Full list of non-zero Kazhdan-Lusztig-Vogan polynomials: P[0,0] := 1: P[0,1] := 1: P[0,2] := 1: P[0,3] := 1: P[0,4] := 1: P[0,5] := 1: P[0,6] := 1: P[0,7] := 1: P[0,8] := 1: P[0,9] := 1: P[0,10] := 1: P[0,11] := 1: P[0,12] := 1: P[0,13] := 1: P[0,14] := 1: P[0,15] := 1: P[0,16] := 1: P[0,17] := 1: P[0,18] := 1: P[0,19] := 1: P[0,20] := 1: P[0,21] := 1: P[0,22] := 1: P[0,23] := 1: P[0,24] := 1: P[0,25] := 1: P[0,26] := 1: P[0,27] := 1: P[0,28] := 1: P[0,29] := 1: P[0,30] := 1: P[0,31] := 1: P[0,32] := 1: P[0,33] := q+1: P[0,34] := 1: P[0,35] := 1: P[0,36] := 1: P[0,37] := 1: P[0,38] := 1: P[0,39] := 1: P[0,40] := 1: P[0,41] := 1: P[0,42] := 1: P[0,43] := 1: P[0,44] := q+1: P[0,45] := 1: P[0,46] := 1: P[0,47] := 1: P[0,48] := 1: P[0,49] := 1: P[0,50] := 1: P[0,51] := 1: P[0,52] := 1: P[0,53] := 1: P[0,54] := 1: P[0,55] := 1: P[0,56] := q+1: P[0,57] := 1: P[0,58] := 1: P[0,59] := q+1: P[0,60] := q+1: P[0,61] := 1: P[0,62] := 1: P[0,63] := q+1: P[0,64] := 1: P[0,65] := 1: P[0,66] := q+1: P[0,67] := q+1: P[0,68] := 1: P[0,69] := 1: P[0,70] := 1: P[0,71] := q+1: P[0,72] := 1: P[0,73] := q+1: P[0,74] := 1: P[0,75] := q+1: P[0,76] := 1: P[0,77] := 1: P[0,78] := 1: P[0,79] := q+1: P[0,80] := 1: P[0,81] := 1: P[0,82] := q+1: P[0,83] := 1: P[0,84] := 1: P[0,85] := 1: P[0,86] := q+1: P[0,87] := 1: P[0,88] := 1: P[0,89] := 1: P[0,90] := 1: P[0,91] := q+1: P[0,92] := q+1: P[0,93] := 1: P[0,94] := 1: P[0,95] := q+1: P[0,96] := 1: P[0,97] := 2q+1: P[0,98] := q+1: P[0,99] := 1: P[0,100] := q+1: P[0,101] := q^2+1: P[0,102] := 1: P[0,103] := q+1: P[0,104] := q+1: P[0,105] := q+1: P[0,106] := q^2+1: P[0,107] := q+1: P[0,108] := 1: P[0,109] := 1: P[0,110] := 1: P[0,111] := 1: P[0,112] := q+1: P[0,113] := q+1: P[0,114] := 2q+1: P[0,115] := 1: P[0,116] := q+1: P[0,117] := q+1: P[0,118] := q+1: P[0,119] := q+1: P[0,120] := 1: P[0,121] := 1: P[0,122] := q+1: P[0,123] := q+1: P[0,124] := 1: P[0,125] := q+1: P[0,126] := q+1: P[0,127] := q+1: P[0,128] := 1: P[0,129] := q+1: P[0,130] := q+1: P[0,131] := q+1: P[0,132] := 1: P[0,133] := q+1: P[0,134] := 1: P[0,135] := 1: P[0,136] := 1: P[0,137] := 1: P[0,138] := 1: P[0,139] := q^2+1: P[0,140] := q^2+2q+1: P[0,141] := q+1: P[0,142] := 1: P[0,143] := 1: P[0,144] := q+1: P[0,145] := q+1: P[0,146] := q^2+2q+1: P[0,147] := q+1: P[0,148] := q^2+q+1: P[0,149] := q+1: P[0,150] := q^2+2q+1: P[0,151] := q^2+1: P[0,152] := 1: P[0,153] := q+1: P[0,154] := q+1: P[0,155] := q+1: P[0,156] := q^2+1: P[0,157] := 1: P[0,158] := q^2+2q+1: P[0,159] := 1: P[0,160] := 1: P[0,161] := 1: P[0,162] := 1: P[0,163] := q+1: P[0,164] := q^2+2q+1: P[0,165] := q+1: P[0,166] := q+1: P[0,167] := q^2+2q+1: P[0,168] := q+1: P[0,169] := q+1: P[0,170] := q+1: P[0,171] := q^2+q+1: P[0,172] := q+1: P[0,173] := q^2+2q+1: P[0,174] := q+1: P[0,175] := 1: P[0,176] := q^2+2q+1: P[0,177] := 1: P[0,178] := q+1: P[0,179] := q+1: P[0,180] := q+1: P[0,181] := q+1: P[0,182] := 1: P[0,183] := q+1: P[0,184] := q+1: P[0,185] := q^2+2q+1: P[0,186] := q+1: P[0,187] := q^2+1: P[0,188] := q^2+2q+1: P[0,189] := 1: P[0,190] := q+1: P[0,191] := q+1: P[0,192] := 1: P[0,193] := 1: P[0,194] := q+1: P[0,195] := q+1: P[0,196] := 1: P[0,197] := 1: P[0,198] := q+1: P[0,199] := q^3+q^2+q+1: P[0,200] := 2q^2+3q+1: P[0,201] := q^2+1: P[0,202] := q+1: P[0,203] := 1: P[0,204] := q+1: P[0,205] := q^2+2q+1: P[0,206] := 2q^2+3q+1: P[0,207] := q^2+q+1: P[0,208] := q^2+1: P[0,209] := q+1: P[0,210] := q^2+q+1: P[0,211] := q^2+2q+1: P[0,212] := q^2+1: P[0,213] := 1: P[0,214] := q+1: P[0,215] := q^2+2q+1: P[0,216] := q+1: P[0,217] := 1: P[0,218] := q+1: P[0,219] := q^2+1: P[0,220] := q^2+2q+1: P[0,221] := 1: P[0,222] := 1: P[0,223] := q+1: P[0,224] := q+1: P[0,225] := 1: P[0,226] := q^2+q+1: P[0,227] := q^2+2q+1: P[0,228] := 2q+1: P[0,229] := q+1: P[0,230] := 2q^2+3q+1: P[0,231] := q+1: P[0,232] := q^2+q+1: P[0,233] := q^2+2q+1: P[0,234] := q+1: P[0,235] := q^2+q+1: P[0,236] := 1: P[0,237] := 1: P[0,238] := q^2+2q+1: P[0,239] := q+1: P[0,240] := q+1: P[0,241] := q+1: P[0,242] := q+1: P[0,243] := q+1: P[0,244] := q+1: P[0,245] := q^2+2q+1: P[0,246] := q^2+q+1: P[0,247] := 2q+1: P[0,248] := q^2+2q+1: P[0,249] := 1: P[0,250] := q+1: P[0,251] := q^2+2q+1: P[0,252] := q^2+2q+1: P[0,253] := q+1: P[0,254] := q^3+q^2+q+1: P[0,255] := 1: P[0,256] := 2q^2+3q+1: P[0,257] := 1: P[0,258] := q+1: P[0,259] := q+1: P[0,260] := q+1: P[0,261] := q+1: P[0,262] := q+1: P[0,263] := q+1: P[0,264] := q+1: P[0,265] := q^2+1: P[0,266] := q+1: P[0,267] := 1: P[0,268] := q+1: P[0,269] := q^2+1: P[0,270] := q^2+q+1: P[0,271] := 2q^2+3q+1: P[0,272] := q^2+q+1: P[0,273] := q^2+q+1: P[0,274] := 1: P[0,275] := q+1: P[0,276] := 2q^2+2q+1: P[0,277] := 2q^2+3q+1: P[0,278] := 2q^2+2q+1: P[0,279] := q^2+1: P[0,280] := q^2+2q+1: P[0,281] := q^2+q+1: P[0,282] := 2q^2+3q+1: P[0,283] := q^2+q+1: P[0,284] := q^2+q+1: P[0,285] := q+1: P[0,286] := 2q+1: P[0,287] := q^2+q+1: P[0,288] := q^2+2q+1: P[0,289] := 1: P[0,290] := q+1: P[0,291] := q^2+q+1: P[0,292] := 2q^2+3q+1: P[0,293] := 1: P[0,294] := 1: P[0,295] := 1: P[0,296] := q^2+q+1: P[0,297] := q^2+q+1: P[0,298] := 1: P[0,299] := 1: P[0,300] := q^3+2q^2+2q+1: P[0,301] := q^2+2q+1: P[0,302] := 2q+1: P[0,303] := 2q+1: P[0,304] := q^2+2q+1: P[0,305] := q^2+q+1: P[0,306] := q^2+q+1: P[0,307] := 2q^2+3q+1: P[0,308] := 2q^2+2q+1: P[0,309] := q^2+2q+1: P[0,310] := 2q^2+2q+1: P[0,311] := 1: P[0,312] := q+1: P[0,313] := 2q^2+3q+1: P[0,314] := 1: P[0,315] := 2q+1: P[0,316] := q+1: P[0,317] := q^2+2q+1: P[0,318] := q^2+2q+1: P[0,319] := 2q+1: P[0,320] := q^3+2q^2+2q+1: P[0,321] := q^2+1: P[0,322] := 2q+1: P[0,323] := q^2+2q+1: P[0,324] := q^2+q+1: P[0,325] := 1: P[0,326] := q+1: P[0,327] := q^2+2q+1: P[0,328] := 2q^2+3q+1: P[0,329] := q^2+2q+1: P[0,330] := q+1: P[0,331] := q+1: P[0,332] := q^2+q+1: P[0,333] := 2q^2+3q+1: P[0,334] := q+1: P[0,335] := 1: P[0,336] := 2q+1: P[0,337] := q^2+2q+1: P[0,338] := q+1: P[0,339] := q^2+1: P[0,340] := q^2+2q+1: P[0,341] := 2q+1: P[0,342] := q+1: P[0,343] := q^2+q+1: P[0,344] := 1: P[0,345] := q^2+q+1: P[0,346] := 1: P[0,347] := q+1: P[0,348] := q^2+1: P[0,349] := 1: P[0,350] := 2q^2+2q+1: P[0,351] := 4q^2+4q+1: P[0,352] := q^2+1: P[0,353] := q+1: P[0,354] := q+1: P[0,355] := q^2+2q+1: P[0,356] := 1: P[0,357] := q^3+3q^2+3q+1: P[0,358] := 2q^2+q+1: P[0,359] := q^2+q+1: P[0,360] := 2q^2+2q+1: P[0,361] := q^2+2q+1: P[0,362] := q^2+2q+1: P[0,363] := 2q^2+2q+1: P[0,364] := 2q^2+2q+1: P[0,365] := 2q^2+q+1: P[0,366] := q+1: P[0,367] := q^2+2q+1: P[0,368] := 2q^2+2q+1: P[0,369] := 2q^2+2q+1: P[0,370] := 1: P[0,371] := q+1: P[0,372] := 2q^2+q+1: P[0,373] := 2q^2+2q+1: P[0,374] := 1: P[0,375] := 1: P[0,376] := q+1: P[0,377] := q+1: P[0,378] := q+1: P[0,379] := q^2+1: P[0,380] := q+1: P[0,381] := q+1: P[0,382] := q^3+3q^2+3q+1: P[0,383] := q+1: P[0,384] := 2q^2+3q+1: P[0,385] := q^2+2q+1: P[0,386] := 2q^2+3q+1: P[0,387] := 2q^2+2q+1: P[0,388] := q^2+2q+1: P[0,389] := q^3+3q^2+3q+1: P[0,390] := q^2+q+1: P[0,391] := q^2+2q+1: P[0,392] := 2q^2+2q+1: P[0,393] := 2q^2+q+1: P[0,394] := 1: P[0,395] := q+1: P[0,396] := 2q^2+2q+1: P[0,397] := q+1: P[0,398] := q^2+2q+1: P[0,399] := q+1: P[0,400] := 2q+1: P[0,401] := q^2+q+1: P[0,402] := 2q^2+3q+1: P[0,403] := q^3+3q^2+3q+1: P[0,404] := q^2+q+1: P[0,405] := 2q^2+3q+1: P[0,406] := q^2+2q+1: P[0,407] := 2q^2+2q+1: P[0,408] := q+1: P[0,409] := 1: P[0,410] := q^2+2q+1: P[0,411] := 2q^2+3q+1: P[0,412] := 2q^2+2q+1: P[0,413] := 2q^2+3q+1: P[0,414] := q+1: P[0,415] := q^2+2q+1: P[0,416] := 2q^2+2q+1: P[0,417] := 4q^2+4q+1: P[0,418] := q+1: P[0,419] := 1: P[0,420] := q+1: P[0,421] := q^2+2q+1: P[0,422] := 2q^2+2q+1: P[0,423] := q+1: P[0,424] := 1: P[0,425] := q^2+q+1: P[0,426] := q^2+2q+1: P[0,427] := 2q+1: P[0,428] := q+1: P[0,429] := q+1: P[0,430] := q^2+1: P[0,431] := q+1: P[0,432] := q+1: P[0,433] := 1: P[0,434] := q^2+2q+1: P[0,435] := q^2+q+1: P[0,436] := 1: P[0,437] := q^3+4q^2+3q+1: P[0,438] := 3q^2+2q+1: P[0,439] := q^2+q+1: P[0,440] := 2q+1: P[0,441] := q^2+q+1: P[0,442] := 2q^2+2q+1: P[0,443] := q+1: P[0,444] := q^4+4q^3+6q^2+4q+1: P[0,445] := 3q^2+2q+1: P[0,446] := 2q^2+1: P[0,447] := q^2+q+1: P[0,448] := 3q^2+3q+1: P[0,449] := 2q^2+2q+1: P[0,450] := 3q^2+3q+1: P[0,451] := q^3+3q^2+2q+1: P[0,452] := 2q^2+1: P[0,453] := q^2+2q+1: P[0,454] := 2q+1: P[0,455] := q^2+q+1: P[0,456] := q^2+q+1: P[0,457] := q+1: P[0,458] := q^2+2q+1: P[0,459] := 1: P[0,460] := q^3+3q^2+2q+1: P[0,461] := 1: P[0,462] := 1: P[0,463] := q^2+q+1: P[0,464] := q+1: P[0,465] := q^2+q+1: P[0,466] := q^2+q+1: P[0,467] := q+1: P[0,468] := q^2+q+1: P[0,469] := q+1: P[0,470] := q^3+3q^2+2q+1: P[0,471] := q^2+2q+1: P[0,472] := 3q^2+3q+1: P[0,473] := q^2+2q+1: P[0,474] := 2q^2+3q+1: P[0,475] := 2q^2+1: P[0,476] := 3q^2+3q+1: P[0,477] := q^4+4q^3+6q^2+4q+1: P[0,478] := q^2+2q+1: P[0,479] := 3q^2+3q+1: P[0,480] := 2q^2+2q+1: P[0,481] := 3q^2+2q+1: P[0,482] := q^2+q+1: P[0,483] := 1: P[0,484] := q+1: P[0,485] := q^3+4q^2+3q+1: P[0,486] := q^2+q+1: P[0,487] := q+1: P[0,488] := q^2+2q+1: P[0,489] := 2q^2+3q+1: P[0,490] := 1: P[0,491] := q^2+2q+1: P[0,492] := q^3+3q^2+2q+1: P[0,493] := q^2+2q+1: P[0,494] := 3q^2+3q+1: P[0,495] := 2q^2+3q+1: P[0,496] := q^2+2q+1: P[0,497] := q^2+2q+1: P[0,498] := q+1: P[0,499] := 1: P[0,500] := q^2+2q+1: P[0,501] := 3q^2+3q+1: P[0,502] := q^3+4q^2+3q+1: P[0,503] := 3q^2+3q+1: P[0,504] := q+1: P[0,505] := q^2+2q+1: P[0,506] := 3q^2+2q+1: P[0,507] := q^3+4q^2+3q+1: P[0,508] := q+1: P[0,509] := q+1: P[0,510] := q^2+2q+1: P[0,511] := 2q+1: P[0,512] := q^2+q+1: P[0,513] := q^2+q+1: P[0,514] := q^2+2q+1: P[0,515] := q+1: P[0,516] := q^2+2q+1: P[0,517] := q+1: P[0,518] := 2q^2+3q+1: P[0,519] := q^2+q+1: P[0,520] := q^2+2q+1: P[0,521] := q^2+q+1: P[0,522] := 2q+1: P[0,523] := q+1: P[0,524] := 1: P[0,525] := q^2+q+1: P[0,526] := 2q^2+2q+1: P[0,527] := 2q^2+1: P[0,528] := 1: P[0,529] := 2q^3+5q^2+3q+1: P[0,530] := 2q^2+2q+1: P[0,531] := q^2+1: P[0,532] := 2q^2+2q+1: P[0,533] := q^2+2q+1: P[0,534] := q^2+q+1: P[0,535] := q^4+4q^3+5q^2+3q+1: P[0,536] := q^2+1: P[0,537] := q^2+1: P[0,538] := 2q^2+2q+1: P[0,539] := 2q^3+4q^2+3q+1: P[0,540] := q^3+2q^2+2q+1: P[0,541] := 3q^2+3q+1: P[0,542] := q^4+4q^3+5q^2+3q+1: P[0,543] := 2q^2+q+1: P[0,544] := q^2+2q+1: P[0,545] := 2q^2+2q+1: P[0,546] := q^3+2q^2+2q+1: P[0,547] := 2q^2+2q+1: P[0,548] := q^2+q+1: P[0,549] := q^3+2q^2+2q+1: P[0,550] := q+1: P[0,551] := q^4+4q^3+5q^2+3q+1: P[0,552] := q+1: P[0,553] := 1: P[0,554] := 1: P[0,555] := q^2+2q+1: P[0,556] := q^2+1: P[0,557] := 2q^2+2q+1: P[0,558] := q^2+2q+1: P[0,559] := q^2+1: P[0,560] := q+1: P[0,561] := 2q^3+5q^2+3q+1: P[0,562] := 2q^2+2q+1: P[0,563] := q^2+2q+1: P[0,564] := q^3+3q^2+3q+1: P[0,565] := 5q^2+4q+1: P[0,566] := 1: P[0,567] := 2q^2+q+1: P[0,568] := q^4+4q^3+5q^2+3q+1: P[0,569] := q^3+3q^2+3q+1: P[0,570] := 2q^3+4q^2+3q+1: P[0,571] := 3q^2+3q+1: P[0,572] := 2q^2+2q+1: P[0,573] := q^3+2q^2+2q+1: P[0,574] := q+1: P[0,575] := 1: P[0,576] := q^2+2q+1: P[0,577] := q+1: P[0,578] := q^2+q+1: P[0,579] := q^2+2q+1: P[0,580] := q^2+2q+1: P[0,581] := 3q^2+3q+1: P[0,582] := q+1: P[0,583] := q^3+3q^2+3q+1: P[0,584] := 2q^3+5q^2+3q+1: P[0,585] := 2q^2+q+1: P[0,586] := q^2+2q+1: P[0,587] := 5q^2+4q+1: P[0,588] := 2q^2+2q+1: P[0,589] := q^3+3q^2+3q+1: P[0,590] := q+1: P[0,591] := 1: P[0,592] := q^3+3q^2+3q+1: P[0,593] := 2q^2+2q+1: P[0,594] := 2q^2+2q+1: P[0,595] := 2q^2+2q+1: P[0,596] := q^2+2q+1: P[0,597] := q^3+3q^2+3q+1: P[0,598] := q+1: P[0,599] := 2q^3+5q^2+3q+1: P[0,600] := q+1: P[0,601] := q+1: P[0,602] := 2q^2+2q+1: P[0,603] := q^2+2q+1: P[0,604] := q^3+2q^2+2q+1: P[0,605] := 2q^2+2q+1: P[0,606] := q^2+q+1: P[0,607] := q^3+2q^2+2q+1: P[0,608] := q+1: P[0,609] := 2q^2+q+1: P[0,610] := q^2+2q+1: P[0,611] := 3q^2+3q+1: P[0,612] := q^2+q+1: P[0,613] := q^2+2q+1: P[0,614] := q^2+1: P[0,615] := 2q^2+2q+1: P[0,616] := q^2+q+1: P[0,617] := q+1: P[0,618] := 2q^2+2q+1: P[0,619] := q^2+2q+1: P[0,620] := q^2+1: P[0,621] := q^2+1: P[0,622] := 1: P[0,623] := 2q^4+7q^3+8q^2+4q+1: P[0,624] := q^2+q+1: P[0,625] := 2q^2+2q+1: P[0,626] := q^3+3q^2+2q+1: P[0,627] := q^2+q+1: P[0,628] := 2q^4+7q^3+8q^2+4q+1: P[0,629] := q^3+q^2+q+1: P[0,630] := q^3+q^2+q+1: P[0,631] := q^3+3q^2+2q+1: P[0,632] := q^3+q^2+2q+1: P[0,633] := 2q^3+4q^2+3q+1: P[0,634] := 3q^3+6q^2+4q+1: P[0,635] := q^5+3q^4+4q^3+4q^2+2q+1: P[0,636] := 2q^3+3q^2+2q+1: P[0,637] := 3q^2+3q+1: P[0,638] := 2q^3+4q^2+3q+1: P[0,639] := q^3+q^2+q+1: P[0,640] := q^3+2q^2+2q+1: P[0,641] := q^3+q^2+q+1: P[0,642] := q^2+q+1: P[0,643] := q^5+3q^4+4q^3+4q^2+2q+1: P[0,644] := 1: P[0,645] := 1: P[0,646] := q+1: P[0,647] := q^3+q^2+2q+1: P[0,648] := 1: P[0,649] := q^2+q+1: P[0,650] := q^3+q^2+2q+1: P[0,651] := q^2+q+1: P[0,652] := q^2+2q+1: P[0,653] := q+1: P[0,654] := q^3+2q^2+2q+1: P[0,655] := 3q^2+3q+1: P[0,656] := 3q^2+3q+1: P[0,657] := 3q^3+6q^2+4q+1: P[0,658] := q+1: P[0,659] := 2q^3+3q^2+2q+1: P[0,660] := 2q^4+7q^3+8q^2+4q+1: P[0,661] := 2q^3+3q^2+2q+1: P[0,662] := q^3+q^2+2q+1: P[0,663] := 3q^3+6q^2+4q+1: P[0,664] := q^3+3q^2+2q+1: P[0,665] := 2q^3+4q^2+3q+1: P[0,666] := q+1: P[0,667] := 1: P[0,668] := q^2+2q+1: P[0,669] := q^3+2q^2+2q+1: P[0,670] := 1: P[0,671] := 3q^2+3q+1: P[0,672] := 2q^2+2q+1: P[0,673] := q^2+q+1: P[0,674] := 2q^3+3q^2+2q+1: P[0,675] := q^2+q+1: P[0,676] := q^2+q+1: P[0,677] := 3q^2+3q+1: P[0,678] := 3q^3+6q^2+4q+1: P[0,679] := q^3+2q^2+2q+1: P[0,680] := 3q^2+3q+1: P[0,681] := q^2+q+1: P[0,682] := q+1: P[0,683] := q^3+2q^2+2q+1: P[0,684] := 2q^3+4q^2+3q+1: P[0,685] := 2q^3+4q^2+3q+1: P[0,686] := 2q^3+4q^2+3q+1: P[0,687] := q^3+2q^2+2q+1: P[0,688] := 2q^3+4q^2+3q+1: P[0,689] := q^2+2q+1: P[0,690] := 2q^4+7q^3+8q^2+4q+1: P[0,691] := q^2+2q+1: P[0,692] := q+1: P[0,693] := q+1: P[0,694] := 3q^2+3q+1: P[0,695] := q^3+q^2+q+1: P[0,696] := 2q^3+4q^2+3q+1: P[0,697] := q^3+2q^2+2q+1: P[0,698] := q^3+q^2+q+1: P[0,699] := q+1: P[0,700] := q^2+q+1: P[0,701] := 2q^2+2q+1: P[0,702] := q^2+q+1: P[0,703] := q^3+2q^2+2q+1: P[0,704] := 3q^2+3q+1: P[0,705] := 1: P[0,706] := q^2+q+1: P[0,707] := q^2+q+1: P[0,708] := q^2+q+1: P[0,709] := q^3+3q^2+2q+1: P[0,710] := 2q^2+2q+1: P[0,711] := q^3+q^2+q+1: P[0,712] := q^3+q^2+q+1: P[0,713] := 1: P[0,714] := 1: P[0,715] := q^5+4q^4+7q^3+6q^2+3q+1: P[0,716] := q^3+2q^2+2q+1: P[0,717] := 2q^3+4q^2+3q+1: P[0,718] := q^3+2q^2+2q+1: P[0,719] := q^2+q+1: P[0,720] := q^4+2q^3+2q^2+2q+1: P[0,721] := q^4+2q^2+1: P[0,722] := 2q^3+3q^2+2q+1: P[0,723] := 2q^3+3q^2+3q+1: P[0,724] := 2q^3+4q^2+3q+1: P[0,725] := q^4+6q^3+7q^2+4q+1: P[0,726] := q^5+4q^4+7q^3+6q^2+3q+1: P[0,727] := 2q^4+3q^3+4q^2+q+1: P[0,728] := 2q^3+3q^2+3q+1: P[0,729] := q^3+2q^2+2q+1: P[0,730] := q^3+2q^2+2q+1: P[0,731] := 2q^3+3q^2+2q+1: P[0,732] := q^3+q^2+q+1: P[0,733] := q^5+4q^4+7q^3+6q^2+3q+1: P[0,734] := q+1: P[0,735] := 1: P[0,736] := q^2+q+1: P[0,737] := q^3+q+1: P[0,738] := q+1: P[0,739] := q^3+2q^2+2q+1: P[0,740] := q^3+q+1: P[0,741] := q^3+2q^2+2q+1: P[0,742] := q^2+2q+1: P[0,743] := 3q^3+4q^2+3q+1: P[0,744] := q+1: P[0,745] := 3q^3+6q^2+4q+1: P[0,746] := 2q^3+4q^2+3q+1: P[0,747] := q^2+q+1: P[0,748] := 2q^4+3q^3+4q^2+q+1: P[0,749] := q^3+2q^2+2q+1: P[0,750] := q^3+2q^2+2q+1: P[0,751] := 2q^3+3q^2+3q+1: P[0,752] := q^4+6q^3+7q^2+4q+1: P[0,753] := 2q^3+3q^2+2q+1: P[0,754] := 2q^3+4q^2+3q+1: P[0,755] := q^2+q+1: P[0,756] := q+1: P[0,757] := q^3+2q^2+2q+1: P[0,758] := q+1: P[0,759] := 2q^2+2q+1: P[0,760] := 2q^3+4q^2+3q+1: P[0,761] := q^2+q+1: P[0,762] := q^3+2q^2+2q+1: P[0,763] := q^3+2q^2+2q+1: P[0,764] := q^3+2q^2+2q+1: P[0,765] := 2q^3+4q^2+3q+1: P[0,766] := q^3+2q^2+2q+1: P[0,767] := 3q^3+4q^2+3q+1: P[0,768] := 3q^3+6q^2+4q+1: P[0,769] := q^3+q^2+q+1: P[0,770] := q^2+q+1: P[0,771] := 3q^3+4q^2+3q+1: P[0,772] := 2q^4+6q^3+7q^2+4q+1: P[0,773] := q^4+2q^3+2q^2+2q+1: P[0,774] := 3q^3+4q^2+3q+1: P[0,775] := q^4+2q^3+2q^2+2q+1: P[0,776] := q^3+2q^2+2q+1: P[0,777] := q^5+4q^4+7q^3+6q^2+3q+1: P[0,778] := q+1: P[0,779] := q+1: P[0,780] := q^2+2q+1: P[0,781] := 2q^3+3q^2+3q+1: P[0,782] := q+1: P[0,783] := q^3+2q^2+2q+1: P[0,784] := 2q^3+3q^2+2q+1: P[0,785] := q^3+2q^2+2q+1: P[0,786] := q+1: P[0,787] := q+1: P[0,788] := q^3+2q^2+2q+1: P[0,789] := q^3+2q^2+2q+1: P[0,790] := 2q^2+2q+1: P[0,791] := 2q^3+4q^2+3q+1: P[0,792] := q+1: P[0,793] := q^3+2q^2+2q+1: P[0,794] := q^3+2q^2+2q+1: P[0,795] := q^2+q+1: P[0,796] := q^2+q+1: P[0,797] := 2q^3+4q^2+3q+1: P[0,798] := q^4+2q^2+1: P[0,799] := q^4+2q^3+2q^2+2q+1: P[0,800] := q+1: P[0,801] := 1: P[0,802] := q^6+4q^5+10q^4+12q^3+9q^2+4q+1: P[0,803] := q^4+2q^3+3q^2+q+1: P[0,804] := 4q^3+4q^2+3q+1: P[0,805] := q^3+2q^2+2q+1: P[0,806] := q^4+q^3+2q^2+q+1: P[0,807] := q^4+5q^3+5q^2+3q+1: P[0,808] := q^2+1: P[0,809] := 6q^3+7q^2+4q+1: P[0,810] := 4q^3+4q^2+3q+1: P[0,811] := q^4+2q^3+3q^2+q+1: P[0,812] := q^4+2q^3+3q^2+q+1: P[0,813] := q^3+q^2+2q+1: P[0,814] := q^4+3q^3+4q^2+3q+1: P[0,815] := 3q^3+4q^2+3q+1: P[0,816] := 2q^3+2q^2+2q+1: P[0,817] := q^3+q^2+q+1: P[0,818] := q+1: P[0,819] := q^2+1: P[0,820] := q^3+q^2+q+1: P[0,821] := q^3+q^2+2q+1: P[0,822] := q^2+q+1: P[0,823] := q^4+2q^3+3q^2+q+1: P[0,824] := q^3+q^2+2q+1: P[0,825] := q^4+2q^3+3q^2+q+1: P[0,826] := q^3+2q^2+2q+1: P[0,827] := q^2+2q+1: P[0,828] := 2q^3+4q^2+3q+1: P[0,829] := 6q^3+7q^2+4q+1: P[0,830] := q^3+q^2+q+1: P[0,831] := q^4+2q^3+3q^2+q+1: P[0,832] := q^4+3q^3+4q^2+3q+1: P[0,833] := 3q^3+4q^2+3q+1: P[0,834] := 4q^3+4q^2+3q+1: P[0,835] := q^4+2q^3+3q^2+q+1: P[0,836] := q^4+5q^3+5q^2+3q+1: P[0,837] := 6q^3+7q^2+4q+1: P[0,838] := q^3+q^2+q+1: P[0,839] := q^2+q+1: P[0,840] := 2q^3+2q^2+2q+1: P[0,841] := q^2+q+1: P[0,842] := 2q^3+4q^2+3q+1: P[0,843] := q^2+q+1: P[0,844] := q^2+q+1: P[0,845] := q^4+3q^3+4q^2+3q+1: P[0,846] := q^4+q^3+2q^2+q+1: P[0,847] := 3q^3+4q^2+3q+1: P[0,848] := q^4+3q^3+4q^2+3q+1: P[0,849] := 2q^3+4q^2+3q+1: P[0,850] := 6q^3+7q^2+4q+1: P[0,851] := 2q^3+2q^2+2q+1: P[0,852] := q^3+q^2+q+1: P[0,853] := q^4+5q^3+5q^2+3q+1: P[0,854] := q^4+3q^3+4q^2+3q+1: P[0,855] := q^4+3q^3+4q^2+3q+1: P[0,856] := q^4+5q^3+5q^2+3q+1: P[0,857] := 2q^3+2q^2+2q+1: P[0,858] := q^6+4q^5+10q^4+12q^3+9q^2+4q+1: P[0,859] := q^2+2q+1: P[0,860] := q+1: P[0,861] := q^3+2q^2+2q+1: P[0,862] := q^3+q^2+2q+1: P[0,863] := q^2+2q+1: P[0,864] := q^4+3q^3+4q^2+3q+1: P[0,865] := q^3+q^2+q+1: P[0,866] := 3q^3+4q^2+3q+1: P[0,867] := q^2+2q+1: P[0,868] := q^4+3q^3+4q^2+3q+1: P[0,869] := q+1: P[0,870] := 2q^3+4q^2+3q+1: P[0,871] := q^4+q^3+2q^2+q+1: P[0,872] := q^2+q+1: P[0,873] := q^4+2q^3+3q^2+q+1: P[0,874] := q^2+q+1: P[0,875] := q^2+q+1: P[0,876] := q^3+2q^2+2q+1: P[0,877] := 4q^3+4q^2+3q+1: P[0,878] := q^2+1: P[0,879] := q^4+q^3+2q^2+q+1: P[0,880] := q^2+1: P[0,881] := q+1: P[0,882] := 2q^4+2q^3+2q^2+q+1: P[0,883] := 2q^3+2q^2+q+1: P[0,884] := 2q^3+3q^2+2q+1: P[0,885] := q^4+3q^3+3q^2+2q+1: P[0,886] := q^3+q^2+q+1: P[0,887] := 4q^3+5q^2+3q+1: P[0,888] := 4q^4+9q^3+8q^2+4q+1: P[0,889] := 2q^4+5q^3+4q^2+2q+1: P[0,890] := 2q^4+5q^3+4q^2+2q+1: P[0,891] := q^4+2q^3+3q^2+3q+1: P[0,892] := 2q^4+5q^3+4q^2+2q+1: P[0,893] := 2q^4+5q^3+4q^2+2q+1: P[0,894] := 2q^3+2q^2+2q+1: P[0,895] := q^2+q+1: P[0,896] := 2q^3+2q^2+2q+1: P[0,897] := q^3+1: P[0,898] := q^3+q^2+q+1: P[0,899] := 2q^3+2q^2+q+1: P[0,900] := 2q^3+2q^2+q+1: P[0,901] := q^4+2q^3+q^2+1: P[0,902] := 2q^3+2q^2+2q+1: P[0,903] := q^3+2q^2+2q+1: P[0,904] := 6q^3+7q^2+4q+1: P[0,905] := q^3+q^2+q+1: P[0,906] := q^3+q^2+q+1: P[0,907] := 3q^4+7q^3+7q^2+4q+1: P[0,908] := q^4+3q^3+3q^2+2q+1: P[0,909] := 2q^4+5q^3+4q^2+2q+1: P[0,910] := 2q^4+5q^3+4q^2+2q+1: P[0,911] := 4q^3+5q^2+3q+1: P[0,912] := 4q^4+9q^3+8q^2+4q+1: P[0,913] := 2q^3+2q^2+2q+1: P[0,914] := q^3+q^2+q+1: P[0,915] := 2q^4+4q^3+4q^2+3q+1: P[0,916] := q^3+q^2+q+1: P[0,917] := 4q^3+5q^2+3q+1: P[0,918] := q^3+2q^2+2q+1: P[0,919] := q^4+2q^3+3q^2+2q+1: P[0,920] := 3q^4+7q^3+7q^2+4q+1: P[0,921] := q^2+q+1: P[0,922] := 6q^3+7q^2+4q+1: P[0,923] := q^4+3q^3+3q^2+2q+1: P[0,924] := q^3+q^2+q+1: P[0,925] := q^3+q^2+q+1: P[0,926] := 2q^3+2q^2+2q+1: P[0,927] := 3q^4+7q^3+7q^2+4q+1: P[0,928] := 3q^4+7q^3+7q^2+4q+1: P[0,929] := 2q^4+4q^3+4q^2+3q+1: P[0,930] := 2q^3+2q^2+2q+1: P[0,931] := q^2+2q+1: P[0,932] := q^3+q^2+q+1: P[0,933] := 2q^3+2q^2+2q+1: P[0,934] := q^4+2q^3+3q^2+3q+1: P[0,935] := q^3+2q^2+2q+1: P[0,936] := 2q^4+5q^3+4q^2+2q+1: P[0,937] := 2q^3+2q^2+2q+1: P[0,938] := 2q^4+5q^3+4q^2+2q+1: P[0,939] := q^3+q^2+q+1: P[0,940] := q^2+2q+1: P[0,941] := q^4+2q^3+3q^2+2q+1: P[0,942] := 4q^3+5q^2+3q+1: P[0,943] := q^3+q^2+q+1: P[0,944] := 2q^4+2q^3+2q^2+q+1: P[0,945] := q^3+2q^2+2q+1: P[0,946] := q^2+q+1: P[0,947] := 2q^3+3q^2+2q+1: P[0,948] := 2q^3+2q^2+q+1: P[0,949] := q^3+q^2+q+1: P[0,950] := q^4+3q^3+3q^2+2q+1: P[0,951] := q^3+1: P[0,952] := q^2+q+1: P[0,953] := 2q^4+4q^3+3q^2+2q+1: P[0,954] := q^4+3q^3+3q^2+2q+1: P[0,955] := 2q^4+3q^3+4q^2+q+1: P[0,956] := q^3+2q^2+q+1: P[0,957] := 4q^4+9q^3+8q^2+4q+1: P[0,958] := 6q^4+9q^3+6q^2+3q+1: P[0,959] := 2q^4+3q^3+4q^2+q+1: P[0,960] := 2q^4+4q^3+3q^2+2q+1: P[0,961] := q^4+3q^3+q^2+q+1: P[0,962] := q^4+3q^3+3q^2+2q+1: P[0,963] := q^3+q^2+q+1: P[0,964] := q^3+q+1: P[0,965] := q^3+q^2+q+1: P[0,966] := q^4+q^3+q^2+q+1: P[0,967] := q^4+3q^3+q^2+q+1: P[0,968] := q^4+3q^3+q^2+q+1: P[0,969] := 2q^4+4q^3+4q^2+3q+1: P[0,970] := 2q^3+2q^2+2q+1: P[0,971] := 4q^4+9q^3+8q^2+4q+1: P[0,972] := 2q^3+2q^2+2q+1: P[0,973] := q^4+5q^3+5q^2+3q+1: P[0,974] := 6q^4+9q^3+6q^2+3q+1: P[0,975] := q^3+q^2+q+1: P[0,976] := 4q^4+9q^3+8q^2+4q+1: P[0,977] := 2q^4+3q^3+4q^2+q+1: P[0,978] := q^3+q^2+q+1: P[0,979] := q^4+q^3+q^2+q+1: P[0,980] := q^4+q^3+q^2+q+1: P[0,981] := q^3+q^2+q+1: P[0,982] := q^3+2q^2+q+1: P[0,983] := q^4+5q^3+5q^2+3q+1: P[0,984] := q^3+2q^2+2q+1: P[0,985] := q^4+5q^3+5q^2+3q+1: P[0,986] := 4q^4+9q^3+8q^2+4q+1: P[0,987] := 2q^3+2q^2+2q+1: P[0,988] := q^3+q^2+q+1: P[0,989] := 2q^4+4q^3+4q^2+3q+1: P[0,990] := 6q^4+9q^3+6q^2+3q+1: P[0,991] := 6q^4+9q^3+6q^2+3q+1: P[0,992] := 2q^4+4q^3+4q^2+3q+1: P[0,993] := q^3+2q^2+2q+1: P[0,994] := 2q^4+4q^3+4q^2+3q+1: P[0,995] := q^3+q+1: P[0,996] := 2q^3+2q^2+2q+1: P[0,997] := 2q^4+4q^3+3q^2+2q+1: P[0,998] := q^4+3q^3+3q^2+2q+1: P[0,999] := q^4+3q^3+q^2+q+1: P[0,1000] := q^3+q+1: P[0,1001] := q^3+2q^2+2q+1: P[0,1002] := q^4+5q^3+5q^2+3q+1: P[0,1003] := q^4+q^3+q^2+q+1: P[0,1004] := q^3+q^2+q+1: P[0,1005] := q^3+2q^2+2q+1: P[0,1006] := q^3+2q^2+q+1: P[0,1007] := q^4+3q^3+3q^2+2q+1: P[0,1008] := 2q^4+4q^3+3q^2+2q+1: P[0,1009] := q^3+2q^2+q+1: P[0,1010] := 2q^4+3q^3+4q^2+q+1: P[0,1011] := q^3+q+1: P[0,1012] := q^3+q^2+q+1: P[0,1013] := q^5+4q^4+6q^3+5q^2+3q+1: P[0,1014] := 2q^4+2q^3+2q^2+1: P[0,1015] := 2q^3+2q^2+q+1: P[0,1016] := 2q^5+9q^4+12q^3+8q^2+4q+1: P[0,1017] := 3q^4+6q^3+5q^2+2q+1: P[0,1018] := q^5+4q^4+4q^3+2q^2+2q+1: P[0,1019] := 2q^4+4q^3+2q^2+2q+1: P[0,1020] := q^3+q^2+1: P[0,1021] := q^3+q^2+q+1: P[0,1022] := q^4+2q^3+2q^2+2q+1: P[0,1023] := 2q^4+4q^3+2q^2+2q+1: P[0,1024] := q^3+q^2+1: P[0,1025] := q^4+2q^3+2q^2+2q+1: P[0,1026] := q^4+2q^3+2q^2+2q+1: P[0,1027] := 2q^3+2q^2+q+1: P[0,1028] := q^5+6q^4+10q^3+8q^2+4q+1: P[0,1029] := 2q^3+2q^2+2q+1: P[0,1030] := 3q^4+6q^3+5q^2+2q+1: P[0,1031] := 2q^5+9q^4+12q^3+8q^2+4q+1: P[0,1032] := q^4+2q^3+2q^2+2q+1: P[0,1033] := q^3+q^2+1: P[0,1034] := q^4+2q^3+2q^2+2q+1: P[0,1035] := q^3+q^2+q+1: P[0,1036] := 3q^4+6q^3+5q^2+2q+1: P[0,1037] := 2q^3+3q^2+2q+1: P[0,1038] := q^5+6q^4+10q^3+8q^2+4q+1: P[0,1039] := 2q^3+2q^2+2q+1: P[0,1040] := 2q^3+2q^2+q+1: P[0,1041] := q^5+4q^4+6q^3+5q^2+3q+1: P[0,1042] := 2q^4+4q^3+2q^2+2q+1: P[0,1043] := q^5+4q^4+6q^3+5q^2+3q+1: P[0,1044] := 2q^3+2q^2+2q+1: P[0,1045] := q^4+q^3+q^2+2q+1: P[0,1046] := q^4+2q^3+2q^2+2q+1: P[0,1047] := q^4+2q^3+2q^2+2q+1: P[0,1048] := 2q^4+4q^3+2q^2+2q+1: P[0,1049] := q^5+4q^4+4q^3+2q^2+2q+1: P[0,1050] := q^4+q^3+q^2+2q+1: P[0,1051] := 2q^3+2q^2+2q+1: P[0,1052] := 3q^4+6q^3+5q^2+2q+1: P[0,1053] := q^4+2q^3+2q^2+2q+1: P[0,1054] := 2q^3+3q^2+2q+1: P[0,1055] := q^5+4q^4+6q^3+5q^2+3q+1: P[0,1056] := q^3+q^2+q+1: P[0,1057] := 2q^3+2q^2+q+1: P[0,1058] := 2q^4+2q^3+2q^2+1: P[0,1059] := q^3+q^2+q+1: P[0,1060] := q^3+q^2+1: P[0,1061] := q^4+2q^3+2q^2+q+1: P[0,1062] := q^4+2q^3+2q^2+q+1: P[0,1063] := 2q^5+9q^4+11q^3+7q^2+3q+1: P[0,1064] := 2q^5+6q^4+6q^3+4q^2+3q+1: P[0,1065] := q^3+1: P[0,1066] := 2q^3+q^2+q+1: P[0,1067] := q^4+2q^3+2q^2+q+1: P[0,1068] := 2q^3+q^2+q+1: P[0,1069] := q^5+3q^4+4q^3+4q^2+3q+1: P[0,1070] := 2q^3+q^2+q+1: P[0,1071] := 2q^5+9q^4+11q^3+7q^2+3q+1: P[0,1072] := q^4+3q^3+3q^2+2q+1: P[0,1073] := 2q^5+9q^4+11q^3+7q^2+3q+1: P[0,1074] := 2q^3+q^2+q+1: P[0,1075] := q^4+2q^3+2q^2+q+1: P[0,1076] := q^4+2q^3+2q^2+2q+1: P[0,1077] := q^4+2q^3+2q^2+q+1: P[0,1078] := q^4+3q^3+3q^2+2q+1: P[0,1079] := 2q^5+9q^4+11q^3+7q^2+3q+1: P[0,1080] := q^4+3q^3+3q^2+2q+1: P[0,1081] := 2q^5+6q^4+6q^3+4q^2+3q+1: P[0,1082] := 2q^5+6q^4+6q^3+4q^2+3q+1: P[0,1083] := 2q^3+q^2+q+1: P[0,1084] := q^4+2q^3+2q^2+2q+1: P[0,1085] := q^5+3q^4+4q^3+4q^2+3q+1: P[0,1086] := 2q^5+6q^4+6q^3+4q^2+3q+1: P[0,1087] := 2q^3+q^2+q+1: P[0,1088] := q^4+2q^3+2q^2+2q+1: P[0,1089] := 2q^3+q^2+q+1: P[0,1090] := q^4+2q^3+2q^2+q+1: P[0,1091] := q^4+3q^3+3q^2+2q+1: P[0,1092] := q^4+2q^3+2q^2+2q+1: P[0,1093] := q^4+2q^3+2q^2+q+1: P[0,1094] := q^4+2q^3+2q^2+q+1: P[0,1095] := 2q^3+q^2+q+1: P[0,1096] := q^3+1: P[0,1097] := q^5+3q^4+4q^3+3q^2+2q+1: P[0,1098] := 2q^6+8q^5+11q^4+10q^3+7q^2+2q+1: P[0,1099] := q^3+q+1: P[0,1100] := q^2+1: P[0,1101] := q^4+2q^3+2q^2+q+1: P[0,1102] := 2q^4+3q^3+2q^2+2q+1: P[0,1103] := q^5+3q^4+4q^3+3q^2+2q+1: P[0,1104] := 2q^4+4q^3+3q^2+2q+1: P[0,1105] := 2q^6+8q^5+11q^4+10q^3+7q^2+2q+1: P[0,1106] := q^4+2q^3+2q^2+q+1: P[0,1107] := q^5+2q^4+3q^3+3q^2+2q+1: P[0,1108] := q^4+2q^3+2q^2+q+1: P[0,1109] := 2q^4+4q^3+3q^2+2q+1: P[0,1110] := 2q^6+8q^5+12q^4+10q^3+7q^2+4q+1: P[0,1111] := q^3+q+1: P[0,1112] := 2q^4+3q^3+2q^2+2q+1: P[0,1113] := q^5+3q^4+4q^3+3q^2+2q+1: P[0,1114] := 2q^4+3q^3+2q^2+2q+1: P[0,1115] := 2q^4+3q^3+2q^2+2q+1: P[0,1116] := q^3+q+1: P[0,1117] := q^4+2q^3+2q^2+q+1: P[0,1118] := q^5+2q^4+3q^3+3q^2+2q+1: P[0,1119] := q^5+3q^4+4q^3+3q^2+2q+1: P[0,1120] := q^3+q+1: P[0,1121] := q^2+1: P[0,1122] := q^6+2q^5+2q^4+3q^3+3q^2+1: P[0,1123] := q^3+q^2+q+1: P[0,1124] := q^5+q^4+3q^3+2q^2+q+1: P[0,1125] := q^5+3q^4+4q^3+3q^2+2q+1: P[0,1126] := q^5+q^4+3q^3+2q^2+q+1: P[0,1127] := q^5+q^4+3q^3+2q^2+q+1: P[0,1128] := q^5+3q^4+4q^3+3q^2+2q+1: P[0,1129] := q^5+q^4+3q^3+2q^2+q+1: P[0,1130] := q^4+q^3+q^2+2q+1: P[0,1131] := q^3+q^2+q+1: P[0,1132] := q^5+3q^4+4q^3+3q^2+2q+1: P[0,1133] := q^4+q^3+q^2+2q+1: P[0,1134] := q^3+q^2+q+1: P[0,1135] := q^5+3q^4+4q^3+3q^2+2q+1: P[0,1136] := q^6+2q^5+2q^4+3q^3+3q^2+1: P[0,1137] := q^3+q^2+q+1: P[0,1138] := q^3+q^2+1: P[0,1139] := q^6+2q^5+4q^4+5q^3+3q^2+2q+1: P[0,1140] := q^6+q^4+2q^3+q^2+1: P[0,1141] := q^3+q^2+1: P[0,1142] := q^4+2q^3+2q^2+2q+1: P[0,1143] := q^6+2q^5+4q^4+5q^3+3q^2+2q+1: P[0,1144] := q^4+2q^3+2q^2+2q+1: P[0,1145] := q^3+q^2+1: P[0,1146] := q^3+q^2+1: P[0,1147] := q^3+1: P[0,1148] := q^4+2q^3+q^2+q+1: P[0,1149] := q^4+2q^3+q^2+q+1: P[0,1150] := q^3+1: P[0,1151] := 1: