
LECTURE 14

Homogeneous Equations with Constant Coefficients, Cont’d

Recall that the general solution of a 2nd order linear homogeneous differential equation

(14.1) L[y] = y′′ + p(x)y′ + q(x)y = 0

is always a linear combination

(14.2) y(x) = c1y1(x) + c2y2(x)

of two linearly independent solutions y1 and y2, and we’ve seen that if we’re given one solution y1(x) we
can compute a second linearly independent solution using the method of reduction of order. We will now
turn to the problem of actually finding a single solution y1(x) of (14.1).

We let us now return to the special case of a homogeneous second order linear differential equation with
constant coefficients; i.e., differential equations of the form

(14.3) y′′ + py′ + qy = 0

where p and q are constant.

We saw in Lecture 11, that one can construct solutions of the differential equation (14.3) by looking for
solutions of the form

(14.4) y(x) = eλx .

Let us recall that construction. Plugging (14.4) into (14.3) yields

(14.5) 0 = λ2eλx + pλeλx + qeλx =
(
λ2 + pλ+ q

)
eλx .

Since the exponential function eλx never vanishes we must have

(14.6) λ2 + pλ+ q = 0 .

Equation (14.6) is called the characteristic equation for (14.3) since for any λ satisfying (14.6) we will
have a solution y(x) = eλx of (14.3).

Now because (14.6) is a quadratic equation we can employ the Quadratic Formula to find all of its roots:

(14.7) λ2 + pλ+ q = 0 ⇒ λ =
−p±

√
p2 − 4q

2
.

Note that a root λ of (14.6) need not be a real number. Indeed, if p2 − 4q < 0, then in order to compute
λ via the Quadratic Formula we have to take the square root of a negative number and that forces us into
the realm of complex numbers. We shall postpone temporarily the case when a root λ is complex and first
discuss the case when the roots of (14.6) are all real. This requires p2 − 4q ≥ 0.

Case (i): p2 − 4q > 0

Because p2 − 4q is positive,
√
p2 − 4q is a positive real number and

(14.8)
λ+ =

−p+
√
p2−4q
2

λ− =
−p−
√
p2−4q
2
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are distinct real roots of (14.6). Thus,

(14.9)
y1 = eλ+x

y2 = eλ−x

will both be solutions of (14.3). Noting that

(14.10)

W (y1, y2) = y1y
′
2 − y′1y2

= λ−e
λ+xeλ−x − λ+eλ+xeλ−x

= (λ− − λ+) e(λ++λ−)x

=

√
p2−4q
a e−

b
ax

is non-zero, we conclude that if p2−4q 6= 0, then the roots (14.8) furnish two linearly independent solutions
of (14.3) and so the general solution is given by

(14.11) y(x) = c1e
λ+x + c2e

λ−x .

Case (ii): p2 − 4q = 0

If p2 − 4q = 0, however, this construction only gives us one distinct solution; because in this case λ+ = λ−.
To find a second fundamental solution we must use the method of Reduction of Order.

So suppose y1(x) = e−
p
2x is the solution corresponding to the root

λ =
−p±

√
p2 − 4q

2
=
−p± 0

2
=
−p
2

of

λ2 + pλ− q = 0 , p2 − 4q = 0.

Then the Reduction of Order formula gives us a second linearly independent solution

y2(x) = y1(x)

∫ x 1

(y1(s))
2 exp

[∫ s

−p(t)dt
]
ds

gives us a second linearly independent solution. Plugging in y1(x) = e−
p
2x and p(t) = p, yields

y2(x) = e−
p
2x

∫ x 1(
e−

p
2 s
)2 exp

[∫ s

−pdt
]
ds

= e−
p
2x

∫ x 1

e−ps
exp [−ps] ds

= e−
p
2x

∫ x

epse−psds

= e−
p
2x

∫ x

ds

= xe−
p
2x

= xy1(x)

In summary, for the case when p2 − 4q = 0, we only have one root of the characterisitic equation, and
so we get only one distinct solution y1(x) of the original differential equation by solving the characteristic
equation for λ. To get a second linearly solution we must use the Reduction of Order formula; however, the
result will always be the same: the second linearly independent solution will always be x times
the solution y1(x) = e−

p
2x . Thus, the general solution in this case will be

y(x) = c1e
− p2x + c2xe

− p2x , if p2 − 4q = 0.

We now turn to the third and last possibility.

Case (iii): p2 − 4q < 0
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In this case

(14.12)
√
p2 − 4q

will be undefined unless we introduce complex numbers. But when we set

(14.13)
√
−1 = i

we have

(14.14)
√
p2 − 4q =

√
(−1)(4q − p2) =

√
−1
√

4q − p2 = i
√

4q − p2 .

The square root on the right hand side is well-defined since 4q − p2 is a positive number. Thus,

(14.15) λ± =
−p± i

√
4q − p2

2
= α± iβ

where

(14.16) α = − b
2

, β =

√
4q − p2

2
,

will be a complex solution of (14.6) and

(14.17) y(x) = c1e
αx+iβx + c2e

αx−iβx

would be a solution of (14.3) if we could make sense out the notion of an exponential function with a
complex argument.

Thus, we must address the problem of ascribing some meaning to

(14.18) eαx+iβx

as a function of x. To ascribe some sense to this expression we considered the Taylor series expansion of ex

(14.19)
ex = 1 + x+ 1

2!x
2 + 1

3!x
3 + · · ·

=
∑∞
i=0

1
i!x

i

Now although we do not yet understand what eαx+iβx means, we can nevertheless substitute αx + iβ for
x on the right hand side of (14.19), and get a well defined series with values in the complex numbers. One
can show that this series converges for all α, β and x. We thus take

(14.20) eαx+iβ = lim
n→∞

n∑
i=0

1

i!
(αx+ iβx)i

which agrees with (14.19) when β = 0.

One can also show that

(14.21) eαx+iβx = eaxeiβx.

Thus, when p2 − 4q = 0, we have two complex valued solutions to (14.3)

(14.22) y1(x) = eαxeiβx and y2(x) = eαxe−iβx ,

where

(14.23) α =
−p
2

, β =

√
4q − p2

2
.

A general solution of (14.3) would then be

(14.24) y(x) = c1e
αxeiβx + c2e

αxeiβx.
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However, this is rarely the form in which one wants a solution of (14.3). One would prefer solutions that
are real-valued functions of x rather that complex-valued functions of x. But these can be had as well,
since if z = x+ iy is a complex number, then

(14.25)
Re(z) = 1

2 (z + z̄) = x
Im(z) = 1

2i (z − z̄) = y

are both real numbers. Applying the Superposition Principle, it is easy to see that if

(14.26) y(x) = eαxeiβx

and

(14.27) ȳ(x) = eαxe−iβx

are two complex-valued solutions of (14.3), then

(14.28) yr(x) =
1

2
(y(x) + ȳ(x)) = eαx

(
eiβx + e−iβx

2

)
and

(14.29) yi(x) =
1

2i
(y(x)− ȳ(x)) = eαx

(
eiβx − e−iβx

2i

)
are both real-valued solutions of (14.3).

Let us now compute the series expansion of

(14.30)
eix + e−ix

2

and

(14.31)
eix − e−ix

2i
.

(14.32)
1
2

(
eix + e−ix

)
= 1

2

(
1 + (ix) + 1

2! (ix)2 + 1
3! (ix)3 + · · ·

)
+ 1

2

(
1 + (−ix) + 1

2! (−ix)2 + 1
3! (−ix)3 + · · ·

)
=

(
1− 1

2!x
2 + 1

4!x
4 + · · ·

)
The expression on the right hand side is readily identified as the Taylor series expansion of cos(x). We thus
conclude

(14.33) cos(x) =
eix + e−ix

2
.

Similarly, one can show that

(14.34) sin(x) =
eix − e−ix

2i
.

On the other hand, if one adds (14.33) to i times (14.34) one gets

(14.35) cos(x) + i sin(x) =
eix + e−ix

2
+ i

eix − e−ix

2i
=
eix + e−ix + eix − e−ix

2
= eix

or

(14.36) eix = cos(x) + i sin(x)

Thus, the real part of eix is cos(x), while the pure imaginary part of eix is sin(x).
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We now have a means of interpreting the function

(14.37) eαx+iβx

in terms of elementary functions (rather than as a power series); namely,

(14.38) eαx+iβx = eαxeiβx = eαx (cos(βx) + i sin(βx)) .

Thus,

(14.39)
Re
[
eαx+iβx

]
= eαx cos(βx) ,

Im
[
eαx+iβx

]
= eαx sin(βx) .

I now want to show how (14.33) and (14.34) allow us to write down the general solution of a differential
equation of the form

(14.40) y′′ + py′ + qy = 0 , p2 − 4q < 0

as a linear combination of real-valued functions.

Now when p2 − 4q < 0, then

(14.41) λ± =
−p± i

√
4q − p2

2
= α± iβ

are the (complex) roots of the characteristic equation

(14.42) λ2 + pλ+ q = 0

corresponding to (14.40) and

(14.43) y±(x) = eαx±iβ

are two (complex-valued) solutions of (14.40). But since (14.40) is linear, since y+ and y− are solutions so
are

(14.44)

y1(x) = 1
2 (y+(x) + y−(x))

= 1
2

(
eαx+iβx + eαx−iβx

)
= eαx

(
eiβx+e−iβx

2

)
= eαx cos(βx)

and

(14.45)

y2(x) = 1
2i (y+(x)− y−(x))

= 1
2i

(
eαx+iβx − eαx−iβx

)
= eαx

(
eiβx−e−iβx

2i

)
= eαx sin(βx) .

Note that y1 and y2 are both real-valued functions.

We conclude that if the characteristic equation corresponding to

(14.46) y′′ + py′ + qy = 0

has two complex roots

(14.47) λ = α± iβ

then the general solution is

(14.48) y(x) = c1e
αx cos(βx) + c2e

αx sin(βx) .
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Example 14.1. The differential equation

(14.49) y′′ − 2y′ − 3y

has as its characteristic equation

(14.50) λ2 − 2λ− 3 = 0 .

The roots of the characteristic equation are given by

(14.51)
λ = 2±

√
4+12
2

= 3,−1 .

These are distinct real roots, so the general solution is

(14.52) y(x) = c1e
3x + c2e

−x .

Example 14.2. The differential equation

(14.53) y′′ + 4y′ + 4y = 0

has

(14.54) λ2 + 4λ+ 4 = 0

as its characteristic equation. The roots of the characteristic equation are given by

(14.55)
λ = −4±

√
16−16
2

= −2 .

Thus we have a double root and the general solution is

(14.56) y(x) = c1e
−2x + c2xe

−2x .

Example 14.3. The differential equation

(14.57) y′′ + y′ + y = 0

has

(14.58) λ2 + λ+ 1 = 0

as its characteristic equation. The roots of the characteristic equation are

(14.59)
λ = −1±

√
1−4

2

= − 1
2 ± i

√
3
2

and so the general solution is

(14.60) y(x) = c1e
− 1

2x cos

(√
3

2
x

)
+ c2e

− 1
2x sin

(√
3

2
x

)
.


