TII subcells for the E7sc(R) x E7ad(E6xR) block of E7sc # cell#0 , |C| = 1 special orbit = E7 special rep = phi[1,0] , dim = 1 cell rep = phi[1,0] TII depth = 1 TII multiplicity polynomial = X TII subcells: tii[35,1] := {0} cell#1 , |C| = 1 special orbit = E7 special rep = phi[1,0] , dim = 1 cell rep = phi[1,0] TII depth = 1 TII multiplicity polynomial = X TII subcells: tii[35,1] := {0} cell#2 , |C| = 7 special orbit = E7(a1) special rep = phi[7,1] , dim = 7 cell rep = phi[7,1] TII depth = 1 TII multiplicity polynomial = 7*X TII subcells: tii[34,1] := {6} tii[34,2] := {5} tii[34,3] := {4} tii[34,4] := {3} tii[34,5] := {2} tii[34,6] := {1} tii[34,7] := {0} cell#3 , |C| = 27 special orbit = E7(a2) special rep = phi[27,2] , dim = 27 cell rep = phi[27,2] TII depth = 2 TII multiplicity polynomial = 27*X TII subcells: tii[33,1] := {1} tii[33,2] := {24} tii[33,3] := {17} tii[33,4] := {5} tii[33,5] := {18} tii[33,6] := {7} tii[33,7] := {6} tii[33,8] := {19} tii[33,9] := {2} tii[33,10] := {26} tii[33,11] := {0} tii[33,12] := {3} tii[33,13] := {21} tii[33,14] := {12} tii[33,15] := {8} tii[33,16] := {4} tii[33,17] := {9} tii[33,18] := {11} tii[33,19] := {16} tii[33,20] := {22} tii[33,21] := {25} tii[33,22] := {14} tii[33,23] := {10} tii[33,24] := {15} tii[33,25] := {13} tii[33,26] := {20} tii[33,27] := {23} cell#4 , |C| = 27 special orbit = E7(a2) special rep = phi[27,2] , dim = 27 cell rep = phi[27,2] TII depth = 2 TII multiplicity polynomial = 27*X TII subcells: tii[33,1] := {1} tii[33,2] := {24} tii[33,3] := {17} tii[33,4] := {5} tii[33,5] := {18} tii[33,6] := {7} tii[33,7] := {6} tii[33,8] := {19} tii[33,9] := {2} tii[33,10] := {26} tii[33,11] := {0} tii[33,12] := {3} tii[33,13] := {21} tii[33,14] := {12} tii[33,15] := {8} tii[33,16] := {4} tii[33,17] := {9} tii[33,18] := {11} tii[33,19] := {16} tii[33,20] := {22} tii[33,21] := {25} tii[33,22] := {14} tii[33,23] := {10} tii[33,24] := {15} tii[33,25] := {13} tii[33,26] := {20} tii[33,27] := {23} cell#5 , |C| = 27 special orbit = E7(a2) special rep = phi[27,2] , dim = 27 cell rep = phi[27,2] TII depth = 2 TII multiplicity polynomial = 27*X TII subcells: tii[33,1] := {26} tii[33,2] := {16} tii[33,3] := {7} tii[33,4] := {25} tii[33,5] := {12} tii[33,6] := {24} tii[33,7] := {1} tii[33,8] := {18} tii[33,9] := {3} tii[33,10] := {23} tii[33,11] := {5} tii[33,12] := {8} tii[33,13] := {2} tii[33,14] := {4} tii[33,15] := {6} tii[33,16] := {9} tii[33,17] := {11} tii[33,18] := {0} tii[33,19] := {22} tii[33,20] := {19} tii[33,21] := {21} tii[33,22] := {10} tii[33,23] := {13} tii[33,24] := {14} tii[33,25] := {15} tii[33,26] := {17} tii[33,27] := {20} cell#6 , |C| = 21 special orbit = E6 special rep = phi[21,3] , dim = 21 cell rep = phi[21,3] TII depth = 2 TII multiplicity polynomial = 21*X TII subcells: tii[31,1] := {16} tii[31,2] := {10} tii[31,3] := {11} tii[31,4] := {17} tii[31,5] := {12} tii[31,6] := {18} tii[31,7] := {19} tii[31,8] := {20} tii[31,9] := {13} tii[31,10] := {6} tii[31,11] := {4} tii[31,12] := {1} tii[31,13] := {0} tii[31,14] := {15} tii[31,15] := {14} tii[31,16] := {8} tii[31,17] := {5} tii[31,18] := {2} tii[31,19] := {7} tii[31,20] := {3} tii[31,21] := {9} cell#7 , |C| = 91 special orbit = E7(a3) special rep = phi[56,3] , dim = 56 cell rep = phi[35,4]+phi[56,3] TII depth = 3 TII multiplicity polynomial = 35*X^2+21*X TII subcells: tii[32,1] := {89, 90} tii[32,2] := {81, 82} tii[32,3] := {79, 80} tii[32,4] := {87, 88} tii[32,5] := {58, 59} tii[32,6] := {71, 72} tii[32,7] := {83, 84} tii[32,8] := {25, 26} tii[32,9] := {62, 63} tii[32,10] := {6, 7} tii[32,11] := {85} tii[32,12] := {86} tii[32,13] := {73, 74} tii[32,14] := {78} tii[32,15] := {47, 48} tii[32,16] := {70} tii[32,17] := {57} tii[32,18] := {18, 19} tii[32,19] := {42} tii[32,20] := {77} tii[32,21] := {69} tii[32,22] := {75, 76} tii[32,23] := {56} tii[32,24] := {64, 65} tii[32,25] := {41} tii[32,26] := {24} tii[32,27] := {51, 52} tii[32,28] := {68} tii[32,29] := {60, 61} tii[32,30] := {55} tii[32,31] := {37, 38} tii[32,32] := {43, 44} tii[32,33] := {40} tii[32,34] := {27, 28} tii[32,35] := {23} tii[32,36] := {39} tii[32,37] := {12, 13} tii[32,38] := {49, 50} tii[32,39] := {22} tii[32,40] := {4, 5} tii[32,41] := {31, 32} tii[32,42] := {10} tii[32,43] := {11} tii[32,44] := {1, 2} tii[32,45] := {3} tii[32,46] := {0} tii[32,47] := {66, 67} tii[32,48] := {53, 54} tii[32,49] := {35, 36} tii[32,50] := {33, 34} tii[32,51] := {16, 17} tii[32,52] := {8, 9} tii[32,53] := {45, 46} tii[32,54] := {29, 30} tii[32,55] := {14, 15} tii[32,56] := {20, 21} cell#8 , |C| = 225 special orbit = E6(a1) special rep = phi[120,4] , dim = 120 cell rep = phi[105,5]+phi[120,4] TII depth = 4 TII multiplicity polynomial = 105*X^2+15*X TII subcells: tii[30,1] := {222} tii[30,2] := {125, 172} tii[30,3] := {62, 111} tii[30,4] := {82, 155} tii[30,5] := {216} tii[30,6] := {144} tii[30,7] := {83, 205} tii[30,8] := {84, 223} tii[30,9] := {55, 163} tii[30,10] := {132, 221} tii[30,11] := {13, 209} tii[30,12] := {103, 154} tii[30,13] := {47, 138} tii[30,14] := {97, 210} tii[30,15] := {29, 183} tii[30,16] := {98, 161} tii[30,17] := {186} tii[30,18] := {69, 167} tii[30,19] := {49, 207} tii[30,20] := {100, 211} tii[30,21] := {73, 219} tii[30,22] := {96, 195} tii[30,23] := {101, 224} tii[30,24] := {126, 214} tii[30,25] := {95, 108} tii[30,26] := {89, 204} tii[30,27] := {22, 124} tii[30,28] := {118, 188} tii[30,29] := {40, 102} tii[30,30] := {31, 119} tii[30,31] := {145, 165} tii[30,32] := {63, 75} tii[30,33] := {76, 120} tii[30,34] := {53, 87} tii[30,35] := {175, 192} tii[30,36] := {32, 121} tii[30,37] := {200, 213} tii[30,38] := {74, 114} tii[30,39] := {57, 173} tii[30,40] := {8, 142} tii[30,41] := {202} tii[30,42] := {36, 152} tii[30,43] := {59, 122} tii[30,44] := {19, 170} tii[30,45] := {99, 143} tii[30,46] := {181} tii[30,47] := {18, 180} tii[30,48] := {60, 178} tii[30,49] := {39, 197} tii[30,50] := {127, 171} tii[30,51] := {7, 203} tii[30,52] := {153} tii[30,53] := {61, 217} tii[30,54] := {156, 198} tii[30,55] := {10, 139} tii[30,56] := {44, 85} tii[30,57] := {110, 128} tii[30,58] := {117} tii[30,59] := {45, 146} tii[30,60] := {25, 115} tii[30,61] := {26, 168} tii[30,62] := {58, 182} tii[30,63] := {140, 157} tii[30,64] := {86} tii[30,65] := {11, 147} tii[30,66] := {46, 196} tii[30,67] := {35, 206} tii[30,68] := {169, 184} tii[30,69] := {27, 174} tii[30,70] := {112, 185} tii[30,71] := {12, 199} tii[30,72] := {56, 218} tii[30,73] := {141, 208} tii[30,74] := {113, 215} tii[30,75] := {34, 109} tii[30,76] := {78, 79} tii[30,77] := {80, 134} tii[30,78] := {51, 104} tii[30,79] := {136} tii[30,80] := {106, 107} tii[30,81] := {30, 131} tii[30,82] := {81, 137} tii[30,83] := {14, 160} tii[30,84] := {70, 193} tii[30,85] := {48, 166} tii[30,86] := {28, 194} tii[30,87] := {23, 129} tii[30,88] := {159} tii[30,89] := {9, 158} tii[30,90] := {72, 133} tii[30,91] := {130} tii[30,92] := {3, 187} tii[30,93] := {50, 162} tii[30,94] := {5, 189} tii[30,95] := {71, 190} tii[30,96] := {1, 212} tii[30,97] := {0, 220} tii[30,98] := {42, 92} tii[30,99] := {65, 135} tii[30,100] := {93} tii[30,101] := {41, 164} tii[30,102] := {67, 68} tii[30,103] := {21, 191} tii[30,104] := {43, 94} tii[30,105] := {54, 90} tii[30,106] := {64, 77} tii[30,107] := {16, 148} tii[30,108] := {33, 177} tii[30,109] := {52, 88} tii[30,110] := {17, 149} tii[30,111] := {38, 91} tii[30,112] := {20, 123} tii[30,113] := {15, 150} tii[30,114] := {6, 179} tii[30,115] := {37, 151} tii[30,116] := {2, 201} tii[30,117] := {24, 116} tii[30,118] := {4, 176} tii[30,119] := {105} tii[30,120] := {66} cell#9 , |C| = 168 special orbit = D5+A1 special rep = phi[168,6] , dim = 168 cell rep = phi[168,6] TII depth = 4 TII multiplicity polynomial = 168*X TII subcells: tii[27,1] := {167} tii[27,2] := {157} tii[27,3] := {134} tii[27,4] := {30} tii[27,5] := {64} tii[27,6] := {89} tii[27,7] := {158} tii[27,8] := {166} tii[27,9] := {144} tii[27,10] := {165} tii[27,11] := {53} tii[27,12] := {120} tii[27,13] := {9} tii[27,14] := {54} tii[27,15] := {153} tii[27,16] := {20} tii[27,17] := {121} tii[27,18] := {55} tii[27,19] := {37} tii[27,20] := {56} tii[27,21] := {6} tii[27,22] := {94} tii[27,23] := {115} tii[27,24] := {91} tii[27,25] := {132} tii[27,26] := {10} tii[27,27] := {67} tii[27,28] := {159} tii[27,29] := {39} tii[27,30] := {90} tii[27,31] := {112} tii[27,32] := {0} tii[27,33] := {86} tii[27,34] := {66} tii[27,35] := {72} tii[27,36] := {128} tii[27,37] := {88} tii[27,38] := {111} tii[27,39] := {27} tii[27,40] := {4} tii[27,41] := {117} tii[27,42] := {87} tii[27,43] := {131} tii[27,44] := {110} tii[27,45] := {28} tii[27,46] := {14} tii[27,47] := {130} tii[27,48] := {147} tii[27,49] := {29} tii[27,50] := {44} tii[27,51] := {1} tii[27,52] := {106} tii[27,53] := {68} tii[27,54] := {85} tii[27,55] := {146} tii[27,56] := {73} tii[27,57] := {18} tii[27,58] := {63} tii[27,59] := {8} tii[27,60] := {149} tii[27,61] := {47} tii[27,62] := {107} tii[27,63] := {84} tii[27,64] := {19} tii[27,65] := {160} tii[27,66] := {34} tii[27,67] := {52} tii[27,68] := {164} tii[27,69] := {3} tii[27,70] := {26} tii[27,71] := {78} tii[27,72] := {162} tii[27,73] := {42} tii[27,74] := {100} tii[27,75] := {81} tii[27,76] := {156} tii[27,77] := {61} tii[27,78] := {123} tii[27,79] := {82} tii[27,80] := {163} tii[27,81] := {142} tii[27,82] := {83} tii[27,83] := {141} tii[27,84] := {155} tii[27,85] := {161} tii[27,86] := {59} tii[27,87] := {98} tii[27,88] := {74} tii[27,89] := {101} tii[27,90] := {119} tii[27,91] := {80} tii[27,92] := {38} tii[27,93] := {97} tii[27,94] := {139} tii[27,95] := {138} tii[27,96] := {102} tii[27,97] := {21} tii[27,98] := {118} tii[27,99] := {154} tii[27,100] := {122} tii[27,101] := {75} tii[27,102] := {140} tii[27,103] := {143} tii[27,104] := {36} tii[27,105] := {99} tii[27,106] := {76} tii[27,107] := {150} tii[27,108] := {116} tii[27,109] := {16} tii[27,110] := {49} tii[27,111] := {50} tii[27,112] := {137} tii[27,113] := {135} tii[27,114] := {32} tii[27,115] := {33} tii[27,116] := {152} tii[27,117] := {151} tii[27,118] := {17} tii[27,119] := {51} tii[27,120] := {23} tii[27,121] := {113} tii[27,122] := {40} tii[27,123] := {133} tii[27,124] := {57} tii[27,125] := {2} tii[27,126] := {148} tii[27,127] := {11} tii[27,128] := {22} tii[27,129] := {77} tii[27,130] := {24} tii[27,131] := {48} tii[27,132] := {15} tii[27,133] := {108} tii[27,134] := {69} tii[27,135] := {129} tii[27,136] := {5} tii[27,137] := {136} tii[27,138] := {45} tii[27,139] := {95} tii[27,140] := {109} tii[27,141] := {114} tii[27,142] := {65} tii[27,143] := {13} tii[27,144] := {46} tii[27,145] := {127} tii[27,146] := {96} tii[27,147] := {7} tii[27,148] := {35} tii[27,149] := {41} tii[27,150] := {25} tii[27,151] := {12} tii[27,152] := {62} tii[27,153] := {43} tii[27,154] := {103} tii[27,155] := {125} tii[27,156] := {60} tii[27,157] := {104} tii[27,158] := {105} tii[27,159] := {126} tii[27,160] := {145} tii[27,161] := {79} tii[27,162] := {124} tii[27,163] := {70} tii[27,164] := {31} tii[27,165] := {93} tii[27,166] := {71} tii[27,167] := {58} tii[27,168] := {92} cell#10 , |C| = 168 special orbit = D5+A1 special rep = phi[168,6] , dim = 168 cell rep = phi[168,6] TII depth = 4 TII multiplicity polynomial = 168*X TII subcells: tii[27,1] := {167} tii[27,2] := {157} tii[27,3] := {134} tii[27,4] := {30} tii[27,5] := {64} tii[27,6] := {89} tii[27,7] := {158} tii[27,8] := {166} tii[27,9] := {144} tii[27,10] := {165} tii[27,11] := {53} tii[27,12] := {120} tii[27,13] := {9} tii[27,14] := {54} tii[27,15] := {153} tii[27,16] := {20} tii[27,17] := {121} tii[27,18] := {55} tii[27,19] := {37} tii[27,20] := {56} tii[27,21] := {6} tii[27,22] := {94} tii[27,23] := {115} tii[27,24] := {91} tii[27,25] := {132} tii[27,26] := {10} tii[27,27] := {67} tii[27,28] := {159} tii[27,29] := {39} tii[27,30] := {90} tii[27,31] := {112} tii[27,32] := {0} tii[27,33] := {86} tii[27,34] := {66} tii[27,35] := {72} tii[27,36] := {128} tii[27,37] := {88} tii[27,38] := {111} tii[27,39] := {27} tii[27,40] := {4} tii[27,41] := {117} tii[27,42] := {87} tii[27,43] := {131} tii[27,44] := {110} tii[27,45] := {28} tii[27,46] := {14} tii[27,47] := {130} tii[27,48] := {147} tii[27,49] := {29} tii[27,50] := {44} tii[27,51] := {1} tii[27,52] := {106} tii[27,53] := {68} tii[27,54] := {85} tii[27,55] := {146} tii[27,56] := {73} tii[27,57] := {18} tii[27,58] := {63} tii[27,59] := {8} tii[27,60] := {149} tii[27,61] := {47} tii[27,62] := {107} tii[27,63] := {84} tii[27,64] := {19} tii[27,65] := {160} tii[27,66] := {34} tii[27,67] := {52} tii[27,68] := {164} tii[27,69] := {3} tii[27,70] := {26} tii[27,71] := {78} tii[27,72] := {162} tii[27,73] := {42} tii[27,74] := {100} tii[27,75] := {81} tii[27,76] := {156} tii[27,77] := {61} tii[27,78] := {123} tii[27,79] := {82} tii[27,80] := {163} tii[27,81] := {142} tii[27,82] := {83} tii[27,83] := {141} tii[27,84] := {155} tii[27,85] := {161} tii[27,86] := {59} tii[27,87] := {98} tii[27,88] := {74} tii[27,89] := {101} tii[27,90] := {119} tii[27,91] := {80} tii[27,92] := {38} tii[27,93] := {97} tii[27,94] := {139} tii[27,95] := {138} tii[27,96] := {102} tii[27,97] := {21} tii[27,98] := {118} tii[27,99] := {154} tii[27,100] := {122} tii[27,101] := {75} tii[27,102] := {140} tii[27,103] := {143} tii[27,104] := {36} tii[27,105] := {99} tii[27,106] := {76} tii[27,107] := {150} tii[27,108] := {116} tii[27,109] := {16} tii[27,110] := {49} tii[27,111] := {50} tii[27,112] := {137} tii[27,113] := {135} tii[27,114] := {32} tii[27,115] := {33} tii[27,116] := {152} tii[27,117] := {151} tii[27,118] := {17} tii[27,119] := {51} tii[27,120] := {23} tii[27,121] := {113} tii[27,122] := {40} tii[27,123] := {133} tii[27,124] := {57} tii[27,125] := {2} tii[27,126] := {148} tii[27,127] := {11} tii[27,128] := {22} tii[27,129] := {77} tii[27,130] := {24} tii[27,131] := {48} tii[27,132] := {15} tii[27,133] := {108} tii[27,134] := {69} tii[27,135] := {129} tii[27,136] := {5} tii[27,137] := {136} tii[27,138] := {45} tii[27,139] := {95} tii[27,140] := {109} tii[27,141] := {114} tii[27,142] := {65} tii[27,143] := {13} tii[27,144] := {46} tii[27,145] := {127} tii[27,146] := {96} tii[27,147] := {7} tii[27,148] := {35} tii[27,149] := {41} tii[27,150] := {25} tii[27,151] := {12} tii[27,152] := {62} tii[27,153] := {43} tii[27,154] := {103} tii[27,155] := {125} tii[27,156] := {60} tii[27,157] := {104} tii[27,158] := {105} tii[27,159] := {126} tii[27,160] := {145} tii[27,161] := {79} tii[27,162] := {124} tii[27,163] := {70} tii[27,164] := {31} tii[27,165] := {93} tii[27,166] := {71} tii[27,167] := {58} tii[27,168] := {92} cell#11 , |C| = 210 special orbit = D6(a1) special rep = phi[210,6] , dim = 210 cell rep = phi[210,6] TII depth = 5 TII multiplicity polynomial = 210*X TII subcells: tii[28,1] := {205} tii[28,2] := {95} tii[28,3] := {184} tii[28,4] := {124} tii[28,5] := {164} tii[28,6] := {209} tii[28,7] := {207} tii[28,8] := {208} tii[28,9] := {200} tii[28,10] := {37} tii[28,11] := {154} tii[28,12] := {203} tii[28,13] := {204} tii[28,14] := {35} tii[28,15] := {174} tii[28,16] := {189} tii[28,17] := {196} tii[28,18] := {206} tii[28,19] := {36} tii[28,20] := {183} tii[28,21] := {165} tii[28,22] := {65} tii[28,23] := {136} tii[28,24] := {202} tii[28,25] := {112} tii[28,26] := {113} tii[28,27] := {199} tii[28,28] := {159} tii[28,29] := {155} tii[28,30] := {186} tii[28,31] := {88} tii[28,32] := {194} tii[28,33] := {106} tii[28,34] := {170} tii[28,35] := {66} tii[28,36] := {187} tii[28,37] := {60} tii[28,38] := {45} tii[28,39] := {192} tii[28,40] := {120} tii[28,41] := {193} tii[28,42] := {168} tii[28,43] := {32} tii[28,44] := {90} tii[28,45] := {144} tii[28,46] := {52} tii[28,47] := {179} tii[28,48] := {92} tii[28,49] := {198} tii[28,50] := {51} tii[28,51] := {29} tii[28,52] := {118} tii[28,53] := {158} tii[28,54] := {145} tii[28,55] := {19} tii[28,56] := {137} tii[28,57] := {11} tii[28,58] := {166} tii[28,59] := {63} tii[28,60] := {161} tii[28,61] := {150} tii[28,62] := {94} tii[28,63] := {127} tii[28,64] := {188} tii[28,65] := {75} tii[28,66] := {143} tii[28,67] := {46} tii[28,68] := {140} tii[28,69] := {5} tii[28,70] := {151} tii[28,71] := {70} tii[28,72] := {167} tii[28,73] := {40} tii[28,74] := {114} tii[28,75] := {2} tii[28,76] := {12} tii[28,77] := {172} tii[28,78] := {86} tii[28,79] := {64} tii[28,80] := {149} tii[28,81] := {6} tii[28,82] := {13} tii[28,83] := {31} tii[28,84] := {57} tii[28,85] := {20} tii[28,86] := {195} tii[28,87] := {79} tii[28,88] := {191} tii[28,89] := {15} tii[28,90] := {55} tii[28,91] := {182} tii[28,92] := {103} tii[28,93] := {56} tii[28,94] := {177} tii[28,95] := {7} tii[28,96] := {197} tii[28,97] := {132} tii[28,98] := {3} tii[28,99] := {156} tii[28,100] := {44} tii[28,101] := {128} tii[28,102] := {61} tii[28,103] := {135} tii[28,104] := {152} tii[28,105] := {83} tii[28,106] := {175} tii[28,107] := {108} tii[28,108] := {21} tii[28,109] := {50} tii[28,110] := {69} tii[28,111] := {25} tii[28,112] := {153} tii[28,113] := {93} tii[28,114] := {76} tii[28,115] := {16} tii[28,116] := {176} tii[28,117] := {72} tii[28,118] := {125} tii[28,119] := {129} tii[28,120] := {14} tii[28,121] := {8} tii[28,122] := {190} tii[28,123] := {96} tii[28,124] := {48} tii[28,125] := {99} tii[28,126] := {22} tii[28,127] := {201} tii[28,128] := {130} tii[28,129] := {71} tii[28,130] := {24} tii[28,131] := {17} tii[28,132] := {49} tii[28,133] := {23} tii[28,134] := {10} tii[28,135] := {178} tii[28,136] := {4} tii[28,137] := {81} tii[28,138] := {87} tii[28,139] := {171} tii[28,140] := {80} tii[28,141] := {1} tii[28,142] := {157} tii[28,143] := {115} tii[28,144] := {59} tii[28,145] := {148} tii[28,146] := {0} tii[28,147] := {180} tii[28,148] := {141} tii[28,149] := {43} tii[28,150] := {123} tii[28,151] := {160} tii[28,152] := {131} tii[28,153] := {138} tii[28,154] := {139} tii[28,155] := {101} tii[28,156] := {162} tii[28,157] := {163} tii[28,158] := {117} tii[28,159] := {116} tii[28,160] := {181} tii[28,161] := {89} tii[28,162] := {142} tii[28,163] := {82} tii[28,164] := {134} tii[28,165] := {67} tii[28,166] := {62} tii[28,167] := {146} tii[28,168] := {119} tii[28,169] := {39} tii[28,170] := {84} tii[28,171] := {91} tii[28,172] := {169} tii[28,173] := {109} tii[28,174] := {26} tii[28,175] := {121} tii[28,176] := {33} tii[28,177] := {74} tii[28,178] := {147} tii[28,179] := {185} tii[28,180] := {97} tii[28,181] := {68} tii[28,182] := {38} tii[28,183] := {30} tii[28,184] := {122} tii[28,185] := {73} tii[28,186] := {34} tii[28,187] := {85} tii[28,188] := {173} tii[28,189] := {110} tii[28,190] := {53} tii[28,191] := {126} tii[28,192] := {47} tii[28,193] := {98} tii[28,194] := {111} tii[28,195] := {28} tii[28,196] := {18} tii[28,197] := {9} tii[28,198] := {42} tii[28,199] := {27} tii[28,200] := {77} tii[28,201] := {102} tii[28,202] := {41} tii[28,203] := {78} tii[28,204] := {107} tii[28,205] := {54} tii[28,206] := {100} tii[28,207] := {105} tii[28,208] := {58} tii[28,209] := {133} tii[28,210] := {104} cell#12 , |C| = 189 special orbit = D5 special rep = phi[189,7] , dim = 189 cell rep = phi[189,7] TII depth = 4 TII multiplicity polynomial = 189*X TII subcells: tii[24,1] := {169} tii[24,2] := {118} tii[24,3] := {160} tii[24,4] := {145} tii[24,5] := {70} tii[24,6] := {127} tii[24,7] := {180} tii[24,8] := {87} tii[24,9] := {111} tii[24,10] := {184} tii[24,11] := {143} tii[24,12] := {187} tii[24,13] := {188} tii[24,14] := {172} tii[24,15] := {64} tii[24,16] := {122} tii[24,17] := {22} tii[24,18] := {138} tii[24,19] := {59} tii[24,20] := {170} tii[24,21] := {152} tii[24,22] := {102} tii[24,23] := {171} tii[24,24] := {158} tii[24,25] := {167} tii[24,26] := {85} tii[24,27] := {99} tii[24,28] := {178} tii[24,29] := {151} tii[24,30] := {56} tii[24,31] := {96} tii[24,32] := {79} tii[24,33] := {123} tii[24,34] := {182} tii[24,35] := {119} tii[24,36] := {154} tii[24,37] := {58} tii[24,38] := {115} tii[24,39] := {185} tii[24,40] := {80} tii[24,41] := {132} tii[24,42] := {186} tii[24,43] := {61} tii[24,44] := {134} tii[24,45] := {176} tii[24,46] := {37} tii[24,47] := {150} tii[24,48] := {78} tii[24,49] := {20} tii[24,50] := {161} tii[24,51] := {146} tii[24,52] := {181} tii[24,53] := {82} tii[24,54] := {38} tii[24,55] := {135} tii[24,56] := {157} tii[24,57] := {183} tii[24,58] := {103} tii[24,59] := {101} tii[24,60] := {168} tii[24,61] := {173} tii[24,62] := {121} tii[24,63] := {137} tii[24,64] := {175} tii[24,65] := {35} tii[24,66] := {165} tii[24,67] := {48} tii[24,68] := {36} tii[24,69] := {32} tii[24,70] := {156} tii[24,71] := {54} tii[24,72] := {90} tii[24,73] := {52} tii[24,74] := {49} tii[24,75] := {129} tii[24,76] := {144} tii[24,77] := {77} tii[24,78] := {72} tii[24,79] := {98} tii[24,80] := {130} tii[24,81] := {17} tii[24,82] := {109} tii[24,83] := {30} tii[24,84] := {89} tii[24,85] := {47} tii[24,86] := {110} tii[24,87] := {68} tii[24,88] := {142} tii[24,89] := {76} tii[24,90] := {14} tii[24,91] := {65} tii[24,92] := {107} tii[24,93] := {45} tii[24,94] := {126} tii[24,95] := {92} tii[24,96] := {67} tii[24,97] := {97} tii[24,98] := {28} tii[24,99] := {66} tii[24,100] := {88} tii[24,101] := {108} tii[24,102] := {113} tii[24,103] := {117} tii[24,104] := {46} tii[24,105] := {93} tii[24,106] := {15} tii[24,107] := {116} tii[24,108] := {71} tii[24,109] := {29} tii[24,110] := {128} tii[24,111] := {133} tii[24,112] := {16} tii[24,113] := {148} tii[24,114] := {27} tii[24,115] := {44} tii[24,116] := {164} tii[24,117] := {104} tii[24,118] := {11} tii[24,119] := {26} tii[24,120] := {140} tii[24,121] := {63} tii[24,122] := {23} tii[24,123] := {155} tii[24,124] := {84} tii[24,125] := {83} tii[24,126] := {42} tii[24,127] := {105} tii[24,128] := {141} tii[24,129] := {163} tii[24,130] := {40} tii[24,131] := {19} tii[24,132] := {60} tii[24,133] := {153} tii[24,134] := {177} tii[24,135] := {7} tii[24,136] := {18} tii[24,137] := {81} tii[24,138] := {179} tii[24,139] := {162} tii[24,140] := {174} tii[24,141] := {3} tii[24,142] := {136} tii[24,143] := {39} tii[24,144] := {9} tii[24,145] := {106} tii[24,146] := {57} tii[24,147] := {120} tii[24,148] := {21} tii[24,149] := {125} tii[24,150] := {62} tii[24,151] := {131} tii[24,152] := {4} tii[24,153] := {100} tii[24,154] := {10} tii[24,155] := {41} tii[24,156] := {139} tii[24,157] := {147} tii[24,158] := {5} tii[24,159] := {159} tii[24,160] := {1} tii[24,161] := {55} tii[24,162] := {6} tii[24,163] := {149} tii[24,164] := {166} tii[24,165] := {2} tii[24,166] := {53} tii[24,167] := {74} tii[24,168] := {95} tii[24,169] := {69} tii[24,170] := {91} tii[24,171] := {33} tii[24,172] := {73} tii[24,173] := {51} tii[24,174] := {112} tii[24,175] := {34} tii[24,176] := {114} tii[24,177] := {94} tii[24,178] := {75} tii[24,179] := {86} tii[24,180] := {50} tii[24,181] := {12} tii[24,182] := {43} tii[24,183] := {124} tii[24,184] := {25} tii[24,185] := {13} tii[24,186] := {31} tii[24,187] := {8} tii[24,188] := {0} tii[24,189] := {24} cell#13 , |C| = 504 special orbit = D5(a1) special rep = phi[420,10] , dim = 420 cell rep = phi[84,12]+phi[420,10] TII depth = 4 TII multiplicity polynomial = 336*X+84*X^2 TII subcells: tii[20,1] := {401, 402} tii[20,2] := {432} tii[20,3] := {74, 75} tii[20,4] := {214} tii[20,5] := {381} tii[20,6] := {182, 183} tii[20,7] := {303, 304} tii[20,8] := {350} tii[20,9] := {437} tii[20,10] := {234, 235} tii[20,11] := {477} tii[20,12] := {501} tii[20,13] := {454} tii[20,14] := {22, 23} tii[20,15] := {282} tii[20,16] := {371} tii[20,17] := {299, 300} tii[20,18] := {425} tii[20,19] := {110, 111} tii[20,20] := {218} tii[20,21] := {399, 400} tii[20,22] := {447} tii[20,23] := {232, 233} tii[20,24] := {281} tii[20,25] := {333} tii[20,26] := {253} tii[20,27] := {85} tii[20,28] := {459} tii[20,29] := {168, 169} tii[20,30] := {466, 467} tii[20,31] := {488} tii[20,32] := {293, 294} tii[20,33] := {204} tii[20,34] := {143} tii[20,35] := {364} tii[20,36] := {428} tii[20,37] := {106, 107} tii[20,38] := {170, 171} tii[20,39] := {458} tii[20,40] := {202} tii[20,41] := {264} tii[20,42] := {408} tii[20,43] := {379} tii[20,44] := {421} tii[20,45] := {53} tii[20,46] := {287} tii[20,47] := {140} tii[20,48] := {375} tii[20,49] := {17} tii[20,50] := {99} tii[20,51] := {429} tii[20,52] := {305, 306} tii[20,53] := {259} tii[20,54] := {344} tii[20,55] := {340} tii[20,56] := {51} tii[20,57] := {431} tii[20,58] := {222} tii[20,59] := {378} tii[20,60] := {184, 185} tii[20,61] := {373} tii[20,62] := {285} tii[20,63] := {100} tii[20,64] := {339} tii[20,65] := {417} tii[20,66] := {162} tii[20,67] := {455} tii[20,68] := {105} tii[20,69] := {479} tii[20,70] := {332} tii[20,71] := {226} tii[20,72] := {139} tii[20,73] := {216} tii[20,74] := {497} tii[20,75] := {346} tii[20,76] := {198} tii[20,77] := {503} tii[20,78] := {261} tii[20,79] := {36} tii[20,80] := {156} tii[20,81] := {461} tii[20,82] := {273} tii[20,83] := {277} tii[20,84] := {320} tii[20,85] := {238, 239} tii[20,86] := {102} tii[20,87] := {331} tii[20,88] := {353, 354} tii[20,89] := {412} tii[20,90] := {213} tii[20,91] := {383} tii[20,92] := {155} tii[20,93] := {212} tii[20,94] := {319} tii[20,95] := {483} tii[20,96] := {80} tii[20,97] := {128, 129} tii[20,98] := {178, 179} tii[20,99] := {276} tii[20,100] := {120, 121} tii[20,101] := {163} tii[20,102] := {278} tii[20,103] := {274} tii[20,104] := {329} tii[20,105] := {272} tii[20,106] := {367} tii[20,107] := {489} tii[20,108] := {188, 189} tii[20,109] := {137} tii[20,110] := {240, 241} tii[20,111] := {224} tii[20,112] := {136} tii[20,113] := {423} tii[20,114] := {94} tii[20,115] := {443} tii[20,116] := {221} tii[20,117] := {444} tii[20,118] := {154} tii[20,119] := {244, 245} tii[20,120] := {196} tii[20,121] := {283} tii[20,122] := {422} tii[20,123] := {256} tii[20,124] := {338} tii[20,125] := {315} tii[20,126] := {79} tii[20,127] := {4} tii[20,128] := {359, 360} tii[20,129] := {420} tii[20,130] := {193} tii[20,131] := {5, 6} tii[20,132] := {44} tii[20,133] := {464} tii[20,134] := {48} tii[20,135] := {267} tii[20,136] := {14} tii[20,137] := {397} tii[20,138] := {317} tii[20,139] := {349} tii[20,140] := {112, 113} tii[20,141] := {463} tii[20,142] := {309, 310} tii[20,143] := {396} tii[20,144] := {24, 25} tii[20,145] := {92} tii[20,146] := {208} tii[20,147] := {419} tii[20,148] := {45} tii[20,149] := {148} tii[20,150] := {250, 251} tii[20,151] := {434} tii[20,152] := {64, 65} tii[20,153] := {152} tii[20,154] := {451} tii[20,155] := {266} tii[20,156] := {90} tii[20,157] := {314} tii[20,158] := {476} tii[20,159] := {3} tii[20,160] := {174, 175} tii[20,161] := {485} tii[20,162] := {209} tii[20,163] := {452} tii[20,164] := {270} tii[20,165] := {13} tii[20,166] := {453} tii[20,167] := {474} tii[20,168] := {114, 115} tii[20,169] := {475} tii[20,170] := {327} tii[20,171] := {42} tii[20,172] := {351, 352} tii[20,173] := {313} tii[20,174] := {495} tii[20,175] := {41} tii[20,176] := {269} tii[20,177] := {499} tii[20,178] := {493} tii[20,179] := {295, 296} tii[20,180] := {326} tii[20,181] := {365} tii[20,182] := {87} tii[20,183] := {409} tii[20,184] := {145} tii[20,185] := {478} tii[20,186] := {78} tii[20,187] := {201} tii[20,188] := {47} tii[20,189] := {336} tii[20,190] := {496} tii[20,191] := {388} tii[20,192] := {335} tii[20,193] := {426} tii[20,194] := {54, 55} tii[20,195] := {84} tii[20,196] := {134} tii[20,197] := {142} tii[20,198] := {370} tii[20,199] := {242, 243} tii[20,200] := {60, 61} tii[20,201] := {91} tii[20,202] := {502} tii[20,203] := {386} tii[20,204] := {301, 302} tii[20,205] := {116, 117} tii[20,206] := {200} tii[20,207] := {414} tii[20,208] := {194} tii[20,209] := {337} tii[20,210] := {150} tii[20,211] := {469} tii[20,212] := {192} tii[20,213] := {20, 21} tii[20,214] := {334} tii[20,215] := {86} tii[20,216] := {457} tii[20,217] := {147} tii[20,218] := {39} tii[20,219] := {415} tii[20,220] := {355, 356} tii[20,221] := {56, 57} tii[20,222] := {470} tii[20,223] := {172, 173} tii[20,224] := {456} tii[20,225] := {385} tii[20,226] := {144} tii[20,227] := {83} tii[20,228] := {254} tii[20,229] := {206} tii[20,230] := {424} tii[20,231] := {205} tii[20,232] := {316} tii[20,233] := {265} tii[20,234] := {482} tii[20,235] := {12} tii[20,236] := {203} tii[20,237] := {252} tii[20,238] := {487} tii[20,239] := {438, 439} tii[20,240] := {312} tii[20,241] := {481} tii[20,242] := {230, 231} tii[20,243] := {38} tii[20,244] := {263} tii[20,245] := {311} tii[20,246] := {325} tii[20,247] := {480} tii[20,248] := {82} tii[20,249] := {324} tii[20,250] := {363} tii[20,251] := {407} tii[20,252] := {2} tii[20,253] := {393} tii[20,254] := {104} tii[20,255] := {11} tii[20,256] := {34, 35} tii[20,257] := {164} tii[20,258] := {290} tii[20,259] := {37} tii[20,260] := {76, 77} tii[20,261] := {165} tii[20,262] := {348} tii[20,263] := {103} tii[20,264] := {132, 133} tii[20,265] := {81} tii[20,266] := {228} tii[20,267] := {291} tii[20,268] := {166} tii[20,269] := {374} tii[20,270] := {16} tii[20,271] := {0, 1} tii[20,272] := {392} tii[20,273] := {246, 247} tii[20,274] := {52} tii[20,275] := {286} tii[20,276] := {50} tii[20,277] := {9, 10} tii[20,278] := {199} tii[20,279] := {343} tii[20,280] := {345} tii[20,281] := {186, 187} tii[20,282] := {390} tii[20,283] := {30, 31} tii[20,284] := {97} tii[20,285] := {101} tii[20,286] := {262} tii[20,287] := {460} tii[20,288] := {160} tii[20,289] := {403, 404} tii[20,290] := {372} tii[20,291] := {96} tii[20,292] := {28, 29} tii[20,293] := {342} tii[20,294] := {471} tii[20,295] := {391} tii[20,296] := {126, 127} tii[20,297] := {323} tii[20,298] := {220} tii[20,299] := {416} tii[20,300] := {161} tii[20,301] := {389} tii[20,302] := {72, 73} tii[20,303] := {357, 358} tii[20,304] := {159} tii[20,305] := {449} tii[20,306] := {448} tii[20,307] := {124, 125} tii[20,308] := {284} tii[20,309] := {219} tii[20,310] := {138} tii[20,311] := {280} tii[20,312] := {167} tii[20,313] := {197} tii[20,314] := {217} tii[20,315] := {260} tii[20,316] := {229} tii[20,317] := {70, 71} tii[20,318] := {157} tii[20,319] := {258} tii[20,320] := {257} tii[20,321] := {215} tii[20,322] := {322} tii[20,323] := {321} tii[20,324] := {122, 123} tii[20,325] := {158} tii[20,326] := {289} tii[20,327] := {279} tii[20,328] := {376} tii[20,329] := {377} tii[20,330] := {7, 8} tii[20,331] := {275} tii[20,332] := {318} tii[20,333] := {49} tii[20,334] := {368} tii[20,335] := {297, 298} tii[20,336] := {330} tii[20,337] := {95} tii[20,338] := {26, 27} tii[20,339] := {328} tii[20,340] := {68, 69} tii[20,341] := {366} tii[20,342] := {93} tii[20,343] := {384} tii[20,344] := {411} tii[20,345] := {211} tii[20,346] := {382} tii[20,347] := {153} tii[20,348] := {66, 67} tii[20,349] := {410} tii[20,350] := {98} tii[20,351] := {442} tii[20,352] := {436} tii[20,353] := {135} tii[20,354] := {15} tii[20,355] := {195} tii[20,356] := {398} tii[20,357] := {46} tii[20,358] := {440, 441} tii[20,359] := {418} tii[20,360] := {484} tii[20,361] := {88} tii[20,362] := {151} tii[20,363] := {395} tii[20,364] := {62, 63} tii[20,365] := {255} tii[20,366] := {490} tii[20,367] := {58, 59} tii[20,368] := {118, 119} tii[20,369] := {433} tii[20,370] := {435} tii[20,371] := {450} tii[20,372] := {146} tii[20,373] := {210} tii[20,374] := {292} tii[20,375] := {405, 406} tii[20,376] := {89} tii[20,377] := {472} tii[20,378] := {176, 177} tii[20,379] := {473} tii[20,380] := {271} tii[20,381] := {394} tii[20,382] := {207} tii[20,383] := {494} tii[20,384] := {500} tii[20,385] := {465} tii[20,386] := {149} tii[20,387] := {236, 237} tii[20,388] := {491} tii[20,389] := {492} tii[20,390] := {268} tii[20,391] := {498} tii[20,392] := {380} tii[20,393] := {369} tii[20,394] := {387} tii[20,395] := {413} tii[20,396] := {18, 19} tii[20,397] := {40} tii[20,398] := {108, 109} tii[20,399] := {446} tii[20,400] := {445} tii[20,401] := {427} tii[20,402] := {141} tii[20,403] := {43} tii[20,404] := {468} tii[20,405] := {486} tii[20,406] := {130, 131} tii[20,407] := {225} tii[20,408] := {227} tii[20,409] := {288} tii[20,410] := {190, 191} tii[20,411] := {347} tii[20,412] := {248, 249} tii[20,413] := {223} tii[20,414] := {341} tii[20,415] := {307, 308} tii[20,416] := {430} tii[20,417] := {180, 181} tii[20,418] := {32, 33} tii[20,419] := {361, 362} tii[20,420] := {462} cell#14 , |C| = 21 special orbit = E6 special rep = phi[21,3] , dim = 21 cell rep = phi[21,3] TII depth = 2 TII multiplicity polynomial = 21*X TII subcells: tii[31,1] := {12} tii[31,2] := {14} tii[31,3] := {10} tii[31,4] := {17} tii[31,5] := {6} tii[31,6] := {18} tii[31,7] := {19} tii[31,8] := {20} tii[31,9] := {15} tii[31,10] := {13} tii[31,11] := {11} tii[31,12] := {9} tii[31,13] := {7} tii[31,14] := {16} tii[31,15] := {2} tii[31,16] := {8} tii[31,17] := {5} tii[31,18] := {3} tii[31,19] := {4} tii[31,20] := {1} tii[31,21] := {0} cell#15 , |C| = 189 special orbit = D5 special rep = phi[189,7] , dim = 189 cell rep = phi[189,7] TII depth = 4 TII multiplicity polynomial = 189*X TII subcells: tii[24,1] := {30} tii[24,2] := {159} tii[24,3] := {97} tii[24,4] := {182} tii[24,5] := {172} tii[24,6] := {174} tii[24,7] := {82} tii[24,8] := {150} tii[24,9] := {146} tii[24,10] := {62} tii[24,11] := {107} tii[24,12] := {43} tii[24,13] := {65} tii[24,14] := {81} tii[24,15] := {184} tii[24,16] := {173} tii[24,17] := {162} tii[24,18] := {163} tii[24,19] := {143} tii[24,20] := {8} tii[24,21] := {149} tii[24,22] := {100} tii[24,23] := {39} tii[24,24] := {133} tii[24,25] := {113} tii[24,26] := {176} tii[24,27] := {171} tii[24,28] := {52} tii[24,29] := {4} tii[24,30] := {129} tii[24,31] := {166} tii[24,32] := {160} tii[24,33] := {121} tii[24,34] := {33} tii[24,35] := {32} tii[24,36] := {80} tii[24,37] := {142} tii[24,38] := {155} tii[24,39] := {18} tii[24,40] := {122} tii[24,41] := {139} tii[24,42] := {36} tii[24,43] := {186} tii[24,44] := {131} tii[24,45] := {23} tii[24,46] := {120} tii[24,47] := {76} tii[24,48] := {74} tii[24,49] := {98} tii[24,50] := {60} tii[24,51] := {111} tii[24,52] := {10} tii[24,53] := {180} tii[24,54] := {75} tii[24,55] := {51} tii[24,56] := {90} tii[24,57] := {25} tii[24,58] := {170} tii[24,59] := {187} tii[24,60] := {71} tii[24,61] := {49} tii[24,62] := {181} tii[24,63] := {188} tii[24,64] := {108} tii[24,65] := {183} tii[24,66] := {61} tii[24,67] := {177} tii[24,68] := {178} tii[24,69] := {167} tii[24,70] := {42} tii[24,71] := {168} tii[24,72] := {127} tii[24,73] := {117} tii[24,74] := {156} tii[24,75] := {87} tii[24,76] := {27} tii[24,77] := {157} tii[24,78] := {140} tii[24,79] := {141} tii[24,80] := {44} tii[24,81] := {175} tii[24,82] := {164} tii[24,83] := {165} tii[24,84] := {153} tii[24,85] := {154} tii[24,86] := {137} tii[24,87] := {138} tii[24,88] := {20} tii[24,89] := {152} tii[24,90] := {151} tii[24,91] := {145} tii[24,92] := {58} tii[24,93] := {125} tii[24,94] := {7} tii[24,95] := {126} tii[24,96] := {134} tii[24,97] := {136} tii[24,98] := {135} tii[24,99] := {103} tii[24,100] := {114} tii[24,101] := {21} tii[24,102] := {104} tii[24,103] := {116} tii[24,104] := {115} tii[24,105] := {83} tii[24,106] := {118} tii[24,107] := {119} tii[24,108] := {57} tii[24,109] := {95} tii[24,110] := {86} tii[24,111] := {96} tii[24,112] := {72} tii[24,113] := {73} tii[24,114] := {185} tii[24,115] := {179} tii[24,116] := {17} tii[24,117] := {144} tii[24,118] := {148} tii[24,119] := {91} tii[24,120] := {56} tii[24,121] := {169} tii[24,122] := {132} tii[24,123] := {6} tii[24,124] := {124} tii[24,125] := {158} tii[24,126] := {112} tii[24,127] := {102} tii[24,128] := {19} tii[24,129] := {1} tii[24,130] := {123} tii[24,131] := {69} tii[24,132] := {101} tii[24,133] := {9} tii[24,134] := {2} tii[24,135] := {59} tii[24,136] := {40} tii[24,137] := {78} tii[24,138] := {11} tii[24,139] := {22} tii[24,140] := {14} tii[24,141] := {130} tii[24,142] := {0} tii[24,143] := {109} tii[24,144] := {110} tii[24,145] := {99} tii[24,146] := {88} tii[24,147] := {5} tii[24,148] := {89} tii[24,149] := {77} tii[24,150] := {53} tii[24,151] := {93} tii[24,152] := {92} tii[24,153] := {15} tii[24,154] := {67} tii[24,155] := {31} tii[24,156] := {55} tii[24,157] := {68} tii[24,158] := {45} tii[24,159] := {46} tii[24,160] := {70} tii[24,161] := {50} tii[24,162] := {48} tii[24,163] := {41} tii[24,164] := {29} tii[24,165] := {28} tii[24,166] := {161} tii[24,167] := {147} tii[24,168] := {128} tii[24,169] := {105} tii[24,170] := {84} tii[24,171] := {106} tii[24,172] := {94} tii[24,173] := {85} tii[24,174] := {63} tii[24,175] := {64} tii[24,176] := {3} tii[24,177] := {12} tii[24,178] := {26} tii[24,179] := {37} tii[24,180] := {38} tii[24,181] := {79} tii[24,182] := {66} tii[24,183] := {34} tii[24,184] := {54} tii[24,185] := {35} tii[24,186] := {47} tii[24,187] := {24} tii[24,188] := {13} tii[24,189] := {16} cell#16 , |C| = 105 special orbit = D4 special rep = phi[105,15] , dim = 105 cell rep = phi[105,15] TII depth = 2 TII multiplicity polynomial = 105*X TII subcells: tii[13,1] := {99} tii[13,2] := {58} tii[13,3] := {47} tii[13,4] := {30} tii[13,5] := {103} tii[13,6] := {61} tii[13,7] := {36} tii[13,8] := {102} tii[13,9] := {80} tii[13,10] := {20} tii[13,11] := {71} tii[13,12] := {87} tii[13,13] := {53} tii[13,14] := {67} tii[13,15] := {100} tii[13,16] := {91} tii[13,17] := {97} tii[13,18] := {77} tii[13,19] := {41} tii[13,20] := {68} tii[13,21] := {62} tii[13,22] := {17} tii[13,23] := {49} tii[13,24] := {33} tii[13,25] := {94} tii[13,26] := {26} tii[13,27] := {40} tii[13,28] := {31} tii[13,29] := {76} tii[13,30] := {85} tii[13,31] := {6} tii[13,32] := {69} tii[13,33] := {65} tii[13,34] := {50} tii[13,35] := {16} tii[13,36] := {75} tii[13,37] := {7} tii[13,38] := {70} tii[13,39] := {74} tii[13,40] := {57} tii[13,41] := {48} tii[13,42] := {56} tii[13,43] := {104} tii[13,44] := {84} tii[13,45] := {83} tii[13,46] := {64} tii[13,47] := {63} tii[13,48] := {46} tii[13,49] := {45} tii[13,50] := {51} tii[13,51] := {35} tii[13,52] := {42} tii[13,53] := {43} tii[13,54] := {23} tii[13,55] := {29} tii[13,56] := {60} tii[13,57] := {22} tii[13,58] := {24} tii[13,59] := {52} tii[13,60] := {13} tii[13,61] := {5} tii[13,62] := {101} tii[13,63] := {86} tii[13,64] := {66} tii[13,65] := {34} tii[13,66] := {98} tii[13,67] := {21} tii[13,68] := {90} tii[13,69] := {95} tii[13,70] := {10} tii[13,71] := {79} tii[13,72] := {4} tii[13,73] := {11} tii[13,74] := {72} tii[13,75] := {1} tii[13,76] := {78} tii[13,77] := {27} tii[13,78] := {15} tii[13,79] := {82} tii[13,80] := {32} tii[13,81] := {44} tii[13,82] := {73} tii[13,83] := {8} tii[13,84] := {19} tii[13,85] := {9} tii[13,86] := {88} tii[13,87] := {14} tii[13,88] := {18} tii[13,89] := {39} tii[13,90] := {96} tii[13,91] := {89} tii[13,92] := {2} tii[13,93] := {93} tii[13,94] := {3} tii[13,95] := {54} tii[13,96] := {38} tii[13,97] := {25} tii[13,98] := {28} tii[13,99] := {37} tii[13,100] := {59} tii[13,101] := {12} tii[13,102] := {0} tii[13,103] := {55} tii[13,104] := {81} tii[13,105] := {92}