
LECTURE 24

Differential Equations with Polynomial Coefficients

In the last lecture we considered a number of examples of differential equations of the form

(24.1) P (x)y′′ + Q(x)y′ + R(x)y = 0

and looked for solutions of the form

(24.2) y(x) =
∞∑

n=0

an (x− xo)
n

.

Before considering one more example, let me first articulate the general procedure.

Step 1. Substitute (24.2) into (24.1). This will produce an equation of the form

(24.3)
0 =

∑∞
n=0 n(n− 1)anP (x) (x− xo)

n−2
+
∑∞

n=0 nanQ(x) (x− xo)
n−1

+
∑∞

n=0 anR(x) (x− 1)
n

Step 2. Unfortunately, depending on the nature of the polynomials, it may happen that none of three series
in (24.3) is a power series in (x− xo). For example, if P (x) = x2 and xo = 1, then the first series is

(24.4)

∞∑
n=0

n(n− 1)anx
2 (x− 1)

2

which is not a power series (i.e., an expression of the form
∑

bn(x − 1)n with each bn a constant). To
convert the series in (24.3) into to power series we must replace the polynomials P (x), Q(x), and R(x) with
their Taylor expansions about xo = 1. If we set

(24.5)

pn = 1
n!

dnP
dxn (xo)

qn = 1
n!

dnQ
dxn (xo)

rn = 1
n!

dnR
dxn (xo)

we can write

(24.6)
P (x) =

∑∞
i=0 pn (x− xo)

n
,

Q(x) =
∑∞

i=0 qn (x− xo)
n

,
R(x) =

∑∞
i=0 rn (x− xo)

n
.

Actually, since polynomial of degree D can have at most D non-vanishing derivatives, each of the Taylor
expansions (24.6) will terminate after a finite number of terms:

(24.7)

P (x) =
∑dP

i=0 pn (x− xo)
n

,

Q(x) =
∑dQ

i=0 qn (x− xo)
n

,

R(x) =
∑dR

i=0 rn (x− xo)
n

.

1
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where dP , dQ, and dR are the degrees of the polynomials P (x), Q(x), and R(X). Inserting the expression
(24.7) into (24.3) we get

(24.8)

0 =
∑∞

n=0

∑dP

i=0 n(n− 1)anpn (x− xo)
n+i−2

+
∑∞

n=0

∑dP

i=0 nanqn (x− xo)
n+i−1

+
∑∞

n=0

∑dR

i=0 anrn (x− xo)
n+i

=
∑dP

i=0

∑∞
n=0 n(n− 1)anpn (x− xo)

n+i−2

+
∑dQ

i=0

∑∞
n=0 nanqn (x− xo)

n+i−1

+
∑dR

i=0

∑∞
n=0 anrn (x− xo)

n+i

or

(24.9)

0 =
∑∞

n=0 n(n− 1)p0an (x− xo)
n−2

+ · · ·+
∑∞

n=0 n(n− 1)pdP
an (x− xo)

n+dP−2

+
∑∞

n=0 nq0an (x− xo)
n−1

+ · · ·+
∑∞

n=0 nqdQ
an (x− xo)

n+dQ−1

+
∑∞

n=0 r0an (x− xo)
n

+ · · ·+
∑∞

n=0 rdR
an (x− xo)

n+dR

Step 3. The next step is to collect all the terms consisting of like factors of (x− xo)
i
. To accomplish this

we shift the summation index n in each series in (24.9) so that the kth term in the new series has (x− xo)
k

as a factor. One obtains
(24.10)

0 =
∑∞

k=−2(k + 2)(k + 1)p0ak+2 (x− xo)
k

+ · · ·
· · ·+

∑∞
n=−2+dP

(k + 2− dP )(k + 1− dP )pdP
ak+2−dP

(x− xo)
k

+
∑∞

k=0(k + 1)q0ak+1 (x− xo)
k

+ · · ·+
∑∞

k=−1+dQ
(k + 1− dQ) qdQ

ak+1−dQ
(x− xo)

k

+
∑∞

k=0 r0ak (x− xo)
k

+ · · ·+
∑∞

k=dR
rdR

ak−dR
(x− xo)

k

Here one must be a bit careful. Notice that the various series appearing in the above equation do not have
the same initial value of k. Before consolidating the various series in (24.10) in a single series we must make
sure they all start off at the same value of k. I will discuss this point momentarily with an example. But

certainly for k large enough all the series in (24.10) will contribute terms proportional to (x− xo)
k
. One

can then read off from (24.10) the general recursion relation

(24.11)
0 = (k + 2)(k + 1)poak+2 + · · · (k + 2− dP )(k + 1− dP )ak+2−dP

+(k + 1)q0ak+1 + · · ·+ (k + 1− dQ)qdQ
ak+1−dQ

+r0ak + · · ·+ rdR
ak−dR

which is valid for k > Max {−2 + dP ,−1 + dQ, dR}. Actually, we can use this relation for all k so long as
we consistently define

(24.12) ai = 0 , ifi < 0.

Step 4. Use the recursion relation (24.11) to express all the coefficients an in terms of a0 and a1 (you may
also need to use the relations 0 = a−1 = a−2 = a−3 · · · coming from (24.12)).

Example 24.1. Find a power series solution of

(24.13) x2y′′ + (x + 1)y = 0

about the point xo = 1.

Plugging

(24.14) y(x) =

∞∑
n=0

an(x− 1)n
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into (24.13) yields

(24.15) 0 =

∞∑
n=0

n(n− 1)anx
2(x− 1)n−2 +

∞∑
n=0

an(x + 1)(x− 1)n .

Now the Taylor expansions of f(x) = x2 and g(x) = x + 1 about xo = 1 are

(24.16)
x2 = 1 + 2(x− 1) + (x− 1)2

x + 1 = 2 + (x− 1) .

Plugging the right hand sides of (24.16) into (24.15) yields

(24.17)

0 =
∑∞

n=0 n(n− 1)an
(
1 + 2(x− 1) + (x− 1)2

)
(x− 1)n−2

+
∑∞

n=0 an (2 + (x− 1)) (x− 1)n

=
∑∞

n=0 n(n− 1)an(x− 1)n−2 +
∑∞

n=0 2n(n− 1)an(x− 1)n−1

+
∑∞

n=0 n(n− 1)an(x− 1)n +
∑∞

n=0 2an(x− 1)n +
∑∞

n=0 an(x− 1)n+1

We now shift the summation indices in each series so that in the kth term, (x−1) appears to the kth power.
One gets

(24.18)
0 = 0 + 0 +

∑∞
k=0(k + 2)(k + 1)ak+2(x− 1)k + 0 +

∑∞
k=0 2(k + 1)k(x− 1)kak+1(x− 1)k

+
∑∞

k=0 k(k − 1)ak(x− 1)k +
∑∞

k=0 2ak(x− 1)k +
∑∞

k=1 ak−1(x− 1)k

Unfortunately, the last series begins with k = 1, instead of k = 0. This, however, is easy to remedy; we
simply a−1 = 0, so that

(24.19)

∞∑
k=0

ak−1(x− 1)k = 0(x− k)−1 +

∞∑
k=1

ak−1(x− 1)k =

∞∑
k=1

ak−1(x− 1)k .

Thus, having arranged things so that all series start off at the same point k = 0 and we now consolidate
the right hand side of (24.18) into a single series:

(24.20)
0 =

∑∞
k=0 ((k + 2)(k + 1)ak+2 + 2(k + 1)kak+1 + k(k − 1)ak + 2ak + ak−1) (x− 1)k

=
∑∞

k=0

(
(k + 2)(k + 1)ak+2 + 2k(k + 1)ak+1 + (k2 − k + 2)ak + ak−1

)
(x− 1)k

The demand that the total coefficient of (x− 1)k vanish then implies

(24.21) ak+2 =
−2k(k + 1)ak+1 − (k2 − k + 2)ak − ak−1

(k + 2)(k + 1)
.

Thus, given that a−1 = 0, we have

(24.22)

a2 = 0−2a0−0
(24.2)(24.1) = −a0

a3 = (−2)(24.3)a2−(24.2)a1−a0

(24.3)(24.2) = −7a0−2a1

6

a4 = (−4)(24.3)a3−4a2−a1

(24.4)(24.3) = (14a0−4a1+4a0−a1)
12 = 18a0−5a1

12

Thus, to the order of (x− 1)4 the general solution of (24.13) is

(24.23)

y(x) = a0 + a1(x− 1)− a0(x− 1)2 − 7a0−2a1

6 (x− 1)3

+ 18a0−5a1

12 (x− 1)4 + · · ·

= a0
(
1− (x− 1)2 − 7

6 (x− 1)3 + 3
2 (x− 1)4 + · · ·

)
+a1

(
(x− 1) + 1

3 (x− 1)3 − 5
12 (x− 1)4 + · · ·

)


