii[25,264] := {332, 665, 776} tii[25,265] := {246, 412, 727} tii[25,266] := {130, 200, 414} tii[25,267] := {37, 588} tii[25,268] := {136, 426, 691} tii[25,269] := {190, 276, 504} tii[25,270] := {423, 587, 808} tii[25,271] := {36, 239, 411} tii[25,272] := {65, 167, 500} tii[25,273] := {106, 267, 359} tii[25,274] := {164, 350, 450} tii[25,275] := {63, 778} tii[25,276] := {107, 133, 584} tii[25,277] := {238, 268, 535} tii[25,278] := {128, 198, 222} tii[25,279] := {223, 397} tii[25,280] := {84, 160, 616} tii[25,281] := {188, 272, 305} tii[25,282] := {308, 346, 768} tii[25,283] := {13, 664} tii[25,284] := {234, 404} tii[25,285] := {192, 318, 617} tii[25,286] := {492, 523, 829} tii[25,287] := {262, 355, 396} tii[25,288] := {348, 445, 497} tii[25,289] := {181, 299, 478} tii[25,290] := {255, 394, 567} tii[25,291] := {30, 716} tii[25,292] := {23, 296, 739} tii[25,293] := {335, 474, 643} tii[25,294] := {132, 201, 387} tii[25,295] := {388, 572} tii[25,296] := {336, 479, 644} tii[25,297] := {80, 151, 612} tii[25,298] := {47, 383, 681} tii[25,299] := {193, 277, 481} tii[25,300] := {58, 649} tii[25,301] := {429, 562, 712} tii[25,302] := {517, 648, 762} tii[25,303] := {266, 361, 571} tii[25,304] := {79, 298, 613} tii[25,305] := {98, 576} tii[25,306] := {45, 380, 539} tii[25,307] := {43, 93, 527} tii[25,308] := {146, 465} tii[25,309] := {123, 208, 528} tii[25,310] := {257, 365, 526} tii[25,311] := {69, 176} tii[25,312] := {177, 197, 672} tii[25,313] := {116, 250} tii[25,314] := {178, 337} tii[25,315] := {67, 511} cell#12 , |C| = 665 special orbit = E7(a5) special rep = phi[315,7] , dim = 315 cell rep = phi[70,9]+phi[280,8]+phi[315,7] TII depth = 4 TII multiplicity polynomial = 210*X^2+70*X^3+35*X TII subcells: tii[25,1] := {176, 559, 664} tii[25,2] := {127, 394, 590} tii[25,3] := {91, 503, 661} tii[25,4] := {239, 611} tii[25,5] := {262, 520, 641} tii[25,6] := {390, 649} tii[25,7] := {213, 587} tii[25,8] := {206, 408} tii[25,9] := {138, 530, 663} tii[25,10] := {178, 425} tii[25,11] := {333, 639} tii[25,12] := {166, 580} tii[25,13] := {278, 492} tii[25,14] := {61, 457, 659} tii[25,15] := {233, 621} tii[25,16] := {202, 544} tii[25,17] := {379, 558} tii[25,18] := {321, 645} tii[25,19] := {268, 508} tii[25,20] := {355, 637} tii[25,21] := {174, 447} tii[25,22] := {300, 632} tii[25,23] := {32, 419, 657} tii[25,24] := {245, 523} tii[25,25] := {108, 555} tii[25,26] := {350, 615} tii[25,27] := {90, 446, 643} tii[25,28] := {348, 582} tii[25,29] := {401, 594} tii[25,30] := {445, 616} tii[25,31] := {146, 366} tii[25,32] := {112, 538} tii[25,33] := {219, 461} tii[25,34] := {297, 623} tii[25,35] := {184, 595} tii[25,36] := {241, 563} tii[25,37] := {225, 455} tii[25,38] := {29, 418, 653} tii[25,39] := {266, 423} tii[25,40] := {250, 606} tii[25,41] := {55, 295, 532} tii[25,42] := {129, 396, 592} tii[25,43] := {242, 506} tii[25,44] := {7, 328, 638} tii[25,45] := {272, 633} tii[25,46] := {323, 528} tii[25,47] := {316, 467} tii[25,48] := {201, 584} tii[25,49] := {367, 507} tii[25,50] := {249, 607} tii[25,51] := {170, 325} tii[25,52] := {152, 566} tii[25,53] := {289, 588} tii[25,54] := {189, 482} tii[25,55] := {14, 371, 651} tii[25,56] := {216, 483, 630} tii[25,57] := {53, 393, 628} tii[25,58] := {227, 614} tii[25,59] := {6, 322, 642} tii[25,60] := {214, 374} tii[25,61] := {264, 420} tii[25,62] := {110, 536} tii[25,63] := {145, 440} tii[25,64] := {287, 554} tii[25,65] := {340, 562} tii[25,66] := {151, 567} tii[25,67] := {190, 484} tii[25,68] := {263, 421} tii[25,69] := {171, 441, 612} tii[25,70] := {15, 290, 629} tii[25,71] := {392, 589} tii[25,72] := {338, 581} tii[25,73] := {314, 462} tii[25,74] := {365, 500} tii[25,75] := {286, 553} tii[25,76] := {313} tii[25,77] := {224, 476} tii[25,78] := {260} tii[25,79] := {99, 496, 662} tii[25,80] := {125, 551} tii[25,81] := {179, 334} tii[25,82] := {312} tii[25,83] := {64, 310, 548} tii[25,84] := {180, 437} tii[25,85] := {162, 576} tii[25,86] := {84, 519} tii[25,87] := {137, 410, 601} tii[25,88] := {66, 458, 660} tii[25,89] := {363} tii[25,90] := {212, 480} tii[25,91] := {144, 579} tii[25,92] := {177, 433} tii[25,93] := {261, 518} tii[25,94] := {412} tii[25,95] := {186, 603} tii[25,96] := {41, 438, 656} tii[25,97] := {257} tii[25,98] := {285, 626} tii[25,99] := {97, 331} tii[25,100] := {309} tii[25,101] := {80, 427} tii[25,102] := {360} tii[25,103] := {21, 370, 650} tii[25,104] := {235, 609} tii[25,105] := {409} tii[25,106] := {284, 627} tii[25,107] := {222, 385} tii[25,108] := {136, 383} tii[25,109] := {256} tii[25,110] := {35, 254, 509} tii[25,111] := {210, 585} tii[25,112] := {157, 510} tii[25,113] := {2, 281, 625} tii[25,114] := {203, 474} tii[25,115] := {269, 431} tii[25,116] := {160, 429} tii[25,117] := {230, 452} tii[25,118] := {37, 416, 655} tii[25,119] := {164, 560} tii[25,120] := {94, 357, 575} tii[25,121] := {50, 473} tii[25,122] := {308} tii[25,123] := {20, 205, 469} tii[25,124] := {187, 604} tii[25,125] := {319, 475} tii[25,126] := {209, 586} tii[25,127] := {207, 472} tii[25,128] := {279, 493} tii[25,129] := {36, 255, 511} tii[25,130] := {22, 384, 648} tii[25,131] := {232, 622} tii[25,132] := {359} tii[25,133] := {117, 470} tii[25,134] := {79, 495} tii[25,135] := {134, 304, 600} tii[25,136] := {329} tii[25,137] := {251, 513} tii[25,138] := {118, 529} tii[25,139] := {330, 527} tii[25,140] := {282, 635} tii[25,141] := {305, 547} tii[25,142] := {380} tii[25,143] := {96, 252, 574} tii[25,144] := {426} tii[25,145] := {196} tii[25,146] := {92, 353, 571} tii[25,147] := {76, 504} tii[25,148] := {247} tii[25,149] := {58, 466, 658} tii[25,150] := {114, 318} tii[25,151] := {198, 597} tii[25,152] := {128, 275} tii[25,153] := {132, 405} tii[25,154] := {175, 448, 619} tii[25,155] := {218, 377} tii[25,156] := {48, 491} tii[25,157] := {142, 368} tii[25,158] := {34, 424, 654} tii[25,159] := {301} tii[25,160] := {59, 303, 542} tii[25,161] := {102, 537} tii[25,162] := {155, 572} tii[25,163] := {154, 450} tii[25,164] := {93, 354, 573} tii[25,165] := {185, 415} tii[25,166] := {140, 568} tii[25,167] := {352} tii[25,168] := {19, 406, 647} tii[25,169] := {199, 490} tii[25,170] := {115, 543} tii[25,171] := {46, 464} tii[25,172] := {220} tii[25,173] := {73, 524} tii[25,174] := {17, 376, 652} tii[25,175] := {195, 487} tii[25,176] := {68, 502} tii[25,177] := {267} tii[25,178] := {246, 525} tii[25,179] := {101, 535} tii[25,180] := {47, 488} tii[25,181] := {33, 351, 644} tii[25,182] := {317} tii[25,183] := {182, 605} tii[25,184] := {45, 463} tii[25,185] := {298} tii[25,186] := {299, 556} tii[25,187] := {72, 501} tii[25,188] := {349} tii[25,189] := {57, 402, 631} tii[25,190] := {150, 583} tii[25,191] := {400} tii[25,192] := {107, 486} tii[25,193] := {191} tii[25,194] := {89, 346} tii[25,195] := {25, 444} tii[25,196] := {106, 398} tii[25,197] := {193, 533} tii[25,198] := {181, 414} tii[25,199] := {141, 569} tii[25,200] := {240} tii[25,201] := {16, 373, 646} tii[25,202] := {31, 244, 498} tii[25,203] := {226, 456} tii[25,204] := {148, 443} tii[25,205] := {8, 347, 636} tii[25,206] := {149, 499} tii[25,207] := {183, 596} tii[25,208] := {291} tii[25,209] := {56, 296, 534} tii[25,210] := {86, 342, 613} tii[25,211] := {292, 539} tii[25,212] := {71, 344} tii[25,213] := {273} tii[25,214] := {44, 460} tii[25,215] := {88, 345, 564} tii[25,216] := {343, 570} tii[25,217] := {192, 468} tii[25,218] := {228, 617} tii[25,219] := {274, 494} tii[25,220] := {105, 397} tii[25,221] := {70, 497} tii[25,222] := {324} tii[25,223] := {3, 302, 624} tii[25,224] := {54, 293, 591} tii[25,225] := {147, 442} tii[25,226] := {294, 541} tii[25,227] := {372} tii[25,228] := {24, 417} tii[25,229] := {236} tii[25,230] := {194, 593} tii[25,231] := {28, 341, 610} tii[25,232] := {42, 459} tii[25,233] := {215, 375} tii[25,234] := {237, 521} tii[25,235] := {288} tii[25,236] := {315, 465} tii[25,237] := {238, 522} tii[25,238] := {69, 439} tii[25,239] := {339} tii[25,240] := {391} tii[25,241] := {139, 388} tii[25,242] := {169, 364} tii[25,243] := {126, 478} tii[25,244] := {188, 413} tii[25,245] := {100, 337} tii[25,246] := {234, 454} tii[25,247] := {67, 389} tii[25,248] := {82, 271} tii[25,249] := {122, 549} tii[25,250] := {135, 283} tii[25,251] := {103, 320} tii[25,252] := {39, 259, 515} tii[25,253] := {83, 516} tii[25,254] := {95, 335} tii[25,255] := {143, 369} tii[25,256] := {65, 311, 550} tii[25,257] := {223, 386} tii[25,258] := {1, 231, 620} tii[25,259] := {124, 531} tii[25,260] := {81, 361} tii[25,261] := {52, 481} tii[25,262] := {98, 362, 577} tii[25,263] := {165, 561} tii[25,264] := {270, 434} tii[25,265] := {133, 387} tii[25,266] := {121, 411} tii[25,267] := {4, 208, 602} tii[25,268] := {123, 552} tii[25,269] := {161, 453} tii[25,270] := {221, 477} tii[25,271] := {63, 280} tii[25,272] := {38, 332} tii[25,273] := {120, 381} tii[25,274] := {159, 428} tii[25,275] := {11, 336, 640} tii[25,276] := {51, 382} tii[25,277] := {119, 471} tii[25,278] := {49, 306} tii[25,279] := {60, 307, 545} tii[25,280] := {27, 430} tii[25,281] := {77, 358} tii[25,282] := {156, 432} tii[25,283] := {0, 258, 608} tii[25,284] := {62, 204, 546} tii[25,285] := {78, 512} tii[25,286] := {253, 514} tii[25,287] := {116, 407} tii[25,288] := {158, 356} tii[25,289] := {87, 229} tii[25,290] := {130, 276} tii[25,291] := {5, 277, 634} tii[25,292] := {75, 505} tii[25,293] := {172, 326} tii[25,294] := {113, 403} tii[25,295] := {131, 404, 598} tii[25,296] := {173, 327} tii[25,297] := {26, 451} tii[25,298] := {111, 540} tii[25,299] := {153, 449} tii[25,300] := {10, 248, 618} tii[25,301] := {217, 378} tii[25,302] := {265, 422} tii[25,303] := {197, 489} tii[25,304] := {74, 526} tii[25,305] := {18, 200, 599} tii[25,306] := {109, 557} tii[25,307] := {13, 399} tii[25,308] := {30, 243, 565} tii[25,309] := {43, 485} tii[25,310] := {104, 395} tii[25,311] := {12, 168, 435} tii[25,312] := {85, 436} tii[25,313] := {23, 211, 479} tii[25,314] := {40, 167, 517} tii[25,315] := {9, 163, 578} cell#13 , |C| = 91 special orbit = E7(a3) special rep = phi[56,3] , dim = 56 cell rep = phi[35,4]+phi[56,3] TII depth = 3 TII multiplicity polynomial = 35*X^2+21*X TII subcells: tii[32,1] := {29, 90} tii[32,2] := {33, 81} tii[32,3] := {34, 64} tii[32,4] := {23, 89} tii[32,5] := {30, 57} tii[32,6] := {25, 77} tii[32,7] := {20, 88} tii[32,8] := {31, 67} tii[32,9] := {8, 85} tii[32,10] := {32, 76} tii[32,11] := {48} tii[32,12] := {35} tii[32,13] := {28, 60} tii[32,14] := {41} tii[32,15] := {16, 70} tii[32,16] := {47} tii[32,17] := {53} tii[32,18] := {7, 79} tii[32,19] := {59} tii[32,20] := {46} tii[32,21] := {40} tii[32,22] := {14, 87} tii[32,23] := {45} tii[32,24] := {10, 86} tii[32,25] := {51} tii[32,26] := {56} tii[32,27] := {5, 84} tii[32,28] := {39} tii[32,29] := {19, 73} tii[32,30] := {44} tii[32,31] := {2, 82} tii[32,32] := {13, 69} tii[32,33] := {50} tii[32,34] := {9, 74} tii[32,35] := {55} tii[32,36] := {36} tii[32,37] := {26, 62} tii[32,38] := {4, 83} tii[32,39] := {42} tii[32,40] := {18, 68} tii[32,41] := {1, 80} tii[32,42] := {49} tii[32,43] := {37} tii[32,44] := {24, 72} tii[32,45] := {43} tii[32,46] := {38} tii[32,47] := {22, 54} tii[32,48] := {17, 61} tii[32,49] := {12, 66} tii[32,50] := {11, 65} tii[32,51] := {6, 71} tii[32,52] := {3, 75} tii[32,53] := {27, 52} tii[32,54] := {21, 58} tii[32,55] := {15, 63} tii[32,56] := {0, 78} cell#14 , |C| = 210 special orbit = D6(a1) special rep = phi[210,6] , dim = 210 cell rep = phi[210,6] TII depth = 5 TII multiplicity polynomial = 210*X TII subcells: tii[28,1] := {150} tii[28,2] := {97} tii[28,3] := {138} tii[28,4] := {160} tii[28,5] := {32} tii[28,6] := {203} tii[28,7] := {0} tii[28,8] := {175} tii[28,9] := {131} tii[28,10] := {132} tii[28,11] := {17} tii[28,12] := {3} tii[28,13] := {188} tii[28,14] := {173} tii[28,15] := {73} tii[28,16] := {18} tii[28,17] := {200} tii[28,18] := {51} tii[28,19] := {201} tii[28,20] := {206} tii[28,21] := {209} tii[28,22] := {136} tii[28,23] := {47} tii[28,24] := {185} tii[28,25] := {89} tii[28,26] := {70} tii[28,27] := {163} tii[28,28] := {43} tii[28,29] := {144} tii[28,30] := {147} tii[28,31] := {98} tii[28,32] := {87} tii[28,33] := {145} tii[28,34] := {166} tii[28,35] := {122} tii[28,36] := {182} tii[28,37] := {146} tii[28,38] := {151} tii[28,39] := {1} tii[28,40] := {28} tii[28,41] := {159} tii[28,42] := {12} tii[28,43] := {169} tii[28,44] := {45} tii[28,45] := {94} tii[28,46] := {148} tii[28,47] := {178} tii[28,48] := {95} tii[28,49] := {41} tii[28,50] := {183} tii[28,51] := {186} tii[28,52] := {69} tii[28,53] := {194} tii[28,54] := {96} tii[28,55] := {197} tii[28,56] := {204} tii[28,57] := {170} tii[28,58] := {117} tii[28,59] := {120} tii[28,60] := {157} tii[28,61] := {23} tii[28,62] := {143} tii[28,63] := {38} tii[28,64] := {57} tii[28,65] := {161} tii[28,66] := {139} tii[28,67] := {141} tii[28,68] := {177} tii[28,69] := {187} tii[28,70] := {58} tii[28,71] := {121} tii[28,72] := {158} tii[28,73] := {162} tii[28,74] := {193} tii[28,75] := {199} tii[28,76] := {198} tii[28,77] := {83} tii[28,78] := {179} tii[28,79] := {195} tii[28,80] := {111} tii[28,81] := {205} tii[28,82] := {208} tii[28,83] := {81} tii[28,84] := {115} tii[28,85] := {109} tii[28,86] := {11} tii[28,87] := {93} tii[28,88] := {106} tii[28,89] := {133} tii[28,90] := {53} tii[28,91] := {21} tii[28,92] := {116} tii[28,93] := {107} tii[28,94] := {78} tii[28,95] := {153} tii[28,96] := {35} tii[28,97] := {137} tii[28,98] := {172} tii[28,99] := {54} tii[28,100] := {52} tii[28,101] := {9} tii[28,102] := {76} tii[28,103] := {33} tii[28,104] := {4} tii[28,105] := {105} tii[28,106] := {10} tii[28,107] := {130} tii[28,108] := {152} tii[28,109] := {66} tii[28,110] := {29} tii[28,111] := {154} tii[28,112] := {49} tii[28,113] := {50} tii[28,114] := {74} tii[28,115] := {171} tii[28,116] := {8} tii[28,117] := {92} tii[28,118] := {75} tii[28,119] := {30} tii[28,120] := {174} tii[28,121] := {189} tii[28,122] := {19} tii[28,123] := {114} tii[28,124] := {65} tii[28,125] := {103} tii[28,126] := {190} tii[28,127] := {31} tii[28,128] := {129} tii[28,129] := {91} tii[28,130] := {191} tii[28,131] := {202} tii[28,132] := {113} tii[28,133] := {207} tii[28,134] := {135} tii[28,135] := {7} tii[28,136] := {155} tii[28,137] := {71} tii[28,138] := {63} tii[28,139] := {126} tii[28,140] := {127} tii[28,141] := {176} tii[28,142] := {16} tii[28,143] := {90} tii[28,144] := {102} tii[28,145] := {101} tii[28,146] := {192} tii[28,147] := {27} tii[28,148] := {112} tii[28,149] := {128} tii[28,150] := {72} tii[28,151] := {2} tii[28,152] := {124} tii[28,153] := {62} tii[28,154] := {6} tii[28,155] := {99} tii[28,156] := {88} tii[28,157] := {15} tii[28,158] := {164} tii[28,159] := {14} tii[28,160] := {61} tii[28,161] := {181} tii[28,162] := {25} tii[28,163] := {123} tii[28,164] := {42} tii[28,165] := {165} tii[28,166] := {40} tii[28,167] := {5} tii[28,168] := {68} tii[28,169] := {125} tii[28,170] := {60} tii[28,171] := {46} tii[28,172] := {13} tii[28,173] := {86} tii[28,174] := {149} tii[28,175] := {118} tii[28,176] := {167} tii[28,177] := {39} tii[28,178] := {140} tii[28,179] := {24} tii[28,180] := {59} tii[28,181] := {67} tii[28,182] := {168} tii[28,183] := {184} tii[28,184] := {119} tii[28,185] := {85} tii[28,186] := {196} tii[28,187] := {22} tii[28,188] := {37} tii[28,189] := {36} tii[28,190] := {142} tii[28,191] := {84} tii[28,192] := {180} tii[28,193] := {56} tii[28,194] := {82} tii[28,195] := {110} tii[28,196] := {134} tii[28,197] := {156} tii[28,198] := {79} tii[28,199] := {108} tii[28,200] := {34} tii[28,201] := {55} tii[28,202] := {77} tii[28,203] := {80} tii[28,204] := {20} tii[28,205] := {48} tii[28,206] := {104} tii[28,207] := {26} tii[28,208] := {100} tii[28,209] := {44} tii[28,210] := {64} cell#15 , |C| = 168 special orbit = D5+A1 special rep = phi[168,6] , dim = 168 cell rep = phi[168,6] TII depth = 4 TII multiplicity polynomial = 168*X TII subcells: tii[27,1] := {134} tii[27,2] := {103} tii[27,3] := {161} tii[27,4] := {65} tii[27,5] := {118} tii[27,6] := {108} tii[27,7] := {165} tii[27,8] := {167} tii[27,9] := {135} tii[27,10] := {123} tii[27,11] := {133} tii[27,12] := {122} tii[27,13] := {98} tii[27,14] := {136} tii[27,15] := {90} tii[27,16] := {113} tii[27,17] := {61} tii[27,18] := {130} tii[27,19] := {126} tii[27,20] := {137} tii[27,21] := {64} tii[27,22] := {152} tii[27,23] := {119} tii[27,24] := {132} tii[27,25] := {69} tii[27,26] := {63} tii[27,27] := {142} tii[27,28] := {38} tii[27,29] := {84} tii[27,30] := {147} tii[27,31] := {153} tii[27,32] := {81} tii[27,33] := {102} tii[27,34] := {144} tii[27,35] := {32} tii[27,36] := {67} tii[27,37] := {150} tii[27,38] := {85} tii[27,39] := {120} tii[27,40] := {89} tii[27,41] := {58} tii[27,42] := {39} tii[27,43] := {68} tii[27,44] := {155} tii[27,45] := {114} tii[27,46] := {106} tii[27,47] := {158} tii[27,48] := {53} tii[27,49] := {121} tii[27,50] := {131} tii[27,51] := {77} tii[27,52] := {51} tii[27,53] := {93} tii[27,54] := {35} tii[27,55] := {22} tii[27,56] := {29} tii[27,57] := {100} tii[27,58] := {138} tii[27,59] := {94} tii[27,60] := {163} tii[27,61] := {76} tii[27,62] := {21} tii[27,63] := {146} tii[27,64] := {109} tii[27,65] := {164} tii[27,66] := {115} tii[27,67] := {129} tii[27,68] := {166} tii[27,69] := {82} tii[27,70] := {48} tii[27,71] := {145} tii[27,72] := {110} tii[27,73] := {33} tii[27,74] := {151} tii[27,75] := {92} tii[27,76] := {95} tii[27,77] := {20} tii[27,78] := {156} tii[27,79] := {60} tii[27,80] := {78} tii[27,81] := {159} tii[27,82] := {30} tii[27,83] := {107} tii[27,84] := {91} tii[27,85] := {74} tii[27,86] := {18} tii[27,87] := {72} tii[27,88] := {143} tii[27,89] := {41} tii[27,90] := {56} tii[27,91] := {9} tii[27,92] := {125} tii[27,93] := {148} tii[27,94] := {73} tii[27,95] := {40} tii[27,96] := {13} tii[27,97] := {112} tii[27,98] := {154} tii[27,99] := {57} tii[27,100] := {27} tii[27,101] := {140} tii[27,102] := {45} tii[27,103] := {14} tii[27,104] := {117} tii[27,105] := {149} tii[27,106] := {141} tii[27,107] := {86} tii[27,108] := {157} tii[27,109] := {49} tii[27,110] := {104} tii[27,111] := {79} tii[27,112] := {160} tii[27,113] := {70} tii[27,114] := {34} tii[27,115] := {87} tii[27,116] := {162} tii[27,117] := {55} tii[27,118] := {71} tii[27,119] := {46} tii[27,120] := {47} tii[27,121] := {54} tii[27,122] := {50} tii[27,123] := {37} tii[27,124] := {15} tii[27,125] := {80} tii[27,126] := {23} tii[27,127] := {96} tii[27,128] := {66} tii[27,129] := {8} tii[27,130] := {101} tii[27,131] := {19} tii[27,132] := {105} tii[27,133] := {52} tii[27,134] := {28} tii[27,135] := {36} tii[27,136] := {88} tii[27,137] := {11} tii[27,138] := {127} tii[27,139] := {42} tii[27,140] := {25} tii[27,141] := {4} tii[27,142] := {139} tii[27,143] := {99} tii[27,144] := {128} tii[27,145] := {10} tii[27,146] := {16} tii[27,147] := {83} tii[27,148] := {116} tii[27,149] := {124} tii[27,150] := {111} tii[27,151] := {97} tii[27,152] := {75} tii[27,153] := {59} tii[27,154] := {44} tii[27,155] := {31} tii[27,156] := {43} tii[27,157] := {17} tii[27,158] := {3} tii[27,159] := {6} tii[27,160] := {1} tii[27,161] := {26} tii[27,162] := {7} tii[27,163] := {24} tii[27,164] := {62} tii[27,165] := {12} tii[27,166] := {5} tii[27,167] := {2} tii[27,168] := {0} cell#16 , |C| = 378 special orbit = D5(a1)+A1 special rep = phi[378,9] , dim = 378 cell rep = phi[378,9] TII depth = 7 TII multiplicity polynomial = 378*X TII subcells: tii[22,1] := {268} tii[22,2] := {332} tii[22,3] := {374} tii[22,4] := {340} tii[22,5] := {368} tii[22,6] := {149} tii[22,7] := {316} tii[22,8] := {286} tii[22,9] := {370} tii[22,10] := {197} tii[22,11] := {213} tii[22,12] := {377} tii[22,13] := {240} tii[22,14] := {356} tii[22,15] := {309} tii[22,16] := {254} tii[22,17] := {137} tii[22,18] := {233} tii[22,19] := {320} tii[22,20] := {308} tii[22,21] := {359} tii[22,22] := {304} tii[22,23] := {353} tii[22,24] := {186} tii[22,25] := {334} tii[22,26] := {184} tii[22,27] := {271} tii[22,28] := {131} tii[22,29] := {227} tii[22,30] := {354} tii[22,31] := {135} tii[22,32] := {306} tii[22,33] := {100} tii[22,34] := {333} tii[22,35] := {142} tii[22,36] := {375} tii[22,37] := {185} tii[22,38] := {272} tii[22,39] := {231} tii[22,40] := {307} tii[22,41] := {48} tii[22,42] := {224} tii[22,43] := {176} tii[22,44] := {177} tii[22,45] := {344} tii[22,46] := {25} tii[22,47] := {366} tii[22,48] := {267} tii[22,49] := {112} tii[22,50] := {85} tii[22,51] := {178} tii[22,52] := {129} tii[22,53] := {130} tii[22,54] := {325} tii[22,55] := {369} tii[22,56] := {128} tii[22,57] := {125} tii[22,58] := {179} tii[22,59] := {225} tii[22,60] := {347} tii[22,61] := {352} tii[22,62] := {373} tii[22,63] := {365} tii[22,64] := {371} tii[22,65] := {206} tii[22,66] := {346} tii[22,67] := {361} tii[22,68] := {73} tii[22,69] := {255} tii[22,70] := {204} tii[22,71] := {164} tii[22,72] := {326} tii[22,73] := {348} tii[22,74] := {291} tii[22,75] := {75} tii[22,76] := {170} tii[22,77] := {345} tii[22,78] := {122} tii[22,79] := {209} tii[22,80] := {296} tii[22,81] := {327} tii[22,82] := {256} tii[22,83] := {328} tii[22,84] := {349} tii[22,85] := {358} tii[22,86] := {64} tii[22,87] := {249} tii[22,88] := {341} tii[22,89] := {65} tii[22,90] := {171} tii[22,91] := {319} tii[22,92] := {342} tii[22,93] := {101} tii[22,94] := {283} tii[22,95] := {103} tii[22,96] := {287} tii[22,97] := {147} tii[22,98] := {242} tii[22,99] := {317} tii[22,100] := {151} tii[22,101] := {72} tii[22,102] := {148} tii[22,103] := {243} tii[22,104] := {119} tii[22,105] := {108} tii[22,106] := {150} tii[22,107] := {247} tii[22,108] := {248} tii[22,109] := {364} tii[22,110] := {102} tii[22,111] := {196} tii[22,112] := {315} tii[22,113] := {66} tii[22,114] := {288} tii[22,115] := {195} tii[22,116] := {284} tii[22,117] := {244} tii[22,118] := {198} tii[22,119] := {289} tii[22,120] := {220} tii[22,121] := {372} tii[22,122] := {63} tii[22,123] := {104} tii[22,124] := {318} tii[22,125] := {163} tii[22,126] := {153} tii[22,127] := {285} tii[22,128] := {260} tii[22,129] := {208} tii[22,130] := {201} tii[22,131] := {174} tii[22,132] := {376} tii[22,133] := {298} tii[22,134] := {245} tii[22,135] := {259} tii[22,136] := {335} tii[22,137] := {238} tii[22,138] := {312} tii[22,139] := {280} tii[22,140] := {337} tii[22,141] := {310} tii[22,142] := {26} tii[22,143] := {188} tii[22,144] := {277} tii[22,145] := {215} tii[22,146] := {355} tii[22,147] := {59} tii[22,148] := {60} tii[22,149] := {194} tii[22,150] := {281} tii[22,151] := {28} tii[22,152] := {241} tii[22,153] := {313} tii[22,154] := {237} tii[22,155] := {262} tii[22,156] := {278} tii[22,157] := {99} tii[22,158] := {146} tii[22,159] := {314} tii[22,160] := {219} tii[22,161] := {338} tii[22,162] := {299} tii[22,163] := {279} tii[22,164] := {311} tii[22,165] := {275} tii[22,166] := {91} tii[22,167] := {7} tii[22,168] := {71} tii[22,169] := {234} tii[22,170] := {187} tii[22,171] := {294} tii[22,172] := {55} tii[22,173] := {235} tii[22,174] := {324} tii[22,175] := {276} tii[22,176] := {68} tii[22,177] := {189} tii[22,178] := {23} tii[22,179] := {110} tii[22,180] := {52} tii[22,181] := {274} tii[22,182] := {343} tii[22,183] := {47} tii[22,184] := {157} tii[22,185] := {236} tii[22,186] := {265} tii[22,187] := {269} tii[22,188] := {228} tii[22,189] := {154} tii[22,190] := {86} tii[22,191] := {21} tii[22,192] := {58} tii[22,193] := {51} tii[22,194] := {182} tii[22,195] := {202} tii[22,196] := {136} tii[22,197] := {183} tii[22,198] := {339} tii[22,199] := {229} tii[22,200] := {232} tii[22,201] := {89} tii[22,202] := {172} tii[22,203] := {357} tii[22,204] := {250} tii[22,205] := {230} tii[22,206] := {49} tii[22,207] := {273} tii[22,208] := {270} tii[22,209] := {226} tii[22,210] := {50} tii[22,211] := {143} tii[22,212] := {251} tii[22,213] := {93} tii[22,214] := {192} tii[22,215] := {87} tii[22,216] := {62} tii[22,217] := {305} tii[22,218] := {44} tii[22,219] := {138} tii[22,220] := {126} tii[22,221] := {367} tii[22,222] := {193} tii[22,223] := {290} tii[22,224] := {134} tii[22,225] := {239} tii[22,226] := {180} tii[22,227] := {145} tii[22,228] := {302} tii[22,229] := {191} tii[22,230] := {53} tii[22,231] := {132} tii[22,232] := {159} tii[22,233] := {8} tii[22,234] := {83} tii[22,235] := {223} tii[22,236] := {181} tii[22,237] := {205} tii[22,238] := {90} tii[22,239] := {360} tii[22,240] := {351} tii[22,241] := {54} tii[22,242] := {221} tii[22,243] := {158} tii[22,244] := {329} tii[22,245] := {362} tii[22,246] := {120} tii[22,247] := {297} tii[22,248] := {121} tii[22,249] := {301} tii[22,250] := {350} tii[22,251] := {80} tii[22,252] := {263} tii[22,253] := {264} tii[22,254] := {363} tii[22,255] := {43} tii[22,256] := {218} tii[22,257] := {252} tii[22,258] := {322} tii[22,259] := {41} tii[22,260] := {161} tii[22,261] := {210} tii[22,262] := {36} tii[22,263] := {207} tii[22,264] := {292} tii[22,265] := {253} tii[22,266] := {16} tii[22,267] := {116} tii[22,268] := {293} tii[22,269] := {173} tii[22,270] := {323} tii[22,271] := {166} tii[22,272] := {117} tii[22,273] := {211} tii[22,274] := {39} tii[22,275] := {169} tii[22,276] := {257} tii[22,277] := {69} tii[22,278] := {162} tii[22,279] := {40} tii[22,280] := {79} tii[22,281] := {321} tii[22,282] := {258} tii[22,283] := {123} tii[22,284] := {127} tii[22,285] := {111} tii[22,286] := {15} tii[22,287] := {295} tii[22,288] := {118} tii[22,289] := {303} tii[22,290] := {84} tii[22,291] := {216} tii[22,292] := {35} tii[22,293] := {203} tii[22,294] := {13} tii[22,295] := {156} tii[22,296] := {32} tii[22,297] := {105} tii[22,298] := {214} tii[22,299] := {152} tii[22,300] := {261} tii[22,301] := {12} tii[22,302] := {33} tii[22,303] := {124} tii[22,304] := {106} tii[22,305] := {217} tii[22,306] := {107} tii[22,307] := {113} tii[22,308] := {199} tii[22,309] := {38} tii[22,310] := {76} tii[22,311] := {67} tii[22,312] := {82} tii[22,313] := {160} tii[22,314] := {34} tii[22,315] := {282} tii[22,316] := {246} tii[22,317] := {200} tii[22,318] := {165} tii[22,319] := {155} tii[22,320] := {115} tii[22,321] := {266} tii[22,322] := {46} tii[22,323] := {222} tii[22,324] := {11} tii[22,325] := {139} tii[22,326] := {3} tii[22,327] := {95} tii[22,328] := {9} tii[22,329] := {56} tii[22,330] := {140} tii[22,331] := {96} tii[22,332] := {97} tii[22,333] := {300} tii[22,334] := {336} tii[22,335] := {31} tii[22,336] := {92} tii[22,337] := {81} tii[22,338] := {141} tii[22,339] := {190} tii[22,340] := {330} tii[22,341] := {10} tii[22,342] := {30} tii[22,343] := {61} tii[22,344] := {2} tii[22,345] := {45} tii[22,346] := {57} tii[22,347] := {331} tii[22,348] := {98} tii[22,349] := {144} tii[22,350] := {1} tii[22,351] := {37} tii[22,352] := {20} tii[22,353] := {24} tii[22,354] := {114} tii[22,355] := {109} tii[22,356] := {6} tii[22,357] := {29} tii[22,358] := {22} tii[22,359] := {18} tii[22,360] := {133} tii[22,361] := {94} tii[22,362] := {88} tii[22,363] := {175} tii[22,364] := {77} tii[22,365] := {167} tii[22,366] := {78} tii[22,367] := {212} tii[22,368] := {42} tii[22,369] := {168} tii[22,370] := {17} tii[22,371] := {14} tii[22,372] := {70} tii[22,373] := {5} tii[22,374] := {74} tii[22,375] := {4} tii[22,376] := {19} tii[22,377] := {0} tii[22,378] := {27} cell#17 , |C| = 504 special orbit = D5(a1) special rep = phi[420,10] , dim = 420 cell rep = phi[84,12]+phi[420,10] TII depth = 4 TII multiplicity polynomial = 336*X+84*X^2 TII subcells: tii[20,1] := {343, 344} tii[20,2] := {171} tii[20,3] := {436, 437} tii[20,4] := {382} tii[20,5] := {221} tii[20,6] := {352, 482} tii[20,7] := {424, 499} tii[20,8] := {444} tii[20,9] := {379} tii[20,10] := {184, 395} tii[20,11] := {271} tii[20,12] := {361} tii[20,13] := {204} tii[20,14] := {393, 394} tii[20,15] := {418} tii[20,16] := {313} tii[20,17] := {235, 236} tii[20,18] := {161} tii[20,19] := {288, 462} tii[20,20] := {376} tii[20,21] := {133, 134} tii[20,22] := {403} tii[20,23] := {374, 492} tii[20,24] := {417} tii[20,25] := {450} tii[20,26] := {409} tii[20,27] := {265} tii[20,28] := {212} tii[20,29] := {233, 430} tii[20,30] := {43, 44} tii[20,31] := {306} tii[20,32] := {321, 480} tii[20,33] := {447} tii[20,34] := {322} tii[20,35] := {467} tii[20,36] := {160} tii[20,37] := {180, 391} tii[20,38] := {213, 431} tii[20,39] := {200} tii[20,40] := {373} tii[20,41] := {472} tii[20,42] := {484} tii[20,43] := {494} tii[20,44] := {263} tii[20,45] := {475} tii[20,46] := {411} tii[20,47] := {410} tii[20,48] := {230} tii[20,49] := {459} tii[20,50] := {282} tii[20,51] := {77} tii[20,52] := {245, 246} tii[20,53] := {340} tii[20,54] := {371} tii[20,55] := {284} tii[20,56] := {429} tii[20,57] := {76} tii[20,58] := {283} tii[20,59] := {412} tii[20,60] := {142, 247} tii[20,61] := {320} tii[20,62] := {339} tii[20,63] := {458} tii[20,64] := {388} tii[20,65] := {358} tii[20,66] := {478} tii[20,67] := {205} tii[20,68] := {456} tii[20,69] := {159} tii[20,70] := {173} tii[20,71] := {280} tii[20,72] := {426} tii[20,73] := {172} tii[20,74] := {110} tii[20,75] := {179} tii[20,76] := {455} tii[20,77] := {157} tii[20,78] := {477} tii[20,79] := {473} tii[20,80] := {332} tii[20,81] := {109} tii[20,82] := {223} tii[20,83] := {315} tii[20,84] := {278} tii[20,85] := {188, 189} tii[20,86] := {384} tii[20,87] := {170} tii[20,88] := {90, 91} tii[20,89] := {363} tii[20,90] := {381} tii[20,91] := {124} tii[20,92] := {222} tii[20,93] := {277} tii[20,94] := {261} tii[20,95] := {64} tii[20,96] := {490} tii[20,97] := {298, 465} tii[20,98] := {136, 137} tii[20,99] := {224} tii[20,100] := {89, 190} tii[20,101] := {425} tii[20,102] := {117} tii[20,103] := {423} tii[20,104] := {257} tii[20,105] := {334} tii[20,106] := {304} tii[20,107] := {107} tii[20,108] := {336, 483} tii[20,109] := {498} tii[20,110] := {86, 87} tii[20,111] := {454} tii[20,112] := {497} tii[20,113] := {155} tii[20,114] := {275} tii[20,115] := {310} tii[20,116] := {399} tii[20,117] := {198} tii[20,118] := {333} tii[20,119] := {383, 493} tii[20,120] := {502} tii[20,121] := {435} tii[20,122] := {256} tii[20,123] := {503} tii[20,124] := {453} tii[20,125] := {262} tii[20,126] := {443} tii[20,127] := {421} tii[20,128] := {293, 294} tii[20,129] := {158} tii[20,130] := {369} tii[20,131] := {348, 349} tii[20,132] := {219} tii[20,133] := {35} tii[20,134] := {422} tii[20,135] := {317} tii[20,136] := {380} tii[20,137] := {330} tii[20,138] := {441} tii[20,139] := {71} tii[20,140] := {83, 295} tii[20,141] := {34} tii[20,142] := {241, 242} tii[20,143] := {209} tii[20,144] := {296, 397} tii[20,145] := {452} tii[20,146] := {368} tii[20,147] := {274} tii[20,148] := {420} tii[20,149] := {220} tii[20,150] := {186, 187} tii[20,151] := {249} tii[20,152] := {331, 434} tii[20,153] := {476} tii[20,154] := {309} tii[20,155] := {413} tii[20,156] := {451} tii[20,157] := {366} tii[20,158] := {60} tii[20,159] := {328} tii[20,160] := {131, 347} tii[20,161] := {12} tii[20,162] := {185} tii[20,163] := {100} tii[20,164] := {408} tii[20,165] := {378} tii[20,166] := {218} tii[20,167] := {143} tii[20,168] := {82, 292} tii[20,169] := {255} tii[20,170] := {446} tii[20,171] := {419} tii[20,172] := {270, 464} tii[20,173] := {445} tii[20,174] := {32} tii[20,175] := {327} tii[20,176] := {238} tii[20,177] := {56} tii[20,178] := {308} tii[20,179] := {217, 433} tii[20,180] := {291} tii[20,181] := {470} tii[20,182] := {377} tii[20,183] := {488} tii[20,184] := {405} tii[20,185] := {61} tii[20,186] := {442} tii[20,187] := {258} tii[20,188] := {325} tii[20,189] := {269} tii[20,190] := {30} tii[20,191] := {112} tii[20,192] := {259} tii[20,193] := {70} tii[20,194] := {42, 237} tii[20,195] := {162} tii[20,196] := {469} tii[20,197] := {312} tii[20,198] := {216} tii[20,199] := {182, 183} tii[20,200] := {234, 432} tii[20,201] := {375} tii[20,202] := {59} tii[20,203] := {303} tii[20,204] := {128, 129} tii[20,205] := {268, 463} tii[20,206] := {364} tii[20,207] := {254} tii[20,208] := {487} tii[20,209] := {65} tii[20,210] := {416} tii[20,211] := {253} tii[20,212] := {486} tii[20,213] := {81, 289} tii[20,214] := {168} tii[20,215] := {365} tii[20,216] := {102} tii[20,217] := {345} tii[20,218] := {214} tii[20,219] := {356} tii[20,220] := {84, 85} tii[20,221] := {113, 346} tii[20,222] := {145} tii[20,223] := {324, 481} tii[20,224] := {201} tii[20,225] := {202} tii[20,226] := {407} tii[20,227] := {267} tii[20,228] := {495} tii[20,229] := {392} tii[20,230] := {167} tii[20,231] := {439} tii[20,232] := {501} tii[20,233] := {415} tii[20,234] := {68} tii[20,235] := {266} tii[20,236] := {287} tii[20,237] := {471} tii[20,238] := {96} tii[20,239] := {18, 19} tii[20,240] := {440} tii[20,241] := {252} tii[20,242] := {264, 461} tii[20,243] := {323} tii[20,244] := {342} tii[20,245] := {489} tii[20,246] := {485} tii[20,247] := {67} tii[20,248] := {360} tii[20,249] := {372} tii[20,250] := {496} tii[20,251] := {500} tii[20,252] := {474} tii[20,253] := {126} tii[20,254] := {370} tii[20,255] := {460} tii[20,256] := {401, 402} tii[20,257] := {341} tii[20,258] := {125} tii[20,259] := {479} tii[20,260] := {355, 438} tii[20,261] := {319} tii[20,262] := {80} tii[20,263] := {286} tii[20,264] := {390, 466} tii[20,265] := {491} tii[20,266] := {359} tii[20,267] := {41} tii[20,268] := {232} tii[20,269] := {108} tii[20,270] := {386} tii[20,271] := {300, 301} tii[20,272] := {40} tii[20,273] := {193, 194} tii[20,274] := {229} tii[20,275] := {38} tii[20,276] := {427} tii[20,277] := {248, 354} tii[20,278] := {285} tii[20,279] := {153} tii[20,280] := {16} tii[20,281] := {140, 141} tii[20,282] := {196} tii[20,283] := {281, 400} tii[20,284] := {457} tii[20,285] := {176} tii[20,286] := {316} tii[20,287] := {31} tii[20,288] := {337} tii[20,289] := {51, 52} tii[20,290] := {123} tii[20,291] := {389} tii[20,292] := {195, 299} tii[20,293] := {74} tii[20,294] := {63} tii[20,295] := {39} tii[20,296] := {94, 192} tii[20,297] := {367} tii[20,298] := {387} tii[20,299] := {150} tii[20,300] := {228} tii[20,301] := {104} tii[20,302] := {231, 353} tii[20,303] := {23, 24} tii[20,304] := {428} tii[20,305] := {105} tii[20,306] := {106} tii[20,307] := {178, 302} tii[20,308] := {338} tii[20,309] := {448} tii[20,310] := {314} tii[20,311] := {120} tii[20,312] := {227} tii[20,313] := {260} tii[20,314] := {73} tii[20,315] := {305} tii[20,316] := {175} tii[20,317] := {46, 138} tii[20,318] := {226} tii[20,319] := {211} tii[20,320] := {210} tii[20,321] := {279} tii[20,322] := {250} tii[20,323] := {251} tii[20,324] := {22, 88} tii[20,325] := {118} tii[20,326] := {127} tii[20,327] := {225} tii[20,328] := {208} tii[20,329] := {207} tii[20,330] := {139, 243} tii[20,331] := {122} tii[20,332] := {154} tii[20,333] := {335} tii[20,334] := {311} tii[20,335] := {49, 50} tii[20,336] := {78} tii[20,337] := {169} tii[20,338] := {174, 297} tii[20,339] := {149} tii[20,340] := {47, 135} tii[20,341] := {199} tii[20,342] := {385} tii[20,343] := {203} tii[20,344] := {151} tii[20,345] := {276} tii[20,346] := {121} tii[20,347] := {406} tii[20,348] := {119, 244} tii[20,349] := {152} tii[20,350] := {362} tii[20,351] := {197} tii[20,352] := {14} tii[20,353] := {318} tii[20,354] := {165} tii[20,355] := {357} tii[20,356] := {4} tii[20,357] := {114} tii[20,358] := {20, 21} tii[20,359] := {69} tii[20,360] := {11} tii[20,361] := {272} tii[20,362] := {414} tii[20,363] := {115} tii[20,364] := {132, 350} tii[20,365] := {404} tii[20,366] := {29} tii[20,367] := {45, 240} tii[20,368] := {166, 398} tii[20,369] := {148} tii[20,370] := {13} tii[20,371] := {97} tii[20,372] := {329} tii[20,373] := {449} tii[20,374] := {37} tii[20,375] := {5, 6} tii[20,376] := {164} tii[20,377] := {58} tii[20,378] := {116, 351} tii[20,379] := {57} tii[20,380] := {468} tii[20,381] := {103} tii[20,382] := {273} tii[20,383] := {2} tii[20,384] := {10} tii[20,385] := {3} tii[20,386] := {130} tii[20,387] := {163, 396} tii[20,388] := {28} tii[20,389] := {27} tii[20,390] := {239} tii[20,391] := {55} tii[20,392] := {326} tii[20,393] := {101} tii[20,394] := {36} tii[20,395] := {146} tii[20,396] := {17, 181} tii[20,397] := {111} tii[20,398] := {66, 290} tii[20,399] := {98} tii[20,400] := {99} tii[20,401] := {147} tii[20,402] := {215} tii[20,403] := {307} tii[20,404] := {144} tii[20,405] := {95} tii[20,406] := {92, 93} tii[20,407] := {177} tii[20,408] := {79} tii[20,409] := {206} tii[20,410] := {53, 54} tii[20,411] := {156} tii[20,412] := {25, 26} tii[20,413] := {15} tii[20,414] := {62} tii[20,415] := {8, 9} tii[20,416] := {75} tii[20,417] := {7, 48} tii[20,418] := {72, 191} tii[20,419] := {0, 1} tii[20,420] := {33} cell#18 , |C| = 1024 special orbit = A4+A1 special rep = phi[512,11] , dim = 512 cell rep = phi[512,12]+phi[512,11] TII depth = 6 TII multiplicity polynomial = 512*X^2 TII subcells: tii[19,1] := {863, 960} tii[19,2] := {378, 926} tii[19,3] := {224, 991} tii[19,4] := {887, 927} tii[19,5] := {535, 961} tii[19,6] := {687, 780} tii[19,7] := {978, 997} tii[19,8] := {922, 975} tii[19,9] := {626, 773} tii[19,10] := {813, 976} tii[19,11] := {934, 977} tii[19,12] := {304, 1002} tii[19,13] := {256, 862} tii[19,14] := {933, 968} tii[19,15] := {511, 1000} tii[19,16] := {107, 724} tii[19,17] := {723, 848} tii[19,18] := {613, 911} tii[19,19] := {564, 674} tii[19,20] := {913, 946} tii[19,21] := {258, 513} tii[19,22] := {512, 677} tii[19,23] := {725, 1001} tii[19,24] := {849, 900} tii[19,25] := {912, 944} tii[19,26] := {715, 1019} tii[19,27] := {105, 864} tii[19,28] := {768, 808} tii[19,29] := {562, 671} tii[19,30] := {713, 931} tii[19,31] := {296, 452} tii[19,32] := {250, 297} tii[19,33] := {871, 932} tii[19,34] := {673, 1013} tii[19,35] := {168, 809} tii[19,36] := {672, 719} tii[19,37] := {872, 1020} tii[19,38] := {454, 563} tii[19,39] := {609, 875} tii[19,40] := {767, 806} tii[19,41] := {769, 1018} tii[19,42] := {251, 873} tii[19,43] := {714, 810} tii[19,44] := {349, 453} tii[19,45] := {930, 1022} tii[19,46] := {910, 1023} tii[19,47] := {561, 996} tii[19,48] := {949, 972} tii[19,49] := {330, 1005} tii[19,50] := {492, 971} tii[19,51] := {786, 838} tii[19,52] := {200, 837} tii[19,53] := {101, 917} tii[19,54] := {707, 857} tii[19,55] := {552, 1003} tii[19,56] := {901, 952} tii[19,57] := {388, 953} tii[19,58] := {40, 708} tii[19,59] := {237, 787} tii[19,60] := {387, 663} tii[19,61] := {596, 664} tii[19,62] := {753, 1004} tii[19,63] := {501, 698} tii[19,64] := {834, 902} tii[19,65] := {490, 903} tii[19,66] := {756, 950} tii[19,67] := {597, 951} tii[19,68] := {434, 966} tii[19,69] := {194, 831} tii[19,70] := {745, 830} tii[19,71] := {98, 916} tii[19,72] := {342, 945} tii[19,73] := {227, 782} tii[19,74] := {560, 653} tii[19,75] := {380, 654} tii[19,76] := {247, 899} tii[19,77] := {343, 943} tii[19,78] := {853, 895} tii[19,79] := {192, 928} tii[19,80] := {276, 891} tii[19,81] := {239, 894} tii[19,82] := {823, 890} tii[19,83] := {424, 979} tii[19,84] := {71, 645} tii[19,85] := {644, 778} tii[19,86] := {54, 854} tii[19,87] := {428, 915} tii[19,88] := {591, 691} tii[19,89] := {190, 426} tii[19,90] := {425, 584} tii[19,91] := {193, 795} tii[19,92] := {28, 781} tii[19,93] := {641, 980} tii[19,94] := {779, 827} tii[19,95] := {392, 589} tii[19,96] := {274, 896} tii[19,97] := {442, 545} tii[19,98] := {151, 689} tii[19,99] := {481, 546} tii[19,100] := {375, 825} tii[19,101] := {741, 824} tii[19,102] := {164, 826} tii[19,103] := {543, 686} tii[19,104] := {321, 941} tii[19,105] := {37, 544} tii[19,106] := {55, 690} tii[19,107] := {322, 855} tii[19,108] := {483, 592} tii[19,109] := {852, 893} tii[19,110] := {429, 897} tii[19,111] := {73, 431} tii[19,112] := {373, 939} tii[19,113] := {482, 889} tii[19,114] := {647, 888} tii[19,115] := {240, 892} tii[19,116] := {430, 585} tii[19,117] := {275, 866} tii[19,118] := {556, 648} tii[19,119] := {586, 649} tii[19,120] := {225, 587} tii[19,121] := {740, 957} tii[19,122] := {374, 929} tii[19,123] := {439, 742} tii[19,124] := {688, 743} tii[19,125] := {150, 479} tii[19,126] := {640, 906} tii[19,127] := {423, 1012} tii[19,128] := {365, 921} tii[19,129] := {792, 914} tii[19,130] := {636, 1015} tii[19,131] := {370, 999} tii[19,132] := {222, 988} tii[19,133] := {185, 791} tii[19,134] := {67, 793} tii[19,135] := {681, 732} tii[19,136] := {112, 731} tii[19,137] := {267, 881} tii[19,138] := {880, 938} tii[19,139] := {50, 850} tii[19,140] := {820, 1014} tii[19,141] := {421, 776} tii[19,142] := {369, 473} tii[19,143] := {266, 526} tii[19,144] := {469, 527} tii[19,145] := {475, 989} tii[19,146] := {704, 851} tii[19,147] := {68, 637} tii[19,148] := {420, 577} tii[19,149] := {145, 682} tii[19,150] := {317, 959} tii[19,151] := {363, 816} tii[19,152] := {815, 886} tii[19,153] := {118, 703} tii[19,154] := {582, 1006} tii[19,155] := {604, 777} tii[19,156] := {422, 909} tii[19,157] := {187, 603} tii[19,158] := {822, 878} tii[19,159] := {470, 879} tii[19,160] := {64, 625} tii[19,161] := {87, 882} tii[19,162] := {180, 923} tii[19,163] := {525, 679} tii[19,164] := {179, 411} tii[19,165] := {214, 573} tii[19,166] := {140, 817} tii[19,167] := {360, 412} tii[19,168] := {263, 883} tii[19,169] := {33, 524} tii[19,170] := {728, 937} tii[19,171] := {215, 734} tii[19,172] := {65, 414} tii[19,173] := {814, 884} tii[19,174] := {361, 935} tii[19,175] := {415, 574} tii[19,176] := {464, 520} tii[19,177] := {262, 306} tii[19,178] := {359, 920} tii[19,179] := {305, 627} tii[19,180] := {571, 624} tii[19,181] := {877, 936} tii[19,182] := {178, 213} tii[19,183] := {409, 521} tii[19,184] := {465, 964} tii[19,185] := {572, 992} tii[19,186] := {172, 804} tii[19,187] := {147, 807} tii[19,188] := {261, 969} tii[19,189] := {803, 876} tii[19,190] := {24, 770} tii[19,191] := {515, 847} tii[19,192] := {460, 568} tii[19,193] := {303, 458} tii[19,194] := {407, 983} tii[19,195] := {63, 622} tii[19,196] := {313, 402} tii[19,197] := {353, 403} tii[19,198] := {85, 566} tii[19,199] := {106, 702} tii[19,200] := {92, 718} tii[19,201] := {253, 717} tii[19,202] := {716, 812} tii[19,203] := {621, 772} tii[19,204] := {358, 947} tii[19,205] := {11, 675} tii[19,206] := {516, 948} tii[19,207] := {148, 805} tii[19,208] := {25, 567} tii[19,209] := {108, 518} tii[19,210] := {727, 801} tii[19,211] := {354, 802} tii[19,212] := {408, 771} tii[19,213] := {355, 461} tii[19,214] := {517, 678} tii[19,215] := {463, 981} tii[19,216] := {811, 885} tii[19,217] := {614, 726} tii[19,218] := {260, 356} tii[19,219] := {174, 615} tii[19,220] := {462, 967} tii[19,221] := {416, 506} tii[19,222] := {455, 507} tii[19,223] := {171, 790} tii[19,224] := {137, 456} tii[19,225] := {175, 406} tii[19,226] := {616, 982} tii[19,227] := {312, 610} tii[19,228] := {565, 611} tii[19,229] := {617, 721} tii[19,230] := {569, 994} tii[19,231] := {405, 570} tii[19,232] := {176, 257} tii[19,233] := {720, 819} tii[19,234] := {259, 722} tii[19,235] := {252, 865} tii[19,236] := {84, 351} tii[19,237] := {357, 619} tii[19,238] := {676, 1009} tii[19,239] := {514, 618} tii[19,240] := {397, 505} tii[19,241] := {209, 345} tii[19,242] := {249, 861} tii[19,243] := {344, 398} tii[19,244] := {169, 208} tii[19,245] := {401, 503} tii[19,246] := {207, 347} tii[19,247] := {800, 1016} tii[19,248] := {799, 874} tii[19,249] := {136, 248} tii[19,250] := {346, 919} tii[19,251] := {450, 504} tii[19,252] := {846, 1021} tii[19,253] := {299, 399} tii[19,254] := {348, 400} tii[19,255] := {83, 170} tii[19,256] := {451, 963} tii[19,257] := {165, 962} tii[19,258] := {290, 867} tii[19,259] := {243, 987} tii[19,260] := {841, 868} tii[19,261] := {132, 869} tii[19,262] := {337, 859} tii[19,263] := {495, 600} tii[19,264] := {133, 764} tii[19,265] := {10, 502} tii[19,266] := {341, 958} tii[19,267] := {104, 918} tii[19,268] := {766, 797} tii[19,269] := {205, 796} tii[19,270] := {167, 860} tii[19,271] := {447, 908} tii[19,272] := {291, 710} tii[19,273] := {670, 711} tii[19,274] := {159, 954} tii[19,275] := {285, 973} tii[19,276] := {128, 706} tii[19,277] := {233, 904} tii[19,278] := {131, 762} tii[19,279] := {700, 763} tii[19,280] := {284, 383} tii[19,281] := {41, 553} tii[19,282] := {607, 784} tii[19,283] := {59, 858} tii[19,284] := {328, 694} tii[19,285] := {385, 955} tii[19,286] := {438, 986} tii[19,287] := {21, 608} tii[19,288] := {78, 606} tii[19,289] := {329, 840} tii[19,290] := {201, 666} tii[19,291] := {598, 667} tii[19,292] := {130, 497} tii[19,293] := {102, 788} tii[19,294] := {555, 956} tii[19,295] := {488, 984} tii[19,296] := {498, 695} tii[19,297] := {9, 499} tii[19,298] := {331, 489} tii[19,299] := {126, 332} tii[19,300] := {696, 758} tii[19,301] := {103, 757} tii[19,302] := {160, 839} tii[19,303] := {487, 970} tii[19,304] := {45, 500} tii[19,305] := {281, 382} tii[19,306] := {435, 755} tii[19,307] := {75, 660} tii[19,308] := {161, 697} tii[19,309] := {785, 836} tii[19,310] := {166, 835} tii[19,311] := {287, 557} tii[19,312] := {491, 558} tii[19,313] := {659, 985} tii[19,314] := {238, 759} tii[19,315] := {593, 995} tii[19,316] := {81, 394} tii[19,317] := {76, 236} tii[19,318] := {235, 386} tii[19,319] := {197, 282} tii[19,320] := {395, 595} tii[19,321] := {551, 661} tii[19,322] := {127, 754} tii[19,323] := {333, 665} tii[19,324] := {244, 760} tii[19,325] := {699, 761} tii[19,326] := {693, 1010} tii[19,327] := {134, 295} tii[19,328] := {155, 942} tii[19,329] := {231, 898} tii[19,330] := {125, 752} tii[19,331] := {656, 751} tii[19,332] := {2, 393} tii[19,333] := {56, 856} tii[19,334] := {327, 833} tii[19,335] := {195, 658} tii[19,336] := {550, 657} tii[19,337] := {99, 783} tii[19,338] := {325, 484} tii[19,339] := {278, 747} tii[19,340] := {668, 746} tii[19,341] := {153, 832} tii[19,342] := {7, 326} tii[19,343] := {154, 692} tii[19,344] := {381, 829} tii[19,345] := {559, 828} tii[19,346] := {228, 748} tii[19,347] := {448, 548} tii[19,348] := {18, 230} tii[19,349] := {279, 549} tii[19,350] := {229, 379} tii[19,351] := {324, 655} tii[19,352] := {485, 750} tii[19,353] := {449, 749} tii[19,354] := {95, 744} tii[19,355] := {537, 646} tii[19,356] := {120, 538} tii[19,357] := {188, 272} tii[19,358] := {19, 391} tii[19,359] := {372, 925} tii[19,360] := {121, 320} tii[19,361] := {319, 477} tii[19,362] := {123, 709} tii[19,363] := {536, 940} tii[19,364] := {293, 480} tii[19,365] := {152, 652} tii[19,366] := {96, 588} tii[19,367] := {334, 432} tii[19,368] := {376, 433} tii[19,369] := {539, 642} tii[19,370] := {191, 643} tii[19,371] := {39, 292} tii[19,372] := {476, 965} tii[19,373] := {119, 189} tii[19,374] := {277, 870} tii[19,375] := {97, 377} tii[19,376] := {273, 541} tii[19,377] := {542, 845} tii[19,378] := {335, 650} tii[19,379] := {590, 651} tii[19,380] := {427, 540} tii[19,381] := {583, 993} tii[19,382] := {226, 547} tii[19,383] := {74, 206} tii[19,384] := {72, 122} tii[19,385] := {323, 443} tii[19,386] := {478, 974} tii[19,387] := {66, 633} tii[19,388] := {534, 1008} tii[19,389] := {36, 705} tii[19,390] := {579, 634} tii[19,391] := {26, 774} tii[19,392] := {639, 990} tii[19,393] := {51, 683} tii[19,394] := {113, 529} tii[19,395] := {17, 605} tii[19,396] := {471, 530} tii[19,397] := {216, 362} tii[19,398] := {581, 998} tii[19,399] := {114, 735} tii[19,400] := {88, 733} tii[19,401] := {53, 628} tii[19,402] := {368, 472} tii[19,403] := {16, 419} tii[19,404] := {575, 629} tii[19,405] := {4, 580} tii[19,406] := {531, 821} tii[19,407] := {183, 217} tii[19,408] := {269, 366} tii[19,409] := {736, 1007} tii[19,410] := {93, 729} tii[19,411] := {318, 685} tii[19,412] := {680, 730} tii[19,413] := {12, 474} tii[19,414] := {684, 1011} tii[19,415] := {635, 737} tii[19,416] := {184, 818} tii[19,417] := {181, 417} tii[19,418] := {364, 418} tii[19,419] := {89, 576} tii[19,420] := {35, 315} tii[19,421] := {146, 630} tii[19,422] := {316, 468} tii[19,423] := {270, 367} tii[19,424] := {143, 265} tii[19,425] := {115, 144} tii[19,426] := {34, 533} tii[19,427] := {775, 1017} tii[19,428] := {186, 271} tii[19,429] := {149, 631} tii[19,430] := {69, 223} tii[19,431] := {578, 632} tii[19,432] := {218, 528} tii[19,433] := {532, 638} tii[19,434] := {27, 371} tii[19,435] := {116, 738} tii[19,436] := {30, 519} tii[19,437] := {57, 623} tii[19,438] := {141, 466} tii[19,439] := {110, 307} tii[19,440] := {264, 308} tii[19,441] := {309, 413} tii[19,442] := {111, 142} tii[19,443] := {100, 522} tii[19,444] := {467, 523} tii[19,445] := {158, 410} tii[19,446] := {47, 612} tii[19,447] := {6, 302} tii[19,448] := {219, 300} tii[19,449] := {48, 457} tii[19,450] := {15, 211} tii[19,451] := {61, 602} tii[19,452] := {86, 510} tii[19,453] := {212, 352} tii[19,454] := {254, 301} tii[19,455] := {49, 255} tii[19,456] := {220, 508} tii[19,457] := {32, 139} tii[19,458] := {138, 404} tii[19,459] := {620, 739} tii[19,460] := {173, 794} tii[19,461] := {109, 177} tii[19,462] := {459, 509} tii[19,463] := {350, 924} tii[19,464] := {210, 314} tii[19,465] := {62, 94} tii[19,466] := {232, 298} tii[19,467] := {82, 798} tii[19,468] := {46, 712} tii[19,469] := {202, 842} tii[19,470] := {445, 599} tii[19,471] := {241, 907} tii[19,472] := {22, 446} tii[19,473] := {14, 701} tii[19,474] := {242, 789} tii[19,475] := {389, 494} tii[19,476] := {79, 669} tii[19,477] := {44, 340} tii[19,478] := {3, 396} tii[19,479] := {338, 843} tii[19,480] := {31, 601} tii[19,481] := {289, 905} tii[19,482] := {339, 493} tii[19,483] := {203, 844} tii[19,484] := {444, 765} tii[19,485] := {60, 496} tii[19,486] := {23, 246} tii[19,487] := {245, 390} tii[19,488] := {1, 486} tii[19,489] := {20, 437} tii[19,490] := {234, 594} tii[19,491] := {198, 283} tii[19,492] := {5, 384} tii[19,493] := {436, 554} tii[19,494] := {77, 662} tii[19,495] := {42, 163} tii[19,496] := {162, 288} tii[19,497] := {13, 286} tii[19,498] := {129, 199} tii[19,499] := {196, 441} tii[19,500] := {336, 440} tii[19,501] := {29, 204} tii[19,502] := {0, 294} tii[19,503] := {8, 157} tii[19,504] := {156, 280} tii[19,505] := {38, 135} tii[19,506] := {58, 124} tii[19,507] := {90, 182} tii[19,508] := {70, 91} tii[19,509] := {52, 117} tii[19,510] := {221, 310} tii[19,511] := {268, 311} tii[19,512] := {43, 80} cell#19 , |C| = 210 special orbit = A3+A2+A1 special rep = phi[210,13] , dim = 210 cell rep = phi[210,13] TII depth = 5 TII multiplicity polynomial = 210*X TII subcells: tii[17,1] := {209} tii[17,2] := {161} tii[17,3] := {197} tii[17,4] := {200} tii[17,5] := {134} tii[17,6] := {205} tii[17,7] := {96} tii[17,8] := {185} tii[17,9] := {198} tii[17,10] := {146} tii[17,11] := {62} tii[17,12] := {192} tii[17,13] := {106} tii[17,14] := {172} tii[17,15] := {44} tii[17,16] := {181} tii[17,17] := {63} tii[17,18] := {168} tii[17,19] := {128} tii[17,20] := {58} tii[17,21] := {206} tii[17,22] := {199} tii[17,23] := {167} tii[17,24] := {126} tii[17,25] := {166} tii[17,26] := {108} tii[17,27] := {79} tii[17,28] := {201} tii[17,29] := {189} tii[17,30] := {124} tii[17,31] := {188} tii[17,32] := {5} tii[17,33] := {187} tii[17,34] := {86} tii[17,35] := {194} tii[17,36] := {151} tii[17,37] := {57} tii[17,38] := {109} tii[17,39] := {177} tii[17,40] := {80} tii[17,41] := {183} tii[17,42] := {165} tii[17,43] := {148} tii[17,44] := {208} tii[17,45] := {114} tii[17,46] := {45} tii[17,47] := {99} tii[17,48] := {160} tii[17,49] := {19} tii[17,50] := {186} tii[17,51] := {147} tii[17,52] := {207} tii[17,53] := {90} tii[17,54] := {204} tii[17,55] := {115} tii[17,56] := {75} tii[17,57] := {193} tii[17,58] := {122} tii[17,59] := {54} tii[17,60] := {76} tii[17,61] := {182} tii[17,62] := {136} tii[17,63] := {112} tii[17,64] := {83} tii[17,65] := {173} tii[17,66] := {171} tii[17,67] := {9} tii[17,68] := {64} tii[17,69] := {202} tii[17,70] := {74} tii[17,71] := {130} tii[17,72] := {84} tii[17,73] := {195} tii[17,74] := {97} tii[17,75] := {157} tii[17,76] := {16} tii[17,77] := {158} tii[17,78] := {145} tii[17,79] := {29} tii[17,80] := {190} tii[17,81] := {121} tii[17,82] := {135} tii[17,83] := {120} tii[17,84] := {119} tii[17,85] := {82} tii[17,86] := {94} tii[17,87] := {156} tii[17,88] := {73} tii[17,89] := {143} tii[17,90] := {180} tii[17,91] := {28} tii[17,92] := {118} tii[17,93] := {144} tii[17,94] := {92} tii[17,95] := {41} tii[17,96] := {70} tii[17,97] := {203} tii[17,98] := {104} tii[17,99] := {13} tii[17,100] := {141} tii[17,101] := {196} tii[17,102] := {93} tii[17,103] := {129} tii[17,104] := {27} tii[17,105] := {179} tii[17,106] := {103} tii[17,107] := {53} tii[17,108] := {21} tii[17,109] := {153} tii[17,110] := {191} tii[17,111] := {150} tii[17,112] := {33} tii[17,113] := {72} tii[17,114] := {133} tii[17,115] := {163} tii[17,116] := {81} tii[17,117] := {88} tii[17,118] := {14} tii[17,119] := {102} tii[17,120] := {127} tii[17,121] := {178} tii[17,122] := {25} tii[17,123] := {149} tii[17,124] := {39} tii[17,125] := {162} tii[17,126] := {35} tii[17,127] := {11} tii[17,128] := {139} tii[17,129] := {101} tii[17,130] := {176} tii[17,131] := {175} tii[17,132] := {52} tii[17,133] := {2} tii[17,134] := {20} tii[17,135] := {131} tii[17,136] := {116} tii[17,137] := {125} tii[17,138] := {68} tii[17,139] := {12} tii[17,140] := {91} tii[17,141] := {30} tii[17,142] := {77} tii[17,143] := {18} tii[17,144] := {100} tii[17,145] := {31} tii[17,146] := {159} tii[17,147] := {85} tii[17,148] := {38} tii[17,149] := {169} tii[17,150] := {47} tii[17,151] := {48} tii[17,152] := {152} tii[17,153] := {123} tii[17,154] := {66} tii[17,155] := {174} tii[17,156] := {138} tii[17,157] := {10} tii[17,158] := {56} tii[17,159] := {137} tii[17,160] := {65} tii[17,161] := {78} tii[17,162] := {32} tii[17,163] := {132} tii[17,164] := {69} tii[17,165] := {98} tii[17,166] := {89} tii[17,167] := {23} tii[17,168] := {107} tii[17,169] := {37} tii[17,170] := {155} tii[17,171] := {4} tii[17,172] := {95} tii[17,173] := {50} tii[17,174] := {17} tii[17,175] := {111} tii[17,176] := {36} tii[17,177] := {67} tii[17,178] := {3} tii[17,179] := {184} tii[17,180] := {42} tii[17,181] := {164} tii[17,182] := {15} tii[17,183] := {87} tii[17,184] := {61} tii[17,185] := {170} tii[17,186] := {1} tii[17,187] := {105} tii[17,188] := {43} tii[17,189] := {154} tii[17,190] := {34} tii[17,191] := {7} tii[17,192] := {49} tii[17,193] := {117} tii[17,194] := {22} tii[17,195] := {59} tii[17,196] := {142} tii[17,197] := {60} tii[17,198] := {110} tii[17,199] := {40} tii[17,200] := {8} tii[17,201] := {140} tii[17,202] := {26} tii[17,203] := {51} tii[17,204] := {24} tii[17,205] := {113} tii[17,206] := {46} tii[17,207] := {55} tii[17,208] := {0} tii[17,209] := {6} tii[17,210] := {71} cell#20 , |C| = 621 special orbit = D4(a1)+A1 special rep = phi[405,15] , dim = 405 cell rep = phi[216,16]+phi[405,15] TII depth = 8 TII multiplicity polynomial = 216*X^2+189*X TII subcells: tii[14,1] := {101, 620} tii[14,2] := {115, 618} tii[14,3] := {190, 609} tii[14,4] := {289, 580} tii[14,5] := {287, 608} tii[14,6] := {134, 556} tii[14,7] := {399, 507} tii[14,8] := {236, 601} tii[14,9] := {288, 579} tii[14,10] := {450} tii[14,11] := {221, 575} tii[14,12] := {62, 615} tii[14,13] := {375} tii[14,14] := {114, 600} tii[14,15] := {478} tii[14,16] := {164} tii[14,17] := {51, 614} tii[14,18] := {257} tii[14,19] := {26, 598} tii[14,20] := {369} tii[14,21] := {418, 498} tii[14,22] := {173, 596} tii[14,23] := {361} tii[14,24] := {311} tii[14,25] := {40, 604} tii[14,26] := {268, 553} tii[14,27] := {94, 468} tii[14,28] := {82, 571} tii[14,29] := {17, 572} tii[14,30] := {367, 470} tii[14,31] := {27, 587} tii[14,32] := {256} tii[14,33] := {224, 573} tii[14,34] := {307} tii[14,35] := {419} tii[14,36] := {135, 570} tii[14,37] := {420, 516} tii[14,38] := {312} tii[14,39] := {41, 560} tii[14,40] := {362} tii[14,41] := {175, 537} tii[14,42] := {254, 597} tii[14,43] := {469} tii[14,44] := {308, 582} tii[14,45] := {416} tii[14,46] := {496} tii[14,47] := {324, 387} tii[14,48] := {93, 617} tii[14,49] := {246, 593} tii[14,50] := {37, 603} tii[14,51] := {300} tii[14,52] := {466} tii[14,53] := {223, 494} tii[14,54] := {161, 552} tii[14,55] := {77, 566} tii[14,56] := {408} tii[14,57] := {123, 611} tii[14,58] := {413} tii[14,59] := {159, 595} tii[14,60] := {465} tii[14,61] := {46, 613} tii[14,62] := {351} tii[14,63] := {90, 585} tii[14,64] := {462} tii[14,65] := {64, 610} tii[14,66] := {298} tii[14,67] := {88, 591} tii[14,68] := {352} tii[14,69] := {117, 602} tii[14,70] := {511} tii[14,71] := {153, 592} tii[14,72] := {461} tii[14,73] := {403} tii[14,74] := {346, 437} tii[14,75] := {239} tii[14,76] := {21, 584} tii[14,77] := {6, 529} tii[14,78] := {50, 528} tii[14,79] := {177, 530} tii[14,80] := {116, 510} tii[14,81] := {294, 401} tii[14,82] := {194} tii[14,83] := {12, 557} tii[14,84] := {349} tii[14,85] := {150, 590} tii[14,86] := {344} tii[14,87] := {347, 458} tii[14,88] := {242} tii[14,89] := {193, 565} tii[14,90] := {404} tii[14,91] := {22, 523} tii[14,92] := {70, 491} tii[14,93] := {296} tii[14,94] := {191, 562} tii[14,95] := {400} tii[14,96] := {151, 549} tii[14,97] := {195, 509} tii[14,98] := {237, 550} tii[14,99] := {48, 438} tii[14,100] := {238, 548} tii[14,101] := {343} tii[14,102] := {348} tii[14,103] := {402} tii[14,104] := {189} tii[14,105] := {149, 583} tii[14,106] := {456} tii[14,107] := {100, 524} tii[14,108] := {341, 457} tii[14,109] := {235} tii[14,110] := {188, 563} tii[14,111] := {398} tii[14,112] := {286} tii[14,113] := {174, 531} tii[14,114] := {342} tii[14,115] := {547} tii[14,116] := {380, 452} tii[14,117] := {78, 619} tii[14,118] := {395} tii[14,119] := {319} tii[14,120] := {133} tii[14,121] := {522} tii[14,122] := {275, 546} tii[14,123] := {143, 506} tii[14,124] := {57, 616} tii[14,125] := {340} tii[14,126] := {171} tii[14,127] := {482} tii[14,128] := {215} tii[14,129] := {79, 607} tii[14,130] := {397} tii[14,131] := {214} tii[14,132] := {521} tii[14,133] := {97} tii[14,134] := {479} tii[14,135] := {269, 336} tii[14,136] := {68, 612} tii[14,137] := {425} tii[14,138] := {184, 448} tii[14,139] := {178, 543} tii[14,140] := {170} tii[14,141] := {95, 599} tii[14,142] := {372} tii[14,143] := {429} tii[14,144] := {131} tii[14,145] := {44, 606} tii[14,146] := {218, 281} tii[14,147] := {130, 518} tii[14,148] := {318} tii[14,149] := {176, 337} tii[14,150] := {128, 577} tii[14,151] := {424} tii[14,152] := {63, 589} tii[14,153] := {376} tii[14,154] := {480} tii[14,155] := {169} tii[14,156] := {140, 502} tii[14,157] := {10, 544} tii[14,158] := {373} tii[14,159] := {168} tii[14,160] := {325, 519} tii[14,161] := {210} tii[14,162] := {84, 576} tii[14,163] := {317} tii[14,164] := {165, 555} tii[14,165] := {145, 485} tii[14,166] := {85, 578} tii[14,167] := {428} tii[14,168] := {18, 503} tii[14,169] := {262} tii[14,170] := {207, 517} tii[14,171] := {426} tii[14,172] := {211} tii[14,173] := {113, 542} tii[14,174] := {374} tii[14,175] := {112, 436} tii[14,176] := {271, 476} tii[14,177] := {477} tii[14,178] := {263} tii[14,179] := {147, 501} tii[14,180] := {427} tii[14,181] := {334} tii[14,182] := {472} tii[14,183] := {163} tii[14,184] := {104, 446} tii[14,185] := {422} tii[14,186] := {280} tii[14,187] := {36, 605} tii[14,188] := {206} tii[14,189] := {52, 588} tii[14,190] := {259} tii[14,191] := {473} tii[14,192] := {335} tii[14,193] := {61, 541} tii[14,194] := {370} tii[14,195] := {233} tii[14,196] := {72, 499} tii[14,197] := {204} tii[14,198] := {39, 574} tii[14,199] := {313} tii[14,200] := {42, 500} tii[14,201] := {102, 445} tii[14,202] := {258} tii[14,203] := {421} tii[14,204] := {285} tii[14,205] := {471} tii[14,206] := {339} tii[14,207] := {110, 443} tii[14,208] := {253} tii[14,209] := {255} tii[14,210] := {58, 536} tii[14,211] := {309} tii[14,212] := {187} tii[14,213] := {125, 514} tii[14,214] := {182, 540} tii[14,215] := {217, 515} tii[14,216] := {59, 538} tii[14,217] := {29, 539} tii[14,218] := {80, 389} tii[14,219] := {306} tii[14,220] := {310} tii[14,221] := {81, 497} tii[14,222] := {67, 414} tii[14,223] := {162, 467} tii[14,224] := {366} tii[14,225] := {364} tii[14,226] := {231} tii[14,227] := {360} tii[14,228] := {273, 554} tii[14,229] := {368} tii[14,230] := {111, 444} tii[14,231] := {365} tii[14,232] := {417} tii[14,233] := {282} tii[14,234] := {126, 415} tii[14,235] := {60, 333} tii[14,236] := {363} tii[14,237] := {338} tii[14,238] := {66} tii[14,239] := {410} tii[14,240] := {199, 569} tii[14,241] := {270, 332} tii[14,242] := {24, 586} tii[14,243] := {122} tii[14,244] := {249} tii[14,245] := {357} tii[14,246] := {91} tii[14,247] := {220, 388} tii[14,248] := {38, 558} tii[14,249] := {303} tii[14,250] := {411} tii[14,251] := {121} tii[14,252] := {158, 535} tii[14,253] := {2, 493} tii[14,254] := {301} tii[14,255] := {120} tii[14,256] := {200, 581} tii[14,257] := {105, 525} tii[14,258] := {251, 359} tii[14,259] := {155} tii[14,260] := {353, 463} tii[14,261] := {53, 594} tii[14,262] := {247} tii[14,263] := {8, 526} tii[14,264] := {160} tii[14,265] := {250, 551} tii[14,266] := {179, 442} tii[14,267] := {54, 533} tii[14,268] := {354} tii[14,269] := {7, 441} tii[14,270] := {305, 412} tii[14,271] := {201} tii[14,272] := {197} tii[14,273] := {355} tii[14,274] := {156} tii[14,275] := {124, 513} tii[14,276] := {15, 483} tii[14,277] := {75, 484} tii[14,278] := {299, 407} tii[14,279] := {76, 568} tii[14,280] := {302} tii[14,281] := {409} tii[14,282] := {198} tii[14,283] := {25, 433} tii[14,284] := {202, 512} tii[14,285] := {272, 464} tii[14,286] := {106, 534} tii[14,287] := {356} tii[14,288] := {252} tii[14,289] := {0, 440} tii[14,290] := {89} tii[14,291] := {244} tii[14,292] := {65, 559} tii[14,293] := {405} tii[14,294] := {1, 384} tii[14,295] := {118} tii[14,296] := {297} tii[14,297] := {154} tii[14,298] := {350} tii[14,299] := {5, 331} tii[14,300] := {119, 567} tii[14,301] := {406} tii[14,302] := {196} tii[14,303] := {385} tii[14,304] := {240} tii[14,305] := {148} tii[14,306] := {33, 564} tii[14,307] := {192} tii[14,308] := {136, 490} tii[14,309] := {13, 489} tii[14,310] := {34, 488} tii[14,311] := {291} tii[14,312] := {292} tii[14,313] := {185} tii[14,314] := {49, 532} tii[14,315] := {241} tii[14,316] := {87, 459} tii[14,317] := {35, 383} tii[14,318] := {219, 508} tii[14,319] := {295} tii[14,320] := {71, 492} tii[14,321] := {293} tii[14,322] := {345} tii[14,323] := {228} tii[14,324] := {152, 460} tii[14,325] := {290} tii[14,326] := {278} tii[14,327] := {99, 439} tii[14,328] := {243} tii[14,329] := {234} tii[14,330] := {330} tii[14,331] := {326, 396} tii[14,332] := {267} tii[14,333] := {274, 455} tii[14,334] := {216} tii[14,335] := {321, 432} tii[14,336] := {264} tii[14,337] := {19, 561} tii[14,338] := {180, 232} tii[14,339] := {107, 545} tii[14,340] := {213} tii[14,341] := {69, 431} tii[14,342] := {226, 505} tii[14,343] := {142, 284} tii[14,344] := {108, 453} tii[14,345] := {379, 481} tii[14,346] := {265} tii[14,347] := {320} tii[14,348] := {141, 504} tii[14,349] := {31, 527} tii[14,350] := {172} tii[14,351] := {47, 377} tii[14,352] := {327, 520} tii[14,353] := {20, 487} tii[14,354] := {322} tii[14,355] := {181, 454} tii[14,356] := {109, 329} tii[14,357] := {266} tii[14,358] := {208, 315} tii[14,359] := {4, 486} tii[14,360] := {129} tii[14,361] := {146, 393} tii[14,362] := {132} tii[14,363] := {96, 475} tii[14,364] := {9, 435} tii[14,365] := {261, 371} tii[14,366] := {166} tii[14,367] := {11, 451} tii[14,368] := {86, 382} tii[14,369] := {167, 474} tii[14,370] := {212} tii[14,371] := {225, 423} tii[14,372] := {222, 430} tii[14,373] := {16, 381} tii[14,374] := {209} tii[14,375] := {316} tii[14,376] := {30, 328} tii[14,377] := {183, 449} tii[14,378] := {260} tii[14,379] := {137, 186} tii[14,380] := {103, 230} tii[14,381] := {127} tii[14,382] := {73, 391} tii[14,383] := {28, 447} tii[14,384] := {138, 392} tii[14,385] := {205} tii[14,386] := {74, 277} tii[14,387] := {83, 394} tii[14,388] := {314} tii[14,389] := {56, 229} tii[14,390] := {144, 390} tii[14,391] := {43, 276} tii[14,392] := {203} tii[14,393] := {92} tii[14,394] := {3, 386} tii[14,395] := {55, 434} tii[14,396] := {157} tii[14,397] := {248, 358} tii[14,398] := {14, 279} tii[14,399] := {245} tii[14,400] := {139, 495} tii[14,401] := {304} tii[14,402] := {23, 227} tii[14,403] := {32, 323} tii[14,404] := {45, 283} tii[14,405] := {98, 378} cell#21 , |C| = 875 special orbit = E7(a5) special rep = phi[315,7] , dim = 315 cell rep = phi[280,8]+phi[280,9]+phi[315,7] TII depth = 4 TII multiplicity polynomial = 70*X^2+245*X^3 TII subcells: tii[25,1] := {321, 750} tii[25,2] := {406, 661} tii[25,3] := {185, 588} tii[25,4] := {273, 476, 863} tii[25,5] := {482, 818} tii[25,6] := {240, 710, 844} tii[25,7] := {215, 409, 656} tii[25,8] := {224, 500, 569} tii[25,9] := {259, 689} tii[25,10] := {283, 284, 745} tii[25,11] := {163, 641, 816} tii[25,12] := {159, 330, 632} tii[25,13] := {219, 649, 708} tii[25,14] := {144, 540} tii[25,15] := {77, 485, 756} tii[25,16] := {218, 376, 849} tii[25,17] := {221, 772, 809} tii[25,18] := {33, 336, 832} tii[25,19] := {440, 441, 837} tii[25,20] := {314, 638, 859} tii[25,21] := {462, 463, 736} tii[25,22] := {346, 562, 866} tii[25,23] := {194, 432} tii[25,24] := {422, 624, 812} tii[25,25] := {106, 251, 787} tii[25,26] := {421, 597, 870} tii[25,27] := {193, 596} tii[25,28] := {474, 753, 856} tii[25,29] := {501, 669, 873} tii[25,30] := {579, 731, 874} tii[25,31] := {276, 479, 574} tii[25,32] := {110, 250, 523} tii[25,33] := {353, 354, 800} tii[25,34] := {230, 560, 843} tii[25,35] := {41, 396, 671} tii[25,36] := {294, 438, 861} tii[25,37] := {295, 636, 712} tii[25,38] := {89, 427} tii[25,39] := {429, 430, 830} tii[25,40] := {171, 477, 829} tii[25,41] := {264, 510} tii[25,42] := {263, 665} tii[25,43] := {292, 439, 862} tii[25,44] := {30, 281} tii[25,45] := {10, 255, 784} tii[25,46] := {293, 764, 814} tii[25,47] := {511, 512, 842} tii[25,48] := {149, 398, 799} tii[25,49] := {591, 592, 858} tii[25,50] := {103, 478, 828} tii[25,51] := {448, 449, 726} tii[25,52] := {70, 318, 724} tii[25,53] := {341, 507, 868} tii[25,54] := {342, 565, 767} tii[25,55] := {134, 350} tii[25,56] := {405, 781} tii[25,57] := {133, 506} tii[25,58] := {2, 190, 819} tii[25,59] := {92, 278} tii[25,60] := {538, 539, 766} tii[25,61] := {446, 447, 820} tii[25,62] := {55, 248, 660} tii[25,63] := {274, 484, 725} tii[25,64] := {374, 707, 839} tii[25,65] := {416, 584, 871} tii[25,66] := {28, 319, 723} tii[25,67] := {233, 566, 779} tii[25,68] := {613, 614, 810} tii[25,69] := {328, 727} tii[25,70] := {57, 351} tii[25,71] := {492, 657, 872} tii[25,72] := {418, 639, 855} tii[25,73] := {530, 531, 847} tii[25,74] := {607, 608, 854} tii[25,75] := {343, 564, 846} tii[25,76] := {349, 558, 559} tii[25,77] := {378, 379, 805} tii[25,78] := {308, 634, 635} tii[25,79] := {205, 629} tii[25,80] := {121, 413, 552} tii[25,81] := {302, 303, 761} tii[25,82] := {385, 654, 655} tii[25,83] := {268, 546} tii[25,84] := {306, 307, 758} tii[25,85] := {155, 333, 834} tii[25,86] := {82, 207, 757} tii[25,87] := {267, 698} tii[25,88] := {153, 553} tii[25,89] := {467, 719, 720} tii[25,90] := {239, 384, 803} tii[25,91] := {83, 489, 630} tii[25,92] := {304, 305, 835} tii[25,93] := {208, 468, 833} tii[25,94] := {551, 775, 776} tii[25,95] := {51, 570, 701} tii[25,96] := {104, 631} tii[25,97] := {277, 456, 457} tii[25,98] := {117, 567, 774} tii[25,99] := {166, 167, 617} tii[25,100] := {345, 542, 543} tii[25,101] := {78, 168, 749} tii[25,102] := {420, 618, 619} tii[25,103] := {64, 388} tii[25,104] := {79, 487, 721} tii[25,105] := {496, 692, 693} tii[25,106] := {49, 568, 777} tii[25,107] := {361, 362, 794} tii[25,108] := {222, 223, 688} tii[25,109] := {290, 621, 622} tii[25,110] := {199, 442} tii[25,111] := {113, 403, 793} tii[25,112] := {164, 301, 825} tii[25,113] := {16, 235} tii[25,114] := {220, 377, 850} tii[25,115] := {443, 444, 815} tii[25,116] := {162, 289, 743} tii[25,117] := {165, 578, 642} tii[25,118] := {98, 451} tii[25,119] := {99, 327, 744} tii[25,120] := {198, 612} tii[25,121] := {46, 146, 687} tii[25,122] := {368, 694, 695} tii[25,123] := {148, 363} tii[25,124] := {47, 407, 702} tii[25,125] := {534, 535, 841} tii[25,126] := {62, 404, 792} tii[25,127] := {147, 369, 791} tii[25,128] := {115, 653, 709} tii[25,129] := {101, 445} tii[25,130] := {61, 541} tii[25,131] := {25, 486, 760} tii[25,132] := {450, 751, 752} tii[25,133] := {114, 236, 795} tii[25,134] := {75, 197, 615} tii[25,135] := {143, 550} tii[25,136] := {286, 747, 748} tii[25,137] := {285, 458, 860} tii[25,138] := {60, 260, 686} tii[25,139] := {161, 718, 765} tii[25,140] := {17, 411, 801} tii[25,141] := {366, 545, 864} tii[25,142] := {367, 796, 797} tii[25,143] := {96, 464} tii[25,144] := {288, 826, 827} tii[25,145] := {348, 528, 529} tii[25,146] := {340, 603} tii[25,147] := {71, 325, 436} tii[25,148] := {423, 572, 573} tii[25,149] := {139, 520} tii[25,150] := {214, 402, 527} tii[25,151] := {211, 401, 853} tii[25,152] := {391, 392, 677} tii[25,153] := {393, 394, 673} tii[25,154] := {339, 739} tii[25,155] := {389, 390, 789} tii[25,156] := {42, 141, 672} tii[25,157] := {183, 481, 604} tii[25,158] := {94, 437} tii[25,159] := {503, 644, 645} tii[25,160] := {271, 526} tii[25,161] := {43, 400, 521} tii[25,162] := {182, 326, 836} tii[25,163] := {313, 475, 734} tii[25,164] := {210, 605} tii[25,165] := {130, 563, 679} tii[25,166] := {23, 480, 600} tii[25,167] := {581, 713, 714} tii[25,168] := {58, 522} tii[25,169] := {272, 557, 785} tii[25,170] := {129, 258, 808} tii[25,171] := {109, 253, 355} tii[25,172] := {497, 498, 499} tii[25,173] := {72, 191, 735} tii[25,174] := {142, 356} tii[25,175] := {347, 549, 788} tii[25,176] := {73, 322, 433} tii[25,177] := {575, 576, 577} tii[25,178] := {317, 627, 823} tii[25,179] := {45, 399, 518} tii[25,180] := {44, 138, 674} tii[25,181] := {95, 434} tii[25,182] := {650, 651, 652} tii[25,183] := {13, 136, 848} tii[25,184] := {107, 257, 516} tii[25,185] := {502, 647, 648} tii[25,186] := {395, 697, 840} tii[25,187] := {74, 324, 595} tii[25,188] := {580, 716, 717} tii[25,189] := {140, 517} tii[25,190] := {4, 189, 822} tii[25,191] := {556, 770, 771} tii[25,192] := {108, 256, 668} tii[25,193] := {344, 514, 515} tii[25,194] := {296, 297, 587} tii[25,195] := {20, 91, 586} tii[25,196] := {229, 375, 659} tii[25,197] := {231, 360, 852} tii[25,198] := {232, 561, 646} tii[25,199] := {21, 320, 601} tii[25,200] := {419, 593, 594} tii[25,201] := {54, 352} tii[25,202] := {202, 431} tii[25,203] := {173, 637, 715} tii[25,204] := {203, 455, 722} tii[25,205] := {27, 428} tii[25,206] := {172, 282, 831} tii[25,207] := {9, 397, 675} tii[25,208] := {495, 666, 667} tii[25,209] := {151, 513} tii[25,210] := {88, 435} tii[25,211] := {372, 524, 867} tii[25,212] := {169, 332, 589} tii[25,213] := {373, 663, 664} tii[25,214] := {39, 132, 508} tii[25,215] := {201, 590} tii[25,216] := {452, 602, 869} tii[25,217] := {226, 359, 851} tii[25,218] := {3, 323, 732} tii[25,219] := {227, 706, 769} tii[25,220] := {150, 408, 662} tii[25,221] := {26, 186, 585} tii[25,222] := {453, 728, 729} tii[25,223] := {12, 358} tii[25,224] := {52, 357} tii[25,225] := {170, 331, 730} tii[25,226] := {370, 525, 865} tii[25,227] := {371, 782, 783} tii[25,228] := {68, 188, 425} tii[25,229] := {417, 610, 611} tii[25,230] := {0, 252, 778} tii[25,231] := {90, 426} tii[25,232] := {56, 249, 505} tii[25,233] := {364, 365, 780} tii[25,234] := {298, 640, 811} tii[25,235] := {493, 683, 684} tii[25,236] := {536, 537, 838} tii[25,237] := {275, 483, 821} tii[25,238] := {69, 187, 583} tii[25,239] := {454, 740, 741} tii[25,240] := {494, 681, 682} tii[25,241] := {243, 244, 703} tii[25,242] := {178, 424, 491} tii[25,243] := {125, 245, 807} tii[25,244] := {126, 504, 571} tii[25,245] := {180, 181, 633} tii[25,246] := {87, 582, 643} tii[25,247] := {127, 128, 704} tii[25,248] := {158, 334, 461} tii[25,249] := {122, 265, 804} tii[25,250] := {241, 242, 705} tii[25,251] := {123, 410, 547} tii[25,252] := {209, 460} tii[25,253] := {84, 204, 759} tii[25,254] := {176, 177, 763} tii[25,255] := {85, 488, 626} tii[25,256] := {154, 548} tii[25,257] := {380, 381, 773} tii[25,258] := {36, 174} tii[25,259] := {66, 266, 699} tii[25,260] := {156, 338, 623} tii[25,261] := {50, 152, 700} tii[25,262] := {206, 625} tii[25,263] := {37, 335, 755} tii[25,264] := {465, 466, 817} tii[25,265] := {237, 238, 806} tii[25,266] := {124, 412, 696} tii[25,267] := {18, 234} tii[25,268] := {19, 269, 802} tii[25,269] := {157, 337, 754} tii[25,270] := {382, 383, 845} tii[25,271] := {119, 120, 544} tii[25,272] := {80, 81, 620} tii[25,273] := {116, 225, 690} tii[25,274] := {102, 291, 746} tii[25,275] := {35, 469} tii[25,276] := {48, 118, 691} tii[25,277] := {65, 228, 798} tii[25,278] := {111, 262, 532} tii[25,279] := {145, 533} tii[25,280] := {24, 97, 616} tii[25,281] := {100, 329, 609} tii[25,282] := {160, 300, 824} tii[25,283] := {6, 299} tii[25,284] := {63, 386} tii[25,285] := {34, 200, 742} tii[25,286] := {287, 459, 857} tii[25,287] := {112, 261, 685} tii[25,288] := {76, 196, 628} tii[25,289] := {315, 316, 606} tii[25,290] := {246, 247, 680} tii[25,291] := {59, 216} tii[25,292] := {31, 192, 598} tii[25,293] := {472, 473, 711} tii[25,294] := {212, 415, 676} tii[25,295] := {270, 678} tii[25,296] := {310, 311, 738} tii[25,297] := {22, 93, 599} tii[25,298] := {14, 254, 670} tii[25,299] := {184, 490, 737} tii[25,300] := {32, 280} tii[25,301] := {554, 555, 768} tii[25,302] := {470, 471, 813} tii[25,303] := {213, 414, 790} tii[25,304] := {5, 195, 733} tii[25,305] := {15, 217} tii[25,306] := {1, 137, 786} tii[25,307] := {8, 53, 509} tii[25,308] := {29, 279} tii[25,309] := {11, 135, 658} tii[25,310] := {40, 131, 519} tii[25,311] := {105, 309} tii[25,312] := {86, 179, 762} tii[25,313] := {67, 387} tii[25,314] := {38, 312} tii[25,315] := {7, 175} cell#22 , |C| = 105 special orbit = A5b special rep = phi[105,12] , dim = 105 cell rep = phi[105,12] TII depth = 2 TII multiplicity polynomial = 105*X TII subcells: tii[18,1] := {104} tii[18,2] := {103} tii[18,3] := {97} tii[18,4] := {45} tii[18,5] := {75} tii[18,6] := {100} tii[18,7] := {88} tii[18,8] := {78} tii[18,9] := {81} tii[18,10] := {73} tii[18,11] := {82} tii[18,12] := {101} tii[18,13] := {25} tii[18,14] := {51} tii[18,15] := {99} tii[18,16] := {102} tii[18,17] := {0} tii[18,18] := {6} tii[18,19] := {24} tii[18,20] := {87} tii[18,21] := {12} tii[18,22] := {71} tii[18,23] := {22} tii[18,24] := {34} tii[18,25] := {93} tii[18,26] := {35} tii[18,27] := {98} tii[18,28] := {48} tii[18,29] := {60} tii[18,30] := {33} tii[18,31] := {95} tii[18,32] := {58} tii[18,33] := {47} tii[18,34] := {92} tii[18,35] := {59} tii[18,36] := {96} tii[18,37] := {90} tii[18,38] := {67} tii[18,39] := {84} tii[18,40] := {57} tii[18,41] := {91} tii[18,42] := {76} tii[18,43] := {85} tii[18,44] := {80} tii[18,45] := {20} tii[18,46] := {32} tii[18,47] := {43} tii[18,48] := {83} tii[18,49] := {44} tii[18,50] := {89} tii[18,51] := {28} tii[18,52] := {55} tii[18,53] := {86} tii[18,54] := {66} tii[18,55] := {41} tii[18,56] := {53} tii[18,57] := {23} tii[18,58] := {65} tii[18,59] := {36} tii[18,60] := {74} tii[18,61] := {72} tii[18,62] := {50} tii[18,63] := {61} tii[18,64] := {3} tii[18,65] := {8} tii[18,66] := {16} tii[18,67] := {1} tii[18,68] := {38} tii[18,69] := {5} tii[18,70] := {52} tii[18,71] := {11} tii[18,72] := {10} tii[18,73] := {62} tii[18,74] := {37} tii[18,75] := {19} tii[18,76] := {70} tii[18,77] := {30} tii[18,78] := {2} tii[18,79] := {7} tii[18,80] := {94} tii[18,81] := {13} tii[18,82] := {18} tii[18,83] := {79} tii[18,84] := {21} tii[18,85] := {29} tii[18,86] := {49} tii[18,87] := {42} tii[18,88] := {54} tii[18,89] := {4} tii[18,90] := {9} tii[18,91] := {17} tii[18,92] := {15} tii[18,93] := {68} tii[18,94] := {27} tii[18,95] := {46} tii[18,96] := {77} tii[18,97] := {40} tii[18,98] := {69} tii[18,99] := {31} tii[18,100] := {56} tii[18,101] := {64} tii[18,102] := {14} tii[18,103] := {26} tii[18,104] := {39} tii[18,105] := {63} cell#23 , |C| = 504 special orbit = D5(a1) special rep = phi[420,10] , dim = 420 cell rep = phi[84,12]+phi[420,10] TII depth = 4 TII multiplicity polynomial = 336*X+84*X^2 TII subcells: tii[20,1] := {287, 466} tii[20,2] := {151} tii[20,3] := {380, 490} tii[20,4] := {353} tii[20,5] := {301} tii[20,6] := {387, 499} tii[20,7] := {364, 503} tii[20,8] := {441} tii[20,9] := {347} tii[20,10] := {251, 474} tii[20,11] := {346} tii[20,12] := {439} tii[20,13] := {90} tii[20,14] := {317, 481} tii[20,15] := {394} tii[20,16] := {182} tii[20,17] := {180, 393} tii[20,18] := {233} tii[20,19] := {322, 496} tii[20,20] := {438} tii[20,21] := {88, 293} tii[20,22] := {291} tii[20,23] := {311, 501} tii[20,24] := {450} tii[20,25] := {472} tii[20,26] := {289} tii[20,27] := {341} tii[20,28] := {286} tii[20,29] := {277, 486} tii[20,30] := {26, 178} tii[20,31] := {391} tii[20,32] := {261, 497} tii[20,33] := {316} tii[20,34] := {366} tii[20,35] := {392} tii[20,36] := {231} tii[20,37] := {225, 473} tii[20,38] := {172, 485} tii[20,39] := {288} tii[20,40] := {412} tii[20,41] := {367} tii[20,42] := {437} tii[20,43] := {448} tii[20,44] := {163} tii[20,45] := {464} tii[20,46] := {403} tii[20,47] := {305} tii[20,48] := {209} tii[20,49] := {433} tii[20,50] := {359} tii[20,51] := {76} tii[20,52] := {199, 402} tii[20,53] := {308} tii[20,54] := {358} tii[20,55] := {230} tii[20,56] := {462} tii[20,57] := {157} tii[20,58] := {337} tii[20,59] := {404} tii[20,60] := {113, 384} tii[20,61] := {306} tii[20,62] := {283} tii[20,63] := {471} tii[20,64] := {339} tii[20,65] := {252} tii[20,66] := {483} tii[20,67] := {108} tii[20,68] := {429} tii[20,69] := {71} tii[20,70] := {127} tii[20,71] := {247} tii[20,72] := {459} tii[20,73] := {227} tii[20,74] := {41} tii[20,75] := {147} tii[20,76] := {470} tii[20,77] := {70} tii[20,78] := {482} tii[20,79] := {400} tii[20,80] := {399} tii[20,81] := {39} tii[20,82] := {169} tii[20,83] := {300} tii[20,84] := {248} tii[20,85] := {142, 352} tii[20,86] := {426} tii[20,87] := {249} tii[20,88] := {63, 245} tii[20,89] := {355} tii[20,90] := {425} tii[20,91] := {102} tii[20,92] := {273} tii[20,93] := {219} tii[20,94] := {246} tii[20,95] := {20} tii[20,96] := {427} tii[20,97] := {338, 493} tii[20,98] := {100, 299} tii[20,99] := {197} tii[20,100] := {65, 326} tii[20,101] := {446} tii[20,102] := {198} tii[20,103] := {457} tii[20,104] := {250} tii[20,105] := {274} tii[20,106] := {191} tii[20,107] := {38} tii[20,108] := {284, 498} tii[20,109] := {458} tii[20,110] := {64, 244} tii[20,111] := {469} tii[20,112] := {388} tii[20,113] := {144} tii[20,114] := {327} tii[20,115] := {401} tii[20,116] := {409} tii[20,117] := {101} tii[20,118] := {381} tii[20,119] := {314, 502} tii[20,120] := {435} tii[20,121] := {447} tii[20,122] := {354} tii[20,123] := {463} tii[20,124] := {410} tii[20,125] := {141} tii[20,126] := {351} tii[20,127] := {373} tii[20,128] := {239, 440} tii[20,129] := {62} tii[20,130] := {241} tii[20,131] := {266, 467} tii[20,132] := {296} tii[20,133] := {34} tii[20,134] := {398} tii[20,135] := {168} tii[20,136] := {419} tii[20,137] := {295} tii[20,138] := {349} tii[20,139] := {138} tii[20,140] := {159, 422} tii[20,141] := {94} tii[20,142] := {187, 397} tii[20,143] := {96} tii[20,144] := {215, 477} tii[20,145] := {423} tii[20,146] := {216} tii[20,147] := {238} tii[20,148] := {445} tii[20,149] := {268} tii[20,150] := {140, 350} tii[20,151] := {139} tii[20,152] := {167, 488} tii[20,153] := {456} tii[20,154] := {298} tii[20,155] := {270} tii[20,156] := {468} tii[20,157] := {124} tii[20,158] := {16} tii[20,159] := {396} tii[20,160] := {201, 453} tii[20,161] := {56} tii[20,162] := {223} tii[20,163] := {31} tii[20,164] := {171} tii[20,165] := {418} tii[20,166] := {294} tii[20,167] := {57} tii[20,168] := {155, 420} tii[20,169] := {348} tii[20,170] := {224} tii[20,171] := {452} tii[20,172] := {211, 491} tii[20,173] := {221} tii[20,174] := {91} tii[20,175] := {372} tii[20,176] := {275} tii[20,177] := {135} tii[20,178] := {395} tii[20,179] := {164, 487} tii[20,180] := {331} tii[20,181] := {276} tii[20,182] := {417} tii[20,183] := {330} tii[20,184] := {451} tii[20,185] := {14} tii[20,186] := {343} tii[20,187] := {121} tii[20,188] := {368} tii[20,189] := {232} tii[20,190] := {4} tii[20,191] := {183} tii[20,192] := {133} tii[20,193] := {53} tii[20,194] := {104, 371} tii[20,195] := {213} tii[20,196] := {369} tii[20,197] := {165} tii[20,198] := {179} tii[20,199] := {132, 345} tii[20,200] := {269, 489} tii[20,201] := {406} tii[20,202] := {13} tii[20,203] := {184} tii[20,204] := {89, 292} tii[20,205] := {217, 495} tii[20,206] := {214} tii[20,207] := {236} tii[20,208] := {414} tii[20,209] := {134} tii[20,210] := {444} tii[20,211] := {344} tii[20,212] := {323} tii[20,213] := {122, 415} tii[20,214] := {130} tii[20,215] := {212} tii[20,216] := {86} tii[20,217] := {361} tii[20,218] := {263} tii[20,219] := {234} tii[20,220] := {55, 235} tii[20,221] := {81, 449} tii[20,222] := {52} tii[20,223] := {260, 500} tii[20,224] := {290} tii[20,225] := {181} tii[20,226] := {264} tii[20,227] := {318} tii[20,228] := {375} tii[20,229] := {407} tii[20,230] := {131} tii[20,231] := {319} tii[20,232] := {421} tii[20,233] := {362} tii[20,234] := {50} tii[20,235] := {315} tii[20,236] := {312} tii[20,237] := {278} tii[20,238] := {85} tii[20,239] := {12, 129} tii[20,240] := {342} tii[20,241] := {340} tii[20,242] := {210, 494} tii[20,243] := {365} tii[20,244] := {363} tii[20,245] := {332} tii[20,246] := {413} tii[20,247] := {51} tii[20,248] := {411} tii[20,249] := {313} tii[20,250] := {383} tii[20,251] := {408} tii[20,252] := {405} tii[20,253] := {118} tii[20,254] := {254} tii[20,255] := {443} tii[20,256] := {335, 479} tii[20,257] := {307} tii[20,258] := {205} tii[20,259] := {465} tii[20,260] := {282, 484} tii[20,261] := {207} tii[20,262] := {79} tii[20,263] := {256} tii[20,264] := {229, 492} tii[20,265] := {480} tii[20,266] := {257} tii[20,267] := {119} tii[20,268] := {208} tii[20,269] := {42} tii[20,270] := {357} tii[20,271] := {222, 442} tii[20,272] := {45} tii[20,273] := {154, 356} tii[20,274] := {309} tii[20,275] := {109} tii[20,276] := {385} tii[20,277] := {170, 461} tii[20,278] := {258} tii[20,279] := {72} tii[20,280] := {77} tii[20,281] := {111, 304} tii[20,282] := {110} tii[20,283] := {123, 478} tii[20,284] := {432} tii[20,285] := {259} tii[20,286] := {310} tii[20,287] := {9} tii[20,288] := {386} tii[20,289] := {43, 202} tii[20,290] := {114} tii[20,291] := {336} tii[20,292] := {125, 430} tii[20,293] := {152} tii[20,294] := {23} tii[20,295] := {115} tii[20,296] := {75, 333} tii[20,297] := {360} tii[20,298] := {434} tii[20,299] := {158} tii[20,300] := {285} tii[20,301] := {200} tii[20,302] := {82, 460} tii[20,303] := {22, 156} tii[20,304] := {389} tii[20,305] := {44} tii[20,306] := {203} tii[20,307] := {49, 431} tii[20,308] := {390} tii[20,309] := {436} tii[20,310] := {193} tii[20,311] := {84} tii[20,312] := {195} tii[20,313] := {149} tii[20,314] := {128} tii[20,315] := {196} tii[20,316] := {150} tii[20,317] := {40, 280} tii[20,318] := {175} tii[20,319] := {192} tii[20,320] := {106} tii[20,321] := {228} tii[20,322] := {146} tii[20,323] := {148} tii[20,324] := {21, 226} tii[20,325] := {176} tii[20,326] := {107} tii[20,327] := {281} tii[20,328] := {194} tii[20,329] := {105} tii[20,330] := {80, 378} tii[20,331] := {98} tii[20,332] := {67} tii[20,333] := {272} tii[20,334] := {302} tii[20,335] := {36, 190} tii[20,336] := {68} tii[20,337] := {220} tii[20,338] := {47, 424} tii[20,339] := {143} tii[20,340] := {37, 271} tii[20,341] := {103} tii[20,342] := {328} tii[20,343] := {303} tii[20,344] := {66} tii[20,345] := {329} tii[20,346] := {99} tii[20,347] := {382} tii[20,348] := {25, 379} tii[20,349] := {145} tii[20,350] := {428} tii[20,351] := {112} tii[20,352] := {19} tii[20,353] := {188} tii[20,354] := {242} tii[20,355] := {243} tii[20,356] := {35} tii[20,357] := {189} tii[20,358] := {17, 136} tii[20,359] := {59} tii[20,360] := {2} tii[20,361] := {321} tii[20,362] := {267} tii[20,363] := {185} tii[20,364] := {174, 454} tii[20,365] := {297} tii[20,366] := {7} tii[20,367] := {117, 377} tii[20,368] := {126, 476} tii[20,369] := {240} tii[20,370] := {60} tii[20,371] := {95} tii[20,372] := {374} tii[20,373] := {324} tii[20,374] := {97} tii[20,375] := {6, 93} tii[20,376] := {218} tii[20,377] := {137} tii[20,378] := {83, 455} tii[20,379] := {18} tii[20,380] := {376} tii[20,381] := {186} tii[20,382] := {325} tii[20,383] := {0} tii[20,384] := {1} tii[20,385] := {32} tii[20,386] := {173} tii[20,387] := {120, 475} tii[20,388] := {92} tii[20,389] := {5} tii[20,390] := {279} tii[20,391] := {15} tii[20,392] := {262} tii[20,393] := {28} tii[20,394] := {29} tii[20,395] := {54} tii[20,396] := {69, 320} tii[20,397] := {166} tii[20,398] := {48, 416} tii[20,399] := {27} tii[20,400] := {87} tii[20,401] := {237} tii[20,402] := {265} tii[20,403] := {370} tii[20,404] := {58} tii[20,405] := {30} tii[20,406] := {78, 253} tii[20,407] := {160} tii[20,408] := {161} tii[20,409] := {206} tii[20,410] := {46, 204} tii[20,411] := {255} tii[20,412] := {24, 162} tii[20,413] := {73} tii[20,414] := {153} tii[20,415] := {10, 116} tii[20,416] := {74} tii[20,417] := {8, 177} tii[20,418] := {11, 334} tii[20,419] := {3, 61} tii[20,420] := {33} cell#24 , |C| = 756 special orbit = A4 special rep = phi[420,13] , dim = 420 cell rep = phi[336,14]+phi[420,13] TII depth = 4 TII multiplicity polynomial = 336*X^2+84*X TII subcells: tii[16,1] := {447, 674} tii[16,2] := {622} tii[16,3] := {617} tii[16,4] := {591} tii[16,5] := {354, 640} tii[16,6] := {220, 638} tii[16,7] := {556} tii[16,8] := {358, 639} tii[16,9] := {216, 637} tii[16,10] := {531} tii[16,11] := {214, 532} tii[16,12] := {471} tii[16,13] := {279, 680} tii[16,14] := {402} tii[16,15] := {349, 698} tii[16,16] := {586, 656} tii[16,17] := {28, 678} tii[16,18] := {522, 695} tii[16,19] := {87, 676} tii[16,20] := {464, 577} tii[16,21] := {517} tii[16,22] := {126, 543} tii[16,23] := {461, 724} tii[16,24] := {410} tii[16,25] := {187, 677} tii[16,26] := {459, 581} tii[16,27] := {519, 745} tii[16,28] := {576, 750} tii[16,29] := {179, 675} tii[16,30] := {516, 607} tii[16,31] := {382} tii[16,32] := {105, 671} tii[16,33] := {571, 572} tii[16,34] := {311, 670} tii[16,35] := {207, 673} tii[16,36] := {450, 672} tii[16,37] := {515, 606} tii[16,38] := {570, 655} tii[16,39] := {178, 683} tii[16,40] := {63, 623} tii[16,41] := {508, 509} tii[16,42] := {380, 706} tii[16,43] := {173, 596} tii[16,44] := {443} tii[16,45] := {567} tii[16,46] := {305, 597} tii[16,47] := {336} tii[16,48] := {35, 568} tii[16,49] := {315, 598} tii[16,50] := {240, 715} tii[16,51] := {376} tii[16,52] := {148, 625} tii[16,53] := {378, 624} tii[16,54] := {445, 731} tii[16,55] := {446, 552} tii[16,56] := {122, 541} tii[16,57] := {64, 511} tii[16,58] := {510} tii[16,59] := {307} tii[16,60] := {174, 479} tii[16,61] := {317, 730} tii[16,62] := {506, 738} tii[16,63] := {507, 605} tii[16,64] := {381, 644} tii[16,65] := {203, 582} tii[16,66] := {308, 667} tii[16,67] := {147, 524} tii[16,68] := {448, 666} tii[16,69] := {377, 687} tii[16,70] := {47, 697} tii[16,71] := {436, 664} tii[16,72] := {564} tii[16,73] := {298, 594} tii[16,74] := {169, 593} tii[16,75] := {78, 726} tii[16,76] := {42, 618} tii[16,77] := {369, 499} tii[16,78] := {366, 702} tii[16,79] := {440} tii[16,80] := {170, 595} tii[16,81] := {476} tii[16,82] := {115, 619} tii[16,83] := {364, 503} tii[16,84] := {505} tii[16,85] := {119, 747} tii[16,86] := {233, 537} tii[16,87] := {433, 729} tii[16,88] := {442} tii[16,89] := {171, 752} tii[16,90] := {300, 477} tii[16,91] := {498, 737} tii[16,92] := {318, 473} tii[16,93] := {293, 660} tii[16,94] := {20, 659} tii[16,95] := {536} tii[16,96] := {291, 455} tii[16,97] := {70, 592} tii[16,98] := {247, 404} tii[16,99] := {40, 700} tii[16,100] := {362, 701} tii[16,101] := {321, 332} tii[16,102] := {71, 716} tii[16,103] := {474} tii[16,104] := {431, 717} tii[16,105] := {262, 409} tii[16,106] := {430, 662} tii[16,107] := {110, 641} tii[16,108] := {164, 658} tii[16,109] := {200, 340} tii[16,110] := {497, 686} tii[16,111] := {561, 651} tii[16,112] := {496} tii[16,113] := {109, 708} tii[16,114] := {423, 424} tii[16,115] := {32, 557} tii[16,116] := {283, 682} tii[16,117] := {353, 485} tii[16,118] := {494} tii[16,119] := {403} tii[16,120] := {224, 533} tii[16,121] := {14, 495} tii[16,122] := {429} tii[16,123] := {162, 733} tii[16,124] := {161, 590} tii[16,125] := {98, 559} tii[16,126] := {281, 558} tii[16,127] := {352, 714} tii[16,128] := {422, 548} tii[16,129] := {33, 426} tii[16,130] := {222, 534} tii[16,131] := {360} tii[16,132] := {225, 740} tii[16,133] := {425} tii[16,134] := {421, 728} tii[16,135] := {359} tii[16,136] := {221, 705} tii[16,137] := {329} tii[16,138] := {284, 588} tii[16,139] := {142, 504} tii[16,140] := {285, 681} tii[16,141] := {217, 613} tii[16,142] := {287, 589} tii[16,143] := {261} tii[16,144] := {97, 438} tii[16,145] := {280, 647} tii[16,146] := {355, 612} tii[16,147] := {288} tii[16,148] := {286, 720} tii[16,149] := {356, 699} tii[16,150] := {223} tii[16,151] := {357, 692} tii[16,152] := {428, 657} tii[16,153] := {350, 749} tii[16,154] := {215} tii[16,155] := {196, 456} tii[16,156] := {348, 615} tii[16,157] := {157, 587} tii[16,158] := {420, 754} tii[16,159] := {158, 470} tii[16,160] := {159} tii[16,161] := {141, 389} tii[16,162] := {213, 611} tii[16,163] := {419, 649} tii[16,164] := {108} tii[16,165] := {490, 604} tii[16,166] := {491, 744} tii[16,167] := {96, 322} tii[16,168] := {278, 555} tii[16,169] := {554, 755} tii[16,170] := {258, 696} tii[16,171] := {13, 634} tii[16,172] := {137, 645} tii[16,173] := {138, 636} tii[16,174] := {212, 725} tii[16,175] := {396, 635} tii[16,176] := {525} tii[16,177] := {254, 646} tii[16,178] := {255} tii[16,179] := {30, 583} tii[16,180] := {95, 585} tii[16,181] := {277, 746} tii[16,182] := {56, 415} tii[16,183] := {327, 584} tii[16,184] := {57, 528} tii[16,185] := {140, 530} tii[16,186] := {346, 751} tii[16,187] := {398, 529} tii[16,188] := {88, 578} tii[16,189] := {257, 712} tii[16,190] := {244, 544} tii[16,191] := {52, 711} tii[16,192] := {188} tii[16,193] := {84, 734} tii[16,194] := {55, 521} tii[16,195] := {400, 520} tii[16,196] := {457} tii[16,197] := {390} tii[16,198] := {127, 545} tii[16,199] := {54, 633} tii[16,200] := {182, 480} tii[16,201] := {328, 735} tii[16,202] := {86, 481} tii[16,203] := {392} tii[16,204] := {128, 741} tii[16,205] := {89, 579} tii[16,206] := {90, 463} tii[16,207] := {462, 468} tii[16,208] := {245, 411} tii[16,209] := {401, 742} tii[16,210] := {53, 412} tii[16,211] := {31, 460} tii[16,212] := {248, 546} tii[16,213] := {249} tii[16,214] := {397, 710} tii[16,215] := {393, 489} tii[16,216] := {130, 709} tii[16,217] := {341} tii[16,218] := {129, 413} tii[16,219] := {180, 599} tii[16,220] := {342} tii[16,221] := {131, 632} tii[16,222] := {458, 553} tii[16,223] := {184} tii[16,224] := {58, 395} tii[16,225] := {189, 721} tii[16,226] := {274} tii[16,227] := {394, 523} tii[16,228] := {467, 722} tii[16,229] := {185, 343} tii[16,230] := {183, 483} tii[16,231] := {243, 631} tii[16,232] := {93, 324} tii[16,233] := {250, 693} tii[16,234] := {527, 694} tii[16,235] := {518, 608} tii[16,236] := {155, 276} tii[16,237] := {2, 569} tii[16,238] := {153, 707} tii[16,239] := {316} tii[16,240] := {10, 514} tii[16,241] := {209, 732} tii[16,242] := {239, 629} tii[16,243] := {24, 339} tii[16,244] := {66, 630} tii[16,245] := {242} tii[16,246] := {106, 574} tii[16,247] := {25, 453} tii[16,248] := {273, 739} tii[16,249] := {313, 573} tii[16,250] := {5, 451} tii[16,251] := {269} tii[16,252] := {383, 703} tii[16,253] := {151, 704} tii[16,254] := {48, 408} tii[16,255] := {152, 628} tii[16,256] := {449, 718} tii[16,257] := {16, 385} tii[16,258] := {208, 719} tii[16,259] := {81, 338} tii[16,260] := {384, 627} tii[16,261] := {206} tii[16,262] := {36, 314} tii[16,263] := {271, 691} tii[16,264] := {513, 690} tii[16,265] := {306} tii[16,266] := {312, 669} tii[16,267] := {11, 379} tii[16,268] := {265} tii[16,269] := {102, 668} tii[16,270] := {80, 337} tii[16,271] := {235, 643} tii[16,272] := {241, 542} tii[16,273] := {236, 540} tii[16,274] := {266} tii[16,275] := {237} tii[16,276] := {103, 566} tii[16,277] := {386, 689} tii[16,278] := {26, 310} tii[16,279] := {149, 688} tii[16,280] := {123, 268} tii[16,281] := {309, 565} tii[16,282] := {304, 665} tii[16,283] := {202} tii[16,284] := {175} tii[16,285] := {104, 469} tii[16,286] := {387, 626} tii[16,287] := {375, 621} tii[16,288] := {452, 654} tii[16,289] := {50, 238} tii[16,290] := {444, 652} tii[16,291] := {204, 653} tii[16,292] := {146} tii[16,293] := {101, 205} tii[16,294] := {82, 190} tii[16,295] := {267, 609} tii[16,296] := {512, 610} tii[16,297] := {172, 727} tii[16,298] := {43, 500} tii[16,299] := {234, 748} tii[16,300] := {302, 434} tii[16,301] := {121, 538} tii[16,302] := {116} tii[16,303] := {22, 435} tii[16,304] := {21, 563} tii[16,305] := {303, 753} tii[16,306] := {44, 501} tii[16,307] := {45, 368} tii[16,308] := {79, 478} tii[16,309] := {367, 373} tii[16,310] := {299, 736} tii[16,311] := {167} tii[16,312] := {8, 365} tii[16,313] := {406} tii[16,314] := {166, 475} tii[16,315] := {231, 642} tii[16,316] := {72, 661} tii[16,317] := {191, 333} tii[16,318] := {294, 417} tii[16,319] := {4, 441} tii[16,320] := {334} tii[16,321] := {73, 562} tii[16,322] := {15, 372} tii[16,323] := {113} tii[16,324] := {363, 486} tii[16,325] := {370, 743} tii[16,326] := {407} tii[16,327] := {371} tii[16,328] := {297, 663} tii[16,329] := {120, 539} tii[16,330] := {295, 437} tii[16,331] := {117, 685} tii[16,332] := {252, 263} tii[16,333] := {23, 296} tii[16,334] := {112, 405} tii[16,335] := {439, 723} tii[16,336] := {264} tii[16,337] := {168, 650} tii[16,338] := {46, 230} tii[16,339] := {34, 301} tii[16,340] := {432, 549} tii[16,341] := {201, 211} tii[16,342] := {232, 620} tii[16,343] := {226, 347} tii[16,344] := {3, 292} tii[16,345] := {290, 418} tii[16,346] := {227, 388} tii[16,347] := {12, 228} tii[16,348] := {41, 535} tii[16,349] := {27, 165} tii[16,350] := {111, 616} tii[16,351] := {145, 275} tii[16,352] := {361, 487} tii[16,353] := {331, 454} tii[16,354] := {51, 114} tii[16,355] := {1, 282} tii[16,356] := {59, 614} tii[16,357] := {125, 260} tii[16,358] := {60, 493} tii[16,359] := {7, 219} tii[16,360] := {218, 492} tii[16,361] := {163, 472} tii[16,362] := {330} tii[16,363] := {176, 198} tii[16,364] := {99, 648} tii[16,365] := {61, 374} tii[16,366] := {19, 160} tii[16,367] := {351, 602} tii[16,368] := {144, 150} tii[16,369] := {143, 603} tii[16,370] := {199} tii[16,371] := {289, 560} tii[16,372] := {427, 551} tii[16,373] := {197, 550} tii[16,374] := {39, 118} tii[16,375] := {100, 177} tii[16,376] := {69, 83} tii[16,377] := {259, 488} tii[16,378] := {94, 600} tii[16,379] := {139, 547} tii[16,380] := {192, 684} tii[16,381] := {18, 526} tii[16,382] := {325} tii[16,383] := {91, 484} tii[16,384] := {193, 601} tii[16,385] := {465} tii[16,386] := {29, 344} tii[16,387] := {194} tii[16,388] := {38, 466} tii[16,389] := {251} tii[16,390] := {135, 414} tii[16,391] := {256, 713} tii[16,392] := {68, 399} tii[16,393] := {326, 679} tii[16,394] := {195} tii[16,395] := {92, 345} tii[16,396] := {0, 391} tii[16,397] := {132} tii[16,398] := {85, 482} tii[16,399] := {319} tii[16,400] := {6, 320} tii[16,401] := {181, 575} tii[16,402] := {134} tii[16,403] := {210} tii[16,404] := {133, 416} tii[16,405] := {17, 246} tii[16,406] := {136} tii[16,407] := {323, 580} tii[16,408] := {37, 186} tii[16,409] := {9, 270} tii[16,410] := {154} tii[16,411] := {49, 272} tii[16,412] := {65, 156} tii[16,413] := {67, 124} tii[16,414] := {74} tii[16,415] := {76} tii[16,416] := {75, 335} tii[16,417] := {77} tii[16,418] := {62, 253} tii[16,419] := {229, 502} tii[16,420] := {107} cell#25 , |C| = 621 special orbit = D4(a1)+A1 special rep = phi[405,15] , dim = 405 cell rep = phi[216,16]+phi[405,15] TII depth = 8 TII multiplicity polynomial = 216*X^2+189*X TII subcells: tii[14,1] := {122, 529} tii[14,2] := {160, 570} tii[14,3] := {267, 609} tii[14,4] := {406, 620} tii[14,5] := {280, 551} tii[14,6] := {163, 571} tii[14,7] := {415, 603} tii[14,8] := {242, 493} tii[14,9] := {304, 550} tii[14,10] := {587} tii[14,11] := {175, 562} tii[14,12] := {71, 393} tii[14,13] := {481} tii[14,14] := {81, 528} tii[14,15] := {582} tii[14,16] := {220} tii[14,17] := {61, 387} tii[14,18] := {340} tii[14,19] := {32, 258} tii[14,20] := {485} tii[14,21] := {410, 608} tii[14,22] := {213, 597} tii[14,23] := {365} tii[14,24] := {409} tii[14,25] := {46, 316} tii[14,26] := {337, 615} tii[14,27] := {78, 231} tii[14,28] := {55, 458} tii[14,29] := {21, 195} tii[14,30] := {368, 585} tii[14,31] := {34, 254} tii[14,32] := {367} tii[14,33] := {276, 613} tii[14,34] := {314} tii[14,35] := {537} tii[14,36] := {164, 564} tii[14,37] := {434, 606} tii[14,38] := {433} tii[14,39] := {27, 317} tii[14,40] := {385} tii[14,41] := {217, 596} tii[14,42] := {339, 618} tii[14,43] := {578} tii[14,44] := {412, 619} tii[14,45] := {558} tii[14,46] := {557} tii[14,47] := {268, 573} tii[14,48] := {128, 517} tii[14,49] := {224, 494} tii[14,50] := {87, 310} tii[14,51] := {402} tii[14,52] := {500} tii[14,53] := {170, 572} tii[14,54] := {147, 362} tii[14,55] := {101, 454} tii[14,56] := {534} tii[14,57] := {169, 544} tii[14,58] := {456} tii[14,59] := {227, 584} tii[14,60] := {522} tii[14,61] := {120, 357} tii[14,62] := {353} tii[14,63] := {134, 496} tii[14,64] := {492} tii[14,65] := {162, 401} tii[14,66] := {308} tii[14,67] := {215, 470} tii[14,68] := {380} tii[14,69] := {174, 553} tii[14,70] := {549} tii[14,71] := {232, 576} tii[14,72] := {519} tii[14,73] := {420} tii[14,74] := {331, 594} tii[14,75] := {330} tii[14,76] := {59, 244} tii[14,77] := {11, 141} tii[14,78] := {69, 377} tii[14,79] := {208, 601} tii[14,80] := {105, 284} tii[14,81] := {283, 556} tii[14,82] := {282} tii[14,83] := {42, 188} tii[14,84] := {379} tii[14,85] := {209, 586} tii[14,86] := {468} tii[14,87] := {349, 593} tii[14,88] := {348} tii[14,89] := {271, 607} tii[14,90] := {452} tii[14,91] := {36, 245} tii[14,92] := {84, 451} tii[14,93] := {419} tii[14,94] := {266, 611} tii[14,95] := {531} tii[14,96] := {142, 350} tii[14,97] := {189, 418} tii[14,98] := {334, 617} tii[14,99] := {60, 378} tii[14,100] := {333, 614} tii[14,101] := {488} tii[14,102] := {490} tii[14,103] := {547} tii[14,104] := {279} tii[14,105] := {212, 591} tii[14,106] := {487} tii[14,107] := {121, 520} tii[14,108] := {346, 590} tii[14,109] := {345} tii[14,110] := {273, 602} tii[14,111] := {450} tii[14,112] := {414} tii[14,113] := {216, 589} tii[14,114] := {376} tii[14,115] := {588} tii[14,116] := {341, 599} tii[14,117] := {89, 465} tii[14,118] := {545} tii[14,119] := {298} tii[14,120] := {183} tii[14,121] := {546} tii[14,122] := {239, 598} tii[14,123] := {102, 449} tii[14,124] := {65, 396} tii[14,125] := {515} tii[14,126] := {238} tii[14,127] := {516} tii[14,128] := {206} tii[14,129] := {53, 326} tii[14,130] := {566} tii[14,131] := {301} tii[14,132] := {567} tii[14,133] := {218} tii[14,134] := {482} tii[14,135] := {214, 526} tii[14,136] := {95, 445} tii[14,137] := {441} tii[14,138] := {133, 527} tii[14,139] := {135, 512} tii[14,140] := {240} tii[14,141] := {132, 480} tii[14,142] := {390} tii[14,143] := {444} tii[14,144] := {275} tii[14,145] := {50, 323} tii[14,146] := {165, 463} tii[14,147] := {115, 296} tii[14,148] := {443} tii[14,149] := {123, 391} tii[14,150] := {178, 541} tii[14,151] := {461} tii[14,152] := {40, 394} tii[14,153] := {510} tii[14,154] := {511} tii[14,155] := {342} tii[14,156] := {98, 446} tii[14,157] := {13, 155} tii[14,158] := {479} tii[14,159] := {338} tii[14,160] := {294, 604} tii[14,161] := {297} tii[14,162] := {99, 442} tii[14,163] := {322} tii[14,164] := {152, 370} tii[14,165] := {100, 460} tii[14,166] := {57, 464} tii[14,167] := {542} tii[14,168] := {7, 203} tii[14,169] := {372} tii[14,170] := {201, 439} tii[14,171] := {540} tii[14,172] := {411} tii[14,173] := {136, 509} tii[14,174] := {392} tii[14,175] := {72, 389} tii[14,176] := {233, 595} tii[14,177] := {581} tii[14,178] := {483} tii[14,179] := {116, 561} tii[14,180] := {320} tii[14,181] := {477} tii[14,182] := {478} tii[14,183] := {151} tii[14,184] := {70, 369} tii[14,185] := {438} tii[14,186] := {437} tii[14,187] := {44, 319} tii[14,188] := {277} tii[14,189] := {37, 257} tii[14,190] := {344} tii[14,191] := {506} tii[14,192] := {505} tii[14,193] := {39, 525} tii[14,194] := {476} tii[14,195] := {475} tii[14,196] := {85, 436} tii[14,197] := {197} tii[14,198] := {26, 198} tii[14,199] := {413} tii[14,200] := {28, 459} tii[14,201] := {119, 504} tii[14,202] := {255} tii[14,203] := {539} tii[14,204] := {538} tii[14,205] := {580} tii[14,206] := {579} tii[14,207] := {68, 384} tii[14,208] := {364} tii[14,209] := {253} tii[14,210] := {67, 366} tii[14,211] := {408} tii[14,212] := {407} tii[14,213] := {110, 290} tii[14,214] := {219, 600} tii[14,215] := {274, 612} tii[14,216] := {38, 386} tii[14,217] := {16, 149} tii[14,218] := {47, 313} tii[14,219] := {431} tii[14,220] := {315} tii[14,221] := {91, 432} tii[14,222] := {54, 173} tii[14,223] := {148, 363} tii[14,224] := {474} tii[14,225] := {473} tii[14,226] := {472} tii[14,227] := {501} tii[14,228] := {343, 616} tii[14,229] := {503} tii[14,230] := {79, 502} tii[14,231] := {251} tii[14,232] := {536} tii[14,233] := {535} tii[14,234] := {111, 291} tii[14,235] := {35, 252} tii[14,236] := {484} tii[14,237] := {577} tii[14,238] := {158} tii[14,239] := {403} tii[14,240] := {172, 427} tii[14,241] := {210, 524} tii[14,242] := {63, 248} tii[14,243] := {171} tii[14,244] := {355} tii[14,245] := {356} tii[14,246] := {207} tii[14,247] := {161, 457} tii[14,248] := {52, 311} tii[14,249] := {424} tii[14,250] := {425} tii[14,251] := {269} tii[14,252] := {131, 358} tii[14,253] := {3, 107} tii[14,254] := {400} tii[14,255] := {265} tii[14,256] := {191, 428} tii[14,257] := {125, 521} tii[14,258] := {226, 499} tii[14,259] := {223} tii[14,260] := {360, 575} tii[14,261] := {124, 354} tii[14,262] := {247} tii[14,263] := {30, 146} tii[14,264] := {225} tii[14,265] := {249, 498} tii[14,266] := {129, 523} tii[14,267] := {73, 381} tii[14,268] := {471} tii[14,269] := {1, 145} tii[14,270] := {288, 555} tii[14,271] := {287} tii[14,272] := {285} tii[14,273] := {469} tii[14,274] := {332} tii[14,275] := {109, 289} tii[14,276] := {25, 192} tii[14,277] := {88, 455} tii[14,278] := {286, 552} tii[14,279] := {166, 423} tii[14,280] := {309} tii[14,281] := {532} tii[14,282] := {404} tii[14,283] := {31, 250} tii[14,284] := {193, 429} tii[14,285] := {228, 592} tii[14,286] := {139, 495} tii[14,287] := {382} tii[14,288] := {361} tii[14,289] := {9, 77} tii[14,290] := {211} tii[14,291] := {352} tii[14,292] := {97, 426} tii[14,293] := {422} tii[14,294] := {5, 106} tii[14,295] := {272} tii[14,296] := {421} tii[14,297] := {335} tii[14,298] := {491} tii[14,299] := {10, 144} tii[14,300] := {180, 533} tii[14,301] := {453} tii[14,302] := {293} tii[14,303] := {548} tii[14,304] := {329} tii[14,305] := {328} tii[14,306] := {83, 281} tii[14,307] := {187} tii[14,308] := {159, 574} tii[14,309] := {6, 104} tii[14,310] := {48, 305} tii[14,311] := {399} tii[14,312] := {398} tii[14,313] := {397} tii[14,314] := {117, 347} tii[14,315] := {243} tii[14,316] := {76, 222} tii[14,317] := {43, 307} tii[14,318] := {270, 610} tii[14,319] := {417} tii[14,320] := {93, 416} tii[14,321] := {306} tii[14,322] := {467} tii[14,323] := {466} tii[14,324] := {143, 351} tii[14,325] := {405} tii[14,326] := {530} tii[14,327] := {118, 489} tii[14,328] := {246} tii[14,329] := {336} tii[14,330] := {486} tii[14,331] := {278, 569} tii[14,332] := {241} tii[14,333] := {221, 518} tii[14,334] := {186} tii[14,335] := {300, 543} tii[14,336] := {261} tii[14,337] := {23, 204} tii[14,338] := {127, 395} tii[14,339] := {126, 514} tii[14,340] := {299} tii[14,341] := {58, 182} tii[14,342] := {184, 568} tii[14,343] := {90, 325} tii[14,344] := {74, 375} tii[14,345] := {374, 583} tii[14,346] := {373} tii[14,347] := {324} tii[14,348] := {168, 565} tii[14,349] := {18, 262} tii[14,350] := {157} tii[14,351] := {41, 138} tii[14,352] := {302, 605} tii[14,353] := {8, 327} tii[14,354] := {448} tii[14,355] := {140, 513} tii[14,356] := {66, 263} tii[14,357] := {264} tii[14,358] := {177, 440} tii[14,359] := {19, 114} tii[14,360] := {176} tii[14,361] := {96, 462} tii[14,362] := {185} tii[14,363] := {80, 236} tii[14,364] := {15, 153} tii[14,365] := {235, 508} tii[14,366] := {234} tii[14,367] := {2, 260} tii[14,368] := {51, 321} tii[14,369] := {154, 371} tii[14,370] := {303} tii[14,371] := {179, 560} tii[14,372] := {181, 563} tii[14,373] := {20, 202} tii[14,374] := {295} tii[14,375] := {447} tii[14,376] := {14, 156} tii[14,377] := {137, 507} tii[14,378] := {259} tii[14,379] := {86, 318} tii[14,380] := {62, 256} tii[14,381] := {113} tii[14,382] := {49, 292} tii[14,383] := {17, 388} tii[14,384] := {94, 435} tii[14,385] := {200} tii[14,386] := {45, 199} tii[14,387] := {56, 559} tii[14,388] := {196} tii[14,389] := {33, 150} tii[14,390] := {92, 430} tii[14,391] := {22, 112} tii[14,392] := {194} tii[14,393] := {130} tii[14,394] := {0, 190} tii[14,395] := {64, 383} tii[14,396] := {229} tii[14,397] := {230, 497} tii[14,398] := {4, 108} tii[14,399] := {359} tii[14,400] := {167, 554} tii[14,401] := {312} tii[14,402] := {12, 75} tii[14,403] := {29, 103} tii[14,404] := {24, 205} tii[14,405] := {82, 237} cell#26 , |C| = 189 special orbit = A3b+A1b special rep = phi[189,20] , dim = 189 cell rep = phi[189,20] TII depth = 3 TII multiplicity polynomial = 189*X TII subcells: tii[11,1] := {186} tii[11,2] := {188} tii[11,3] := {160} tii[11,4] := {126} tii[11,5] := {179} tii[11,6] := {98} tii[11,7] := {99} tii[11,8] := {171} tii[11,9] := {151} tii[11,10] := {175} tii[11,11] := {147} tii[11,12] := {157} tii[11,13] := {145} tii[11,14] := {118} tii[11,15] := {167} tii[11,16] := {66} tii[11,17] := {117} tii[11,18] := {153} tii[11,19] := {134} tii[11,20] := {144} tii[11,21] := {133} tii[11,22] := {142} tii[11,23] := {132} tii[11,24] := {141} tii[11,25] := {24} tii[11,26] := {180} tii[11,27] := {59} tii[11,28] := {161} tii[11,29] := {162} tii[11,30] := {140} tii[11,31] := {37} tii[11,32] := {187} tii[11,33] := {29} tii[11,34] := {181} tii[11,35] := {128} tii[11,36] := {79} tii[11,37] := {182} tii[11,38] := {43} tii[11,39] := {163} tii[11,40] := {164} tii[11,41] := {129} tii[11,42] := {103} tii[11,43] := {185} tii[11,44] := {104} tii[11,45] := {77} tii[11,46] := {88} tii[11,47] := {106} tii[11,48] := {183} tii[11,49] := {184} tii[11,50] := {12} tii[11,51] := {7} tii[11,52] := {35} tii[11,53] := {138} tii[11,54] := {137} tii[11,55] := {13} tii[11,56] := {116} tii[11,57] := {54} tii[11,58] := {159} tii[11,59] := {34} tii[11,60] := {101} tii[11,61] := {150} tii[11,62] := {53} tii[11,63] := {124} tii[11,64] := {178} tii[11,65] := {73} tii[11,66] := {76} tii[11,67] := {74} tii[11,68] := {112} tii[11,69] := {52} tii[11,70] := {75} tii[11,71] := {172} tii[11,72] := {33} tii[11,73] := {177} tii[11,74] := {100} tii[11,75] := {87} tii[11,76] := {125} tii[11,77] := {51} tii[11,78] := {176} tii[11,79] := {97} tii[11,80] := {41} tii[11,81] := {169} tii[11,82] := {168} tii[11,83] := {61} tii[11,84] := {149} tii[11,85] := {148} tii[11,86] := {94} tii[11,87] := {50} tii[11,88] := {120} tii[11,89] := {174} tii[11,90] := {121} tii[11,91] := {135} tii[11,92] := {122} tii[11,93] := {95} tii[11,94] := {111} tii[11,95] := {110} tii[11,96] := {71} tii[11,97] := {69} tii[11,98] := {170} tii[11,99] := {96} tii[11,100] := {70} tii[11,101] := {85} tii[11,102] := {173} tii[11,103] := {84} tii[11,104] := {156} tii[11,105] := {60} tii[11,106] := {146} tii[11,107] := {40} tii[11,108] := {155} tii[11,109] := {136} tii[11,110] := {31} tii[11,111] := {92} tii[11,112] := {166} tii[11,113] := {68} tii[11,114] := {46} tii[11,115] := {47} tii[11,116] := {93} tii[11,117] := {154} tii[11,118] := {109} tii[11,119] := {48} tii[11,120] := {67} tii[11,121] := {165} tii[11,122] := {32} tii[11,123] := {143} tii[11,124] := {91} tii[11,125] := {11} tii[11,126] := {114} tii[11,127] := {83} tii[11,128] := {65} tii[11,129] := {16} tii[11,130] := {90} tii[11,131] := {25} tii[11,132] := {82} tii[11,133] := {5} tii[11,134] := {81} tii[11,135] := {19} tii[11,136] := {152} tii[11,137] := {139} tii[11,138] := {9} tii[11,139] := {108} tii[11,140] := {38} tii[11,141] := {30} tii[11,142] := {130} tii[11,143] := {58} tii[11,144] := {131} tii[11,145] := {15} tii[11,146] := {45} tii[11,147] := {107} tii[11,148] := {36} tii[11,149] := {2} tii[11,150] := {113} tii[11,151] := {4} tii[11,152] := {89} tii[11,153] := {56} tii[11,154] := {57} tii[11,155] := {105} tii[11,156] := {55} tii[11,157] := {78} tii[11,158] := {80} tii[11,159] := {8} tii[11,160] := {63} tii[11,161] := {62} tii[11,162] := {14} tii[11,163] := {44} tii[11,164] := {102} tii[11,165] := {10} tii[11,166] := {18} tii[11,167] := {115} tii[11,168] := {21} tii[11,169] := {22} tii[11,170] := {127} tii[11,171] := {28} tii[11,172] := {158} tii[11,173] := {42} tii[11,174] := {123} tii[11,175] := {20} tii[11,176] := {27} tii[11,177] := {0} tii[11,178] := {1} tii[11,179] := {72} tii[11,180] := {3} tii[11,181] := {49} tii[11,182] := {86} tii[11,183] := {6} tii[11,184] := {119} tii[11,185] := {26} tii[11,186] := {17} tii[11,187] := {39} tii[11,188] := {23} tii[11,189] := {64} cell#27 , |C| = 105 special orbit = A2+3*A1 special rep = phi[105,21] , dim = 105 cell rep = phi[105,21] TII depth = 3 TII multiplicity polynomial = 105*X TII subcells: tii[10,1] := {103} tii[10,2] := {94} tii[10,3] := {64} tii[10,4] := {32} tii[10,5] := {89} tii[10,6] := {75} tii[10,7] := {104} tii[10,8] := {92} tii[10,9] := {98} tii[10,10] := {18} tii[10,11] := {95} tii[10,12] := {78} tii[10,13] := {82} tii[10,14] := {90} tii[10,15] := {81} tii[10,16] := {102} tii[10,17] := {85} tii[10,18] := {63} tii[10,19] := {99} tii[10,20] := {79} tii[10,21] := {48} tii[10,22] := {96} tii[10,23] := {84} tii[10,24] := {91} tii[10,25] := {61} tii[10,26] := {83} tii[10,27] := {47} tii[10,28] := {46} tii[10,29] := {60} tii[10,30] := {45} tii[10,31] := {77} tii[10,32] := {44} tii[10,33] := {22} tii[10,34] := {51} tii[10,35] := {67} tii[10,36] := {33} tii[10,37] := {23} tii[10,38] := {54} tii[10,39] := {101} tii[10,40] := {31} tii[10,41] := {93} tii[10,42] := {14} tii[10,43] := {100} tii[10,44] := {43} tii[10,45] := {87} tii[10,46] := {8} tii[10,47] := {80} tii[10,48] := {73} tii[10,49] := {97} tii[10,50] := {30} tii[10,51] := {58} tii[10,52] := {53} tii[10,53] := {39} tii[10,54] := {26} tii[10,55] := {29} tii[10,56] := {11} tii[10,57] := {65} tii[10,58] := {19} tii[10,59] := {12} tii[10,60] := {69} tii[10,61] := {74} tii[10,62] := {59} tii[10,63] := {52} tii[10,64] := {24} tii[10,65] := {86} tii[10,66] := {76} tii[10,67] := {62} tii[10,68] := {50} tii[10,69] := {72} tii[10,70] := {15} tii[10,71] := {38} tii[10,72] := {57} tii[10,73] := {49} tii[10,74] := {7} tii[10,75] := {70} tii[10,76] := {4} tii[10,77] := {36} tii[10,78] := {56} tii[10,79] := {66} tii[10,80] := {2} tii[10,81] := {37} tii[10,82] := {71} tii[10,83] := {41} tii[10,84] := {28} tii[10,85] := {68} tii[10,86] := {34} tii[10,87] := {55} tii[10,88] := {40} tii[10,89] := {35} tii[10,90] := {27} tii[10,91] := {17} tii[10,92] := {20} tii[10,93] := {5} tii[10,94] := {88} tii[10,95] := {21} tii[10,96] := {6} tii[10,97] := {16} tii[10,98] := {10} tii[10,99] := {9} tii[10,100] := {25} tii[10,101] := {13} tii[10,102] := {1} tii[10,103] := {42} tii[10,104] := {3} tii[10,105] := {0} cell#28 , |C| = 135 special orbit = A2+A1 special rep = phi[120,25] , dim = 120 cell rep = phi[15,28]+phi[120,25] TII depth = 3 TII multiplicity polynomial = 15*X^2+105*X TII subcells: tii[6,1] := {45, 124} tii[6,2] := {27, 104} tii[6,3] := {130} tii[6,4] := {89} tii[6,5] := {114} tii[6,6] := {100} tii[6,7] := {66} tii[6,8] := {73} tii[6,9] := {87} tii[6,10] := {72} tii[6,11] := {109} tii[6,12] := {97} tii[6,13] := {65} tii[6,14] := {70} tii[6,15] := {84} tii[6,16] := {69} tii[6,17] := {96} tii[6,18] := {64} tii[6,19] := {29, 120} tii[6,20] := {80} tii[6,21] := {49} tii[6,22] := {95} tii[6,23] := {34} tii[6,24] := {134} tii[6,25] := {44} tii[6,26] := {119} tii[6,27] := {92} tii[6,28] := {19, 93} tii[6,29] := {129} tii[6,30] := {61} tii[6,31] := {10, 79} tii[6,32] := {48} tii[6,33] := {122} tii[6,34] := {126} tii[6,35] := {82} tii[6,36] := {68} tii[6,37] := {81} tii[6,38] := {108} tii[6,39] := {43} tii[6,40] := {18, 94} tii[6,41] := {99} tii[6,42] := {31} tii[6,43] := {21} tii[6,44] := {106} tii[6,45] := {85} tii[6,46] := {131} tii[6,47] := {133} tii[6,48] := {118} tii[6,49] := {117} tii[6,50] := {56} tii[6,51] := {91} tii[6,52] := {90} tii[6,53] := {128} tii[6,54] := {30, 115} tii[6,55] := {77} tii[6,56] := {75} tii[6,57] := {76} tii[6,58] := {67} tii[6,59] := {55} tii[6,60] := {121} tii[6,61] := {54} tii[6,62] := {20, 103} tii[6,63] := {59} tii[6,64] := {125} tii[6,65] := {38} tii[6,66] := {37} tii[6,67] := {113} tii[6,68] := {11, 71} tii[6,69] := {52} tii[6,70] := {112} tii[6,71] := {102} tii[6,72] := {36} tii[6,73] := {6, 58} tii[6,74] := {47} tii[6,75] := {101} tii[6,76] := {2, 40} tii[6,77] := {110} tii[6,78] := {111} tii[6,79] := {53} tii[6,80] := {24} tii[6,81] := {88} tii[6,82] := {16} tii[6,83] := {86} tii[6,84] := {107} tii[6,85] := {50} tii[6,86] := {35} tii[6,87] := {46} tii[6,88] := {98} tii[6,89] := {105} tii[6,90] := {51} tii[6,91] := {23} tii[6,92] := {83} tii[6,93] := {15} tii[6,94] := {63} tii[6,95] := {8} tii[6,96] := {62} tii[6,97] := {132} tii[6,98] := {32} tii[6,99] := {123} tii[6,100] := {22} tii[6,101] := {28} tii[6,102] := {5, 57} tii[6,103] := {127} tii[6,104] := {13} tii[6,105] := {33} tii[6,106] := {116} tii[6,107] := {7} tii[6,108] := {60} tii[6,109] := {14} tii[6,110] := {4} tii[6,111] := {42} tii[6,112] := {3} tii[6,113] := {39} tii[6,114] := {12, 78} tii[6,115] := {41} tii[6,116] := {1, 26} tii[6,117] := {74} tii[6,118] := {25} tii[6,119] := {9} tii[6,120] := {0, 17} cell#29 , |C| = 105 special orbit = A5b special rep = phi[105,12] , dim = 105 cell rep = phi[105,12] TII depth = 2 TII multiplicity polynomial = 105*X TII subcells: tii[18,1] := {104} tii[18,2] := {94} tii[18,3] := {69} tii[18,4] := {77} tii[18,5] := {101} tii[18,6] := {103} tii[18,7] := {83} tii[18,8] := {62} tii[18,9] := {93} tii[18,10] := {89} tii[18,11] := {79} tii[18,12] := {84} tii[18,13] := {39} tii[18,14] := {73} tii[18,15] := {74} tii[18,16] := {59} tii[18,17] := {4} tii[18,18] := {15} tii[18,19] := {41} tii[18,20] := {42} tii[18,21] := {23} tii[18,22] := {43} tii[18,23] := {18} tii[18,24] := {53} tii[18,25] := {54} tii[18,26] := {28} tii[18,27] := {36} tii[18,28] := {68} tii[18,29] := {61} tii[18,30] := {60} tii[18,31] := {95} tii[18,32] := {85} tii[18,33] := {50} tii[18,34] := {86} tii[18,35] := {66} tii[18,36] := {76} tii[18,37] := {102} tii[18,38] := {96} tii[18,39] := {97} tii[18,40] := {87} tii[18,41] := {88} tii[18,42] := {100} tii[18,43] := {98} tii[18,44] := {99} tii[18,45] := {38} tii[18,46] := {29} tii[18,47] := {71} tii[18,48] := {72} tii[18,49] := {46} tii[18,50] := {57} tii[18,51] := {37} tii[18,52] := {82} tii[18,53] := {45} tii[18,54] := {78} tii[18,55] := {55} tii[18,56] := {70} tii[18,57] := {12} tii[18,58] := {92} tii[18,59] := {20} tii[18,60] := {90} tii[18,61] := {91} tii[18,62] := {33} tii[18,63] := {51} tii[18,64] := {1} tii[18,65] := {5} tii[18,66] := {11} tii[18,67] := {3} tii[18,68] := {31} tii[18,69] := {8} tii[18,70] := {48} tii[18,71] := {16} tii[18,72] := {14} tii[18,73] := {64} tii[18,74] := {58} tii[18,75] := {24} tii[18,76] := {47} tii[18,77] := {40} tii[18,78] := {9} tii[18,79] := {17} tii[18,80] := {26} tii[18,81] := {25} tii[18,82] := {22} tii[18,83] := {27} tii[18,84] := {35} tii[18,85] := {34} tii[18,86] := {44} tii[18,87] := {52} tii[18,88] := {67} tii[18,89] := {0} tii[18,90] := {2} tii[18,91] := {7} tii[18,92] := {6} tii[18,93] := {80} tii[18,94] := {13} tii[18,95] := {75} tii[18,96] := {65} tii[18,97] := {21} tii[18,98] := {49} tii[18,99] := {56} tii[18,100] := {63} tii[18,101] := {81} tii[18,102] := {10} tii[18,103] := {19} tii[18,104] := {32} tii[18,105] := {30} cell#30 , |C| = 189 special orbit = A3b+A1b special rep = phi[189,20] , dim = 189 cell rep = phi[189,20] TII depth = 3 TII multiplicity polynomial = 189*X TII subcells: tii[11,1] := {59} tii[11,2] := {69} tii[11,3] := {125} tii[11,4] := {185} tii[11,5] := {95} tii[11,6] := {106} tii[11,7] := {151} tii[11,8] := {63} tii[11,9] := {94} tii[11,10] := {101} tii[11,11] := {99} tii[11,12] := {128} tii[11,13] := {172} tii[11,14] := {183} tii[11,15] := {127} tii[11,16] := {187} tii[11,17] := {143} tii[11,18] := {85} tii[11,19] := {122} tii[11,20] := {167} tii[11,21] := {178} tii[11,22] := {87} tii[11,23] := {108} tii[11,24] := {86} tii[11,25] := {100} tii[11,26] := {41} tii[11,27] := {98} tii[11,28] := {21} tii[11,29] := {52} tii[11,30] := {81} tii[11,31] := {124} tii[11,32] := {19} tii[11,33] := {168} tii[11,34] := {38} tii[11,35] := {61} tii[11,36] := {60} tii[11,37] := {27} tii[11,38] := {179} tii[11,39] := {20} tii[11,40] := {49} tii[11,41] := {114} tii[11,42] := {92} tii[11,43] := {18} tii[11,44] := {93} tii[11,45] := {112} tii[11,46] := {111} tii[11,47] := {91} tii[11,48] := {35} tii[11,49] := {58} tii[11,50] := {123} tii[11,51] := {83} tii[11,52] := {142} tii[11,53] := {84} tii[11,54] := {6} tii[11,55] := {120} tii[11,56] := {121} tii[11,57] := {169} tii[11,58] := {17} tii[11,59] := {174} tii[11,60] := {162} tii[11,61] := {33} tii[11,62] := {166} tii[11,63] := {136} tii[11,64] := {5} tii[11,65] := {137} tii[11,66] := {176} tii[11,67] := {71} tii[11,68] := {149} tii[11,69] := {148} tii[11,70] := {135} tii[11,71] := {15} tii[11,72] := {133} tii[11,73] := {32} tii[11,74] := {160} tii[11,75] := {134} tii[11,76] := {182} tii[11,77] := {89} tii[11,78] := {4} tii[11,79] := {31} tii[11,80] := {132} tii[11,81] := {9} tii[11,82] := {68} tii[11,83] := {145} tii[11,84] := {24} tii[11,85] := {43} tii[11,86] := {156} tii[11,87] := {105} tii[11,88] := {54} tii[11,89] := {3} tii[11,90] := {141} tii[11,91] := {53} tii[11,92] := {66} tii[11,93] := {154} tii[11,94] := {82} tii[11,95] := {74} tii[11,96] := {129} tii[11,97] := {138} tii[11,98] := {12} tii[11,99] := {88} tii[11,100] := {116} tii[11,101] := {119} tii[11,102] := {30} tii[11,103] := {188} tii[11,104] := {10} tii[11,105] := {164} tii[11,106] := {25} tii[11,107] := {186} tii[11,108] := {47} tii[11,109] := {75} tii[11,110] := {131} tii[11,111] := {171} tii[11,112] := {0} tii[11,113] := {177} tii[11,114] := {163} tii[11,115] := {144} tii[11,116] := {104} tii[11,117] := {2} tii[11,118] := {161} tii[11,119] := {158} tii[11,120] := {130} tii[11,121] := {11} tii[11,122] := {173} tii[11,123] := {29} tii[11,124] := {146} tii[11,125] := {107} tii[11,126] := {109} tii[11,127] := {126} tii[11,128] := {170} tii[11,129] := {67} tii[11,130] := {181} tii[11,131] := {42} tii[11,132] := {140} tii[11,133] := {51} tii[11,134] := {72} tii[11,135] := {139} tii[11,136] := {40} tii[11,137] := {7} tii[11,138] := {80} tii[11,139] := {153} tii[11,140] := {65} tii[11,141] := {152} tii[11,142] := {64} tii[11,143] := {44} tii[11,144] := {118} tii[11,145] := {115} tii[11,146] := {117} tii[11,147] := {39} tii[11,148] := {70} tii[11,149] := {26} tii[11,150] := {28} tii[11,151] := {48} tii[11,152] := {50} tii[11,153] := {90} tii[11,154] := {36} tii[11,155] := {37} tii[11,156] := {77} tii[11,157] := {57} tii[11,158] := {62} tii[11,159] := {76} tii[11,160] := {78} tii[11,161] := {79} tii[11,162] := {110} tii[11,163] := {113} tii[11,164] := {34} tii[11,165] := {165} tii[11,166] := {175} tii[11,167] := {1} tii[11,168] := {103} tii[11,169] := {157} tii[11,170] := {16} tii[11,171] := {159} tii[11,172] := {56} tii[11,173] := {180} tii[11,174] := {14} tii[11,175] := {147} tii[11,176] := {150} tii[11,177] := {8} tii[11,178] := {23} tii[11,179] := {13} tii[11,180] := {45} tii[11,181] := {102} tii[11,182] := {46} tii[11,183] := {73} tii[11,184] := {55} tii[11,185] := {155} tii[11,186] := {184} tii[11,187] := {22} tii[11,188] := {96} tii[11,189] := {97} cell#31 , |C| = 21 special orbit = 3*A1b special rep = phi[21,36] , dim = 21 cell rep = phi[21,36] TII depth = 2 TII multiplicity polynomial = 21*X TII subcells: tii[4,1] := {17} tii[4,2] := {10} tii[4,3] := {4} tii[4,4] := {19} tii[4,5] := {12} tii[4,6] := {16} tii[4,7] := {11} tii[4,8] := {15} tii[4,9] := {7} tii[4,10] := {3} tii[4,11] := {6} tii[4,12] := {2} tii[4,13] := {5} tii[4,14] := {20} tii[4,15] := {13} tii[4,16] := {1} tii[4,17] := {18} tii[4,18] := {9} tii[4,19] := {8} tii[4,20] := {0} tii[4,21] := {14}