LECTURE 14

Homogeneous Equations with Constant Coefficients, Cont’d

Recall that the general solution of a 2" order linear homogeneous differential equation

(14.1) Llyl =y" +p(2)y + q(z)y =0
is always a linear combination
(14.2) y(z) = iy (z) + caya(z)

of two linearly independent solutions y; and y2, and we’ve seen that if we’re given one solution y;(z) we
can compute a second linearly independent solution using the method of reduction of order. We will now
turn to the problem of actually finding a single solution y;(z) of (14.1).

We let us now return to the special case of a homogeneous second order linear differential equation with
constant coefficients; i.e., differential equations of the form
(14.3) y' +py +ay=0

where p and ¢ are constant.

We saw in Lecture 11, that one can construct solutions of the differential equation (14.3) by looking for
solutions of the form

(14.4) y(z) = e

Let us recall that construction. Plugging (14.4) into (14.3) yields
(14.5) 0= A\2eM + pre™® + ge’* = ()\2 + pA+ q) e

Az

Since the exponential function e*” never vanishes we must have

(14.6) M4pr4qg=0
Equation (14.6) is called the characteristic equation for (14.3) since for any X satisfying (14.6) we will
have a solution y(z) = e of (14.3).

Now because (14.6) is a quadratic equation we can employ the Quadratic Formula to find all of its roots:

/2 _ 4
(14.7) ANiprtg=0 = A:% :

Note that a root A\ of (14.6) need not be a real number. Indeed, if p> — 4¢ < 0, then in order to compute
A via the Quadratic Formula we have to take the square root of a negative number and that forces us into
the realm of complex numbers. We shall postpone temporarily the case when a root A is complex and first
discuss the case when the roots of (14.6) are all real. This requires p? — 4q > 0.

Case (i): p> —49>0
Because p? — 4q is positive, 1/p? — 4q is a positive real number and

A _ —p+tVpP-4q
+ = 2
A _ —p—/p?—4q

2

(14.8)
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are distinct real roots of (14.6). Thus,

Aypx
o= et

14.9
( ) T e)\,w
will both be solutions of (14.3). Noting that

Wy, y2) = yiys — Y12

= A e)urwe/\,z _ )\+€A+$6)"x

(14.10) = (A~ =Xy e(A++A)z

is non-zero, we conclude that if p? —4q # 0, then the roots (14.8) furnish two linearly independent solutions
of (14.3) and so the general solution is given by

(14.11) y(z) = c1e™M® + coe? =7
Case (ii): p*> —4q =0

If p? — 4q = 0, however, this construction only gives us one distinct solution; because in this case Ay = A_.
To find a second fundamental solution we must use the method of Reduction of Order.

So suppose y1(z) = e~ %% is the solution corresponding to the root

N —PEVP 49 —p£0 _ -p
2

2 2
of
MNAph—qg=0, p>—4¢=0.

Then the Reduction of Order formula gives us a second linearly independent solution

e =) [ (y(l)) exp { I p(t)dt] ds

gives us a second linearly independent solution. Plugging in y;(x) = e %% and p(t) = p, yields

ey |7 1 s
yo(z) = 6751/ mexp |;/ pdt} ds
P |
= e_ix/ ——ps OXP [—ps] ds
xz
= e_g”/ eP?e™Pids
» x
= 6_5”/ ds
= e %7

= ay(z)

In summary, for the case when p? — 4¢ = 0, we only have one root of the characterisitic equation, and
so we get only one distinct solution y (x) of the original differential equation by solving the characteristic
equation for A. To get a second linearly solution we must use the Reduction of Order formula; however, the
result will always be the same: the second linearly independent solution will always be x times
the solution y;(z) = e~ 2% . Thus, the general solution in this case will be

y(z) = c1e 8% 4 come 27 | if p? —4g = 0.

We now turn to the third and last possibility.

Case (iii): p*> —4q <0
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In this case
(14.12) p2 — 4q

will be undefined unless we introduce complex numbers. But when we set

(14.13) V-1=i

we have

(14.14) VP2 —4q = /(-1)(4g — p?) = V=1/4q — p? = i/4q — p?

The square root on the right hand side is well-defined since 4g — p? is a positive number. Thus,

—p i da — p2
(14.15) A= PEWHTP g

2
where
b 4q — p?
14.16 == S M S
(14.16) a=-3 . B 5 :
will be a complex solution of (14.6) and
(14.17) y(z) = ¢ eom BT 4 o paa—ifa

would be a solution of (14.3) if we could make sense out the notion of an exponential function with a
complex argument.

Thus, we must address the problem of ascribing some meaning to

(14.18) ertife

as a function of x. To ascribe some sense to this expression we considered the Taylor series expansion of e®

e’ = 1+x+%x2+%x3+-~-
= Yitoatt
Now although we do not yet understand what e®®*%* means, we can nevertheless substitute oz + i3 for

2 on the right hand side of (14.19), and get a well defined series with values in the complex numbers. One
can show that this series converges for all a;, 5 and x. We thus take

(14.19)

n

4 1 ,
ax+if _ 71: - . i
(14.20) e = nh_r)rolo E_O a (ax +ifx)

which agrees with (14.19) when g = 0.

One can also show that
(14.21) e tife — gawifr,

Thus, when p? — 4q = 0, we have two complex valued solutions to (14.3)

(14.22) yi(x) = e and  yo(w) = e
where
—p 4q — p?
14.23 = = — v F
( ) «a 5 , I5) 5

A general solution of (14.3) would then be
(14.24) y(x) = c1e°%ePT 4 cpe®®eth
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However, this is rarely the form in which one wants a solution of (14.3). One would prefer solutions that
are real-valued functions of z rather that complex-valued functions of x. But these can be had as well,
since if z = x + 7y is a complex number, then

— 1 7) —
(14.25) IRT;EQ _ ?Zj_zg) :Z
are both real numbers. Applying the Superposition Principle, it is easy to see that if
(14.26) y(x) = e*@etP®
and
(14.27) y(z) = e P

are two complex-valued solutions of (14.3), then

1 iBx —ifx
(1429 (o) = 3 (o(a) + 9(0) = e (5
and
1 ezﬁm _ e—iﬂm
14.2 (z) = — —j(x)) = e [ ————
(1429 ) = g5 0(a) = 9(0) = e (=)
are both real-valued solutions of (14.3).
Let us now compute the series expansion of
(14.30) c e
2
and
eir _ efiz
14.31
( ) 2i
(14.32) ‘
L (ein 4 ¢~i) — (14 (iz) 4+ (i) + 5 (ix)® + )

+3 (1 + (—iz) + 5 (—iz)* + g (—iz)3 +-- )
- (EEETERI

The expression on the right hand side is readily identified as the Taylor series expansion of cos(x). We thus
conclude

(14.33) cos(x) = %
Similarly, one can show that

eiw _ efiw
14.34 i =
(14.34) sin(x) 57

On the other hand, if one adds (14.33) to ¢ times (14.34) one gets

T —ix i _ ,—ix i —ix T ,—iT )
(14.35) cos(x) +isin(x) = c fte NI te te C e
2 24 2
or
(14.36) €' = cos(x) + isin(z)

Thus, the real part of e is cos(z), while the pure imaginary part of ' is sin(x).
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We now have a means of interpreting the function

(14.37) eartife
in terms of elementary functions (rather than as a power series); namely,
(14.38) ertifr — pawifr — ot (cos(Br) + isin(fx)).
Thus,

Re [eo=+i82] = e cos(Bz)

(1439) Im eaeri,Bm = eam sin(ﬂx)

I now want to show how (14.33) and (14.34) allow us to write down the general solution of a differential
equation of the form

(14.40) v'+py +qu=0 , p’—4¢<0

as a linear combination of real-valued functions.

Now when p? — 4¢ < 0, then

4 i da — 2
(14.41) Ay = w —a+if

are the (complex) roots of the characteristic equation

(14.42) MNAph+g=0
corresponding to (14.40) and

(14.43) yi(z) = e2oEP

are two (complex-valued) solutions of (14.40). But since (14.40) is linear, since y+ and y_ are solutions so
are

yi(z) = % (y+ () +y—(x))
= 3 (eazii-lﬁx + eam—zﬁm)
(14.44) e (e +eﬂg1)
= T
= e cos(fx)
and

yo(z) = %(m(fv) —y-(z))
= = eaw-{-zﬂw _ eaw—zﬁx)

(14.45)  Caw [ eiBT_o—iBe
= e ()
= e*sin(fx)

Note that y; and y, are both real-valued functions.

We conclude that if the characteristic equation corresponding to

(14.46) y' +py +ay=0

has two complex roots

(14.47) A=a+if

then the general solution is

(14.48) ’ y(x) = c1e“? cos(fz) + c2esin(fx) . ‘
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ExAMPLE 14.1. The differential equation

(14.49) y"' =2y — 3y
has as its characteristic equation
(14.50) M -2\ -3=0
The roots of the characteristic equation are given by
(14.51) A o= EREE
= 3,-1

These are distinct real roots, so the general solution is
(14.52) y(x) = c1€3 4+ coe™ "
ExXAMPLE 14.2. The differential equation
(14.53) y' + 4y +4y =0
has
(14.54) M 4A+4=0
as its characteristic equation. The roots of the characteristic equation are given by

P B e 1
(14.55) _ 9 2
Thus we have a double root and the general solution is
(14.56) y(z) = cre™** + cove "
ExXAMPLE 14.3. The differential equation
(14.57) y' +y +y=0
has
(14.58) MAA+1=0
as its characteristic equation. The roots of the characteristic equation are
(14.59) T R

and so the general solution is

(14.60) y(x) = cre” 2% cos (?z) + cpe” 3 sin <\é§x>
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