
LECTURE 27

Series Solutions about Regular Singular Points

Let’s now consider the differential equation

2x2y′′ − xy
′ + (1 + x)y = 0 .(27.1)

This equation evidently has a regular singular point at x = 0. We will look for a solution around x = 0 by
making an ansatz for y(x) by combining our ansatz for power series solutions about regular points with the
ansatz we made for Euler type equations. More explicitly, we shall take

y(x) = x
r
∞∑
n=0

anx
n =

∞∑
n=0

anx
n+r

.(27.2)

We can suppose without loss of generality that a0 �= 0; i.e., we assume r to be chosen such that the first
nonzero term in the series is aox

r. Plugging (27.2) into (27.1) yields

0 = 2x2
∑
∞

n=0(r + n)(r + n− 1)anxr+n−2 − x
∑
∞

n=0(r + n)anxr+n−1 + (1 + x)
∑
∞

n=0 anx
r+n

=
∑
∞

n=0 2(r + n)(r + n− 1)anx
r+n −∑∞

n=0(r + n)anx
r+n +

∑
∞

n=0 anx
r+n +

∑
∞

n=0 anx
r+n+1

=
∑
∞

n=0 (2(r + n)(r + n− 1) − (r + n) + 1) anxr+n +
∑
∞

n=1 an−1x
r+n

= (2r)(r − 1) − r + 1) a0 +
∑
∞

n=1 ((2(r + n)(r + n− 1) − (r + n) + 1) an + an−1)xr+n

(27.3)

Hence, we need

0 = (2r)(r − 1)− r + 1 = 2r2 − 3r + 1(27.4)

0 = an−1 + (2(r + n)(r + n− 1) − (r + n) + 1) an(27.5)

The first relation is a quadratic equation for r. It is called the indicial equation for (27.1). Since

2r2 − 3r + 1 = (2r − 1)(r − 1)(27.6)

we must have

r =
1

2
,1(27.7)

The second equation (27.5) furnishes a recursion relation that allows us to fix all coefficients an in terms of
ao and r.

Setting r = 1
2

we have

0 = an−1 +
(
2( 1

2
+ n)2 − 3( 1

2
+ n) + 1

)
an

= an−1 + [n(2n − 1)]an
(27.8)

so

an =
−an−1

n(2n− 1)
(27.9)
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Thus,

a1 = −a0
(1)(2−1) = −a0

a2 = −a1
(2)(4−1)

= a0
6

a3 = −a2
(3)(6−1) = −a0

90

(27.10)

So one solution would be

y1(x) = a0x
1/2

(
1− x +

1

6
x
2 − 1

90
x
3 + · · ·

)
.(27.11)

When r = 1 we have

0 = an−1 +
(
2(1 + n)2 − 3(1 + n) + 1

)
an(27.12)

or

an =
−1

2(1 + n)2 − 3(1 + n) + 1
an−1 =

−an−1

n(2n + 1)
.(27.13)

So

a1 = −a0
1(2+1) = −a0

3

a2 = −a1
2(4+1)

= a0
30

a3 = −a2
3(6+1) = − a0

630

(27.14)

Thus, a second solution of (27.1) would be

y2(x) = aox

(
1− 1

3
x +

1

30
x
2 − 1

630
x
3 + · · ·

)
.(27.15)

The general solution of (27.1) will be a linear combination of y1(x) and y2(x):

y(x) = c1x
1/2

(
1− x +

1

6
x
2 − 1

90
x
3 + · · ·

)
+ c2x

(
1− 1

3
x +

1

30
x
2 − 1

630
x
3 + · · ·

)
.(27.16)

In summary, to find a solution of (27.1), we

1. Assume there is a solution of the form y(x) = x
r
∑
∞

n=0 anx
n, with a0 �= 0.

2. Plug this expression for y(x) into the differential equation and set the total coefficients of each power
of x equal to zero. This lead to

(i) a quadratic equation for r (the indicial equation)
(ii) a set of recursion relations relating the coefficients an

3. Find the two roots r1 and r2 of the indicial equations, and then, for each root ri used the recursion
relations to express all the coefficients an in terms of ao.

4. Write down a corresponding solution for each root yi(x) for each root ri of the indicial equation.
5. Write down the general solution as

y(x) = c1y1(x) + c2y2(x) .

WARNING: This technique works produces two linearly independent solutions only when:

(i) There are two distinct roots r1 and r2 of the indicial equation.

(ii) The difference r1 − r2 is not an integer.

See Sections 5.7 and 5.8 of the text for a discussion of what happens and how to procede when these criteria
are not meet.

Let’s do another example

Example 27.1.
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2xy′′ + y
′ − y = 0

This equation has a regular singular point at x = 0. So we’ll try to find a solution in the form of a generalized
power series about x = 0.

Ansatz: y =
∑
∞

n=0 anx
n+r

0 = 2xy′′ + y
′ − y

=
∞∑
n=0

2 (n + r) (n + r − 1) anx
n+r−1 +

∞∑
n=0

(n + r) anx
n+r−1 −

∞∑
n=0

anx
n+r

=
∞∑
n=0

[(n + r) (2n + 2r − 2) an + (n + r) an]xn+r−1 −
∞∑
n=0

anx
n+r

=
∞∑
n=0

[(n + r) (2n + 2r − 1) an]xn+r−1 −
∞∑
n=0

anx
n+r

=
∞∑

n=−1

[(n + r + 1) (2n + 2r + 1) an+1]x
n+r −

∞∑
n=0

anx
n+r

= r (2r − 1) a0x
r−1 +

∞∑
n=0

[(n + r + 1) (2n + 2r + 1) an+1]x
n+r −

∞∑
n=0

anx
n+r

= r (2r − 1) a0x
r−1 +

∞∑
n=0

[(n + r + 1) (2n + 2r + 1) an+1 − an]xn+r

We now demand that the total coefficient of each distinct power of x vanish. This leads us to the following
equations

r (2r − 1) a0 = 0

(n + r + 1) (2n + 2r + 1) an+1 − an = 0 , n = 0,1, 2, 3, . . .

We always assume that a0 �= 0 (otherwise the leading term of our ansatz for y is not a0x
r). Hence, the first

equation requires

r (2r − 1) = 0 ⇒ r = 0,
1

2

We thus have determined that there are two and only two possible choices for r. The coefficients an will
be determined by

an+1 =
an

(n + r + 1) (2n + 2r + 1)
, n = 0,1, 2, 3, . . .

• Solution with r = 0
The recursion relations in this case reduce to

an+1 =
an

(n + 1) (2n + 1)
, n = 0,1, 2, 3, . . .
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Thus, if a0 = c1, then

a1 =
a0

(1) (1)
= c1

a2 =
a1

(2) (3)
=

c1

6

a3 =
a2

(3) (5)
=

c1

90

and so the first four terms of this solution will be

y = a0x
r + a1x

r+1 + a2x
r+2 + a3x

r+3 + · · ·
= c1 + c1x +

c1

6
x
2 +

c1

90
x
3 + · · ·

= c1y1

where

y1 = 1 + x +
1

2
x
2 +

1

90
x
3 + · · ·

• Solution with r = 1
2

In this case the recursion relations reduce to

an+1 =
an

(n + r + 1) (2n + 2r + 1)
=

an(
n + 3

2

)
(2n + 2)

=
an

(2n + 3) (n + 1)
, n = 0, 1, 2,3, . . .

Setting a0 = c2 we then get

a1 =
a0

(3) (1)
=

c2

3

a2 =
a1

(5) (2)
=

c2

30

a3 =
a2

(7) (3)
=

c2

630

and so the first four terms of the solution will be

y = a0x
r + a1x

r+1 + a2x
r+2 + a3x

r+3 + · · ·
= c2x

1

2 +
c2

3
x
3/2 +

c2

30
x
5/2 +

c2

30
x
7/2 + · · ·

= c2

√
x

(
1 +

1

3
x +

1

30
x
2 +

1

630
x
3 + · · ·

)

= c2y2

where

y2 (x) =
√
x

(
1 +

1

3
x +

1

30
x
2 +

1

630
x
3 + · · ·

)


