#### Green Polynomials for G2 #### W-rep key: # x[1] = phi[1,6] , orbit = 0 , A-rep = [1] # x[2] = phi[1,3,2] , orbit = A1 , A-rep = [1] # x[3] = phi[2,2] , orbit = A1s , A-rep = [1] # x[4] = phi[2,1] , orbit = G2(a1) , A-rep = [3] # x[5] = phi[1,3,1] , orbit = G2(a1) , A-rep = [2, 1] # x[6] = phi[1,0] , orbit = G2 , A-rep = [1] ### Green Polynomials by Orbit orbit #1 : 0 dim = 0 A(O) = 1 , |A(O)_0| = 1 g_s = 14*V[0] Z_G(x)_0 = G2 # Green Polys by orbit reps #1.1 : x[1] : 0,[1] : phi[1,6] Qxi[G2,1,1] = (x[1])*q^6 + (x[4])*q^5 + (x[3])*q^4 + (x[2]+x[5])*q^3 + (x[3])*q^2 + (x[4])*q + x[6] # Green Polys by conj class in A(O) #1.1 : c = () |O_x_c^F| = 1 Qxc[G2,1,1] = (x[1])*q^6 + (x[4])*q^5 + (x[3])*q^4 + (x[2]+x[5])*q^3 + (x[3])*q^2 + (x[4])*q + x[6] orbit #2 : A1 dim = 6 A(O) = 1 , |A(O)_0| = 1 g_s = 4*V[1]+V[2]+3*V[0] Z_G(x)_0 = A1 # Green Polys by orbit reps #2.1 : x[2] : A1,[1] : phi[1,3,2] Qxi[G2,2,1] = (x[2])*q^3 + (x[3])*q^2 + (x[4])*q + x[6] # Green Polys by conj class in A(O) #2.1 : c = () |O_x_c^F| = q^6-1 Qxc[G2,2,1] = (x[2])*q^3 + (x[3])*q^2 + (x[4])*q + x[6] orbit #3 : A1s dim = 8 A(O) = 1 , |A(O)_0| = 1 g_s = V[2]+2*V[3]+3*V[0] Z_G(x)_0 = A1 # Green Polys by orbit reps #3.1 : x[3] : A1s,[1] : phi[2,2] Qxi[G2,3,1] = (x[3])*q^2 + (x[4]+x[5])*q + x[6] # Green Polys by conj class in A(O) #3.1 : c = () |O_x_c^F| = q^2*(q^6-1) Qxc[G2,3,1] = (x[3])*q^2 + (x[4]+x[5])*q + x[6] orbit #4 : G2(a1) dim = 10 A(O) = S3 , |A(O)_0| = 2 g_s = V[4]+3*V[2] Z_G(x)_0 = 0 # Green Polys by orbit reps #4.1 : x[4] : G2(a1),[3] : phi[2,1] Qxi[G2,4,1] = (x[4])*q + x[6] #4.2 : x[5] : G2(a1),[2, 1] : phi[1,3,1] Qxi[G2,4,2] = (x[5])*q # Green Polys by conj class in A(O) #4.1 : c = () |O_x_c^F| = 1/6*q^2*(q^2-1)*(q^6-1) Qxc[G2,4,1] = (x[4]+2*x[5])*q + x[6] #4.2 : c = (1) |O_x_c^F| = 1/2*q^2*(q^2-1)*(q^6-1) Qxc[G2,4,2] = (x[4])*q + x[6] #4.3 : c = (12) |O_x_c^F| = 1/3*q^2*(q^2-1)*(q^6-1) Qxc[G2,4,3] = (x[4]-x[5])*q + x[6] orbit #5 : G2 dim = 12 A(O) = 1 , |A(O)_0| = 1 g_s = V[10]+V[2] Z_G(x)_0 = 0 # Green Polys by orbit reps #5.1 : x[6] : G2,[1] : phi[1,0] Qxi[G2,5,1] = x[6] # Green Polys by conj class in A(O) #5.1 : c = () |O_x_c^F| = q^4*(q^2-1)*(q^6-1) Qxc[G2,5,1] = x[6]