
LECTURE 29

The Laplace Transform

Suppose f : R! R is a �nice�(to be quali�ed latter) function of x. The Laplace transform L[f ] of f is
the function from R to R de�ned by

(29.1) L[f ](s) =
Z 1

0

e�sxf(x) dx :

We note that in the formula above, s is the variable upon which the Laplace transform L[f ] depends.
Example 29.1. If

(29.2) f(x) = ax

then

(29.3)
L[f ](s) =

R1
0
axe�sx dx

= limN!1
�
�a
sxe

�sx � a
s2 e

�sx���N
0

= a
s2

Note that this result really only makes sense for s > 0; for x � 0 the integral does not converge.
Example 29.2. If

(29.4) f(x) = sin(ax)

then, integrating by twice by parts,

(29.5)

L[f ](s) =
R1
0
sin(ax)e�sx dx

= limN!1
�
e�sx 1a cos(ax)

���N
0
+ s

a

R1
0
e�sx cos(ax) dx

= 1
a +

s
a

R1
0
e�sx cos(ax) dx

= 1
a + limN!1

s
a

�
� 1
ae
�sx sin(ax)

���N
0
� s2

a2

R1
0
e�sx sin(ax) dx

= 1
a + 0�

s2

a2L[f ](s) ;

we �nd

(29.6) L[f ](s) = a

1 + s2

a2

=
a

a2 + s2
:

(If s � 0, the integral on the �rst line does not converge, so L[f ](s) is only de�ned for s > 0.)
Example 29.3. If f(x) = ebx, then

(29.7)

L[f ] =
R1
0
ebte�st dt

=
R1
0
e(b�s)tdt

= 1
b�se

(b�s)t
���1
0

= 1
s�b (if s > b)

(If s � b then the integral does not converge.)

The following theorem explains under what conditions we can expect the Laplace transform of a function
f(x) to exist.
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29. THE LAPLACE TRANSFORM 2

Theorem 29.4. Suppose that f(x) is a piecewise continuous function for 0 � t � A and there exist constants
K,a,M such that

(29.8) jf(t)j � Keat ; 8 t > M > 0 :

Then the Laplace transform L[f ] de�ned by

(29.9) L[f ](s) =
Z 1

0

f(t)e�st dt

exists for all s > a.

The condition (29.8) is a rather moderate �growth�condition on the function f(x); it says that for large
enough t, jf(t)j grows no faster than an exponential function of the form Keat. This condition is easily
satis�ed by any polynomial function of x.

Theorem 29.5. Properties of the Laplace Transform

(i) Suppose f1(x) and f2(x) are two functions satisfying the hypotheses of Theorem 6.2. Then if
g(x) = c1f1(x) + c2f2(x), L[g] exists and

(29.10) L[g](s) = c1L[f1](s) + c2L[f2](s) :

(ii) Suppose that f is continuous and that both f and its derivative f 0 satisfy the hypotheses of Theorem
6.2. Then L[f 0](s) exists for s > a and moreover

(29.11) L[f 0] = sL[f ]� f(0) :

(iii) Suppose that f and its derivatives f 0; : : : ; f (n�1) are continuous and satisfy the hypotheses of
Theorem 6.2. Then L[f (n) ](s) exists for s > a and

(29.12) L[f (n)](s) = snL[f ](s)� sn�1f(0)� sn�2f 0(0)� � � � � sf (n�2)(0)� f (n�1)(0) :

Proof of (i).

This follows from the linearity property integration:

(29.13)
L[c1f1 + c2f2](s) =

R1
0
(c1f1(x) + c2f2(x)) e

�sxdx
= c1

R x
f1(x)e

�sxdx + c2
R x
f2(x)e

�sxdx
= c1L[f1](s) + c2L[f2](s)

Proof of (ii).

Integrating by parts one �nds

(29.14)

L[f 0](s) =
R1
0
e�stf 0(t)dt

= e�stf(t)j10 �
R1
0
(�se�st) f(t)dt

= 0� f(0) + s
R1
0
e�stf(t)dt

= sL[f ]� f(0) :

Similarly, (iii) is proved by integrating by parts repeatedly.


