LECTURE 24

Differential Equations with Polynomial Coefficients

In the last lecture we considered a number of examples of differential equations of the form

(24.1)
$$P(x)y'' + Q(x)y' + R(x)y = 0$$

and looked for solutions of the form

(24.2)
$$y(x) = \sum_{n=0}^{\infty} a_n \left(x - x_o \right)^n$$

Before considering one more example, let me first articulate the general procedure.

Step 1. Substitute (24.2) into (24.1). This will produce an equation of the form

(24.3)
$$0 = \sum_{n=0}^{\infty} n(n-1)a_n P(x) (x-x_o)^{n-2} + \sum_{n=0}^{\infty} na_n Q(x) (x-x_o)^{n-1} + \sum_{n=0}^{\infty} a_n R(x) (x-1)^n$$

Step 2. Unfortunately, depending on the nature of the polynomials, it may happen that none of three series in (24.3) is a power series in $(x - x_o)$. For example, if $P(x) = x^2$ and $x_o = 1$, then the first series is

(24.4)
$$\sum_{n=0}^{\infty} n(n-1)a_n x^2 (x-1)^2$$

which is not a power series (i.e., an expression of the form $\sum b_n(x-1)^n$ with each b_n a constant). To convert the series in (24.3) into to power series we must replace the polynomials P(x), Q(x), and R(x) with their Taylor expansions about $x_o = 1$. If we set

(24.5)
$$p_n = \frac{1}{n!} \frac{d^n P}{dx^n} (x_o)$$
$$q_n = \frac{1}{n!} \frac{d^n Q}{dx^n} (x_o)$$
$$r_n = \frac{1}{n!} \frac{d^n Q}{dx^n} (x_o)$$

we can write

(24.6)
$$P(x) = \sum_{i=0}^{\infty} p_n (x - x_o)^n , Q(x) = \sum_{i=0}^{\infty} q_n (x - x_o)^n , R(x) = \sum_{i=0}^{\infty} r_n (x - x_o)^n .$$

Actually, since polynomial of degree D can have at most D non-vanishing derivatives, each of the Taylor expansions (24.6) will terminate after a finite number of terms:

(24.7)
$$P(x) = \sum_{i=0}^{d_P} p_n (x - x_o)^n , Q(x) = \sum_{i=0}^{d_Q} q_n (x - x_o)^n , R(x) = \sum_{i=0}^{d_R} r_n (x - x_o)^n .$$

where d_P , d_Q , and d_R are the degrees of the polynomials P(x), Q(x), and R(X). Inserting the expression (24.7) into (24.3) we get

$$0 = \sum_{n=0}^{\infty} \sum_{i=0}^{d_P} n(n-1) a_n p_n (x-x_o)^{n+i-2} + \sum_{n=0}^{\infty} \sum_{i=0}^{d_P} n a_n q_n (x-x_o)^{n+i-1} + \sum_{n=0}^{\infty} \sum_{i=0}^{d_R} a_n r_n (x-x_o)^{n+i}$$

(24.8)

$$= \sum_{i=0}^{d_P} \sum_{n=0}^{\infty} n(n-1) a_n p_n (x-x_o)^{n+i-2} + \sum_{i=0}^{d_Q} \sum_{n=0}^{\infty} n a_n q_n (x-x_o)^{n+i-1} + \sum_{i=0}^{d_R} \sum_{n=0}^{\infty} a_n r_n (x-x_o)^{n+i}$$

or

(24.9)
$$0 = \sum_{n=0}^{\infty} n(n-1)p_0 a_n (x-x_0)^{n-2} + \dots + \sum_{n=0}^{\infty} n(n-1)p_{d_P} a_n (x-x_0)^{n+d_P-2} + \sum_{n=0}^{\infty} nq_0 a_n (x-x_0)^{n-1} + \dots + \sum_{n=0}^{\infty} nq_{d_Q} a_n (x-x_0)^{n+d_Q-1} + \sum_{n=0}^{\infty} r_0 a_n (x-x_0)^n + \dots + \sum_{n=0}^{\infty} r_{d_R} a_n (x-x_0)^{n+d_R}$$

Step 3. The next step is to collect all the terms consisting of like factors of $(x - x_o)^i$. To accomplish this we shift the summation index n in each series in (24.9) so that the k^{th} term in the new series has $(x - x_o)^k$ as a factor. One obtains

$$0 = \sum_{k=-2}^{\infty} (k+2)(k+1)p_0 a_{k+2} (x-x_0)^k + \cdots \\ \cdots + \sum_{n=-2+d_P}^{\infty} (k+2-d_P)(k+1-d_P)p_{d_P} a_{k+2-d_P} (x-x_0)^k \\ + \sum_{k=0}^{\infty} (k+1)q_0 a_{k+1} (x-x_0)^k + \cdots + \sum_{k=-1+d_Q}^{\infty} (k+1-d_Q) q_{d_Q} a_{k+1-d_Q} (x-x_0)^k \\ + \sum_{k=0}^{\infty} r_0 a_k (x-x_0)^k + \cdots + \sum_{k=d_R}^{\infty} r_{d_R} a_{k-d_R} (x-x_0)^k$$

Here one must be a bit careful. Notice that the various series appearing in the above equation **do not** have the same initial value of k. Before consolidating the various series in (24.10) in a single series we must make sure they all start off at the same value of k. I will discuss this point momentarily with an example. But certainly for k large enough all the series in (24.10) will contribute terms proportional to $(x - x_o)^k$. One can then read off from (24.10) the general recursion relation

(24.11)
$$0 = (k+2)(k+1)p_{o}a_{k+2} + \cdots + (k+2-d_{P})(k+1-d_{P})a_{k+2-d_{P}} + (k+1)q_{0}a_{k+1} + \cdots + (k+1-d_{Q})q_{d_{Q}}a_{k+1-d_{Q}} + r_{0}a_{k} + \cdots + r_{d_{R}}a_{k-d_{R}}$$

which is valid for $k > Max \{-2 + d_P, -1 + d_Q, d_R\}$. Actually, we can use this relation for all k so long as we consistently define

(24.12)
$$a_i = 0$$
 , if $i < 0$.

Step 4. Use the recursion relation (24.11) to express all the coefficients a_n in terms of a_0 and a_1 (you may also need to use the relations $0 = a_{-1} = a_{-2} = a_{-3} \cdots$ coming from (24.12)).

EXAMPLE 24.1. Find a power series solution of

(24.13)
$$x^2y'' + (x+1)y = 0$$

about the point $x_o = 1$.

Plugging

(24.14)
$$y(x) = \sum_{n=0}^{\infty} a_n (x-1)^n$$

into (24.13) yields

(24.15)
$$0 = \sum_{n=0}^{\infty} n(n-1)a_n x^2 (x-1)^{n-2} + \sum_{n=0}^{\infty} a_n (x+1)(x-1)^n$$

Now the Taylor expansions of $f(x) = x^2$ and g(x) = x + 1 about $x_o = 1$ are

(24.16)
$$\begin{aligned} x^2 &= 1 + 2(x-1) + (x-1) \\ x+1 &= 2 + (x-1) \end{aligned}$$

Plugging the right hand sides of (24.16) into (24.15) yields

$$0 = \sum_{n=0}^{\infty} n(n-1)a_n \left(1 + 2(x-1) + (x-1)^2\right) (x-1)^{n-2} + \sum_{n=0}^{\infty} a_n \left(2 + (x-1)\right) (x-1)^n$$

(24.17)

$$= \sum_{n=0}^{\infty} n(n-1)a_n(x-1)^{n-2} + \sum_{n=0}^{\infty} 2n(n-1)a_n(x-1)^{n-1} + \sum_{n=0}^{\infty} n(n-1)a_n(x-1)^n + \sum_{n=0}^{\infty} 2a_n(x-1)^n + \sum_{n=0}^{\infty} a_n(x-1)^{n+1}$$

We now shift the summation indices in each series so that in the k^{th} term, (x-1) appears to the k^{th} power. One gets

$$(24.18) \quad 0 = 0 + 0 + \sum_{k=0}^{\infty} (k+2)(k+1)a_{k+2}(x-1)^k + 0 + \sum_{k=0}^{\infty} 2(k+1)k(x-1)^k a_{k+1}(x-1)^k + \sum_{k=0}^{\infty} k(k-1)a_k(x-1)^k + \sum_{k=0}^{\infty} 2a_k(x-1)^k + \sum_{k=1}^{\infty} a_{k-1}(x-1)^k$$

Unfortunately, the last series begins with k = 1, instead of k = 0. This, however, is easy to remedy; we simply $a_{-1} = 0$, so that

(24.19)
$$\sum_{k=0}^{\infty} a_{k-1}(x-1)^k = 0(x-k)^{-1} + \sum_{k=1}^{\infty} a_{k-1}(x-1)^k = \sum_{k=1}^{\infty} a_{k-1}(x-1)^k$$

Thus, having arranged things so that all series start off at the same point k = 0 and we now consolidate the right hand side of (24.18) into a single series:

$$(24.20) \qquad 0 = \sum_{k=0}^{\infty} \left((k+2)(k+1)a_{k+2} + 2(k+1)ka_{k+1} + k(k-1)a_k + 2a_k + a_{k-1} \right) (x-1)^k \\ = \sum_{k=0}^{\infty} \left((k+2)(k+1)a_{k+2} + 2k(k+1)a_{k+1} + (k^2 - k + 2)a_k + a_{k-1} \right) (x-1)^k$$

The demand that the total coefficient of $(x-1)^k$ vanish then implies

(24.21)
$$a_{k+2} = \frac{-2k(k+1)a_{k+1} - (k^2 - k + 2)a_k - a_{k-1}}{(k+2)(k+1)}$$

Thus, given that $a_{-1} = 0$, we have

Thus, to the order of $(x-1)^4$ the general solution of (24.13) is

=

$$y(x) = a_0 + a_1(x-1) - a_0(x-1)^2 - \frac{7a_0 - 2a_1}{6}(x-1)^3 + \frac{18a_0 - 5a_1}{12}(x-1)^4 + \cdots$$

$$a_0 \left(1 - (x-1)^2 - \frac{7}{6}(x-1)^3 + \frac{3}{2}(x-1)^4 + \cdots \right) + a_1 \left((x-1) + \frac{1}{3}(x-1)^3 - \frac{5}{12}(x-1)^4 + \cdots \right)$$

.