
LECTURE 32

Systems of First Order Linear ODEs

In this lecture we will consider �rst order ordinary di¤erential equations in which more than one unknown
function occurs. Let�s begin with a de�nition

Definition 32.1. An n � n system of �rst order linear ODEs is a set of n di¤erential equations
involving n unknown functions y1; : : : ; yn of the form

dy1
dt

+ a11 (t) y1 (t) + a12 (t) y2 (t) + � � �+ a1n (t) yn (t) = g1 (t)

dy2
dt

+ a21 (t) y1 (t) + a22 (t) y2 (t) + � � �+ a2n (t) yn (t) = g2 (t)

...
dyn
dt

+ an1 (t) y1 (t) + an2 (t) y2 (t) + � � �+ ann (t) yn (t) = gn (t)

Di¤erential equations are crucial to modeling a variety of physical phenomena, where the rate of growth of
one quantity depends on other quantities as well as itself. For example, the rate at which a population of
rabbits changes could depend not only on the number of rabbits (reproducing) but also on the population
of foxes that prey on the rabbits.

In this lecture we will concentrate on a particularly simple case where the coe¢ cient functions aij are
constants, and the �driving functions�gi (t) are all zero. Thus, we�ll be considering di¤erential equations
of the form

dy1
dt

= A11y1 + � � �+A1nyn(32.1)

dy2
dt

= A21y1 + � � �+A2nyn
...(32.2)

dyn
dt

= An1y1 + � � �+Annyn(32.3)

This simple case, nevertheless, will be su¢ cient to illustrate the general technique for larger systems of
ODEs.

1. Matrix Formulation

From the unknown functions y1, y2; : : : ; yn and their derivatives
dy1
dt ;

dy2
dt we form two vectors (depending

on the underlying variable t)

y =

264 y1
...
yn

375 ; _y =

264
dy1
dt
...
dyn
dt

375
1
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and we arrange the coe¢ cients Aij as the entries of a n� n matrix

A =

26664
A11 A12 � � � A1n
A21 A22 � � � A2n
...

. . .
...

An1 An2 � � � Ann

37775
Then in the language of linear algebra the set of n di¤erential equations (32.1) can be rewritten as a single
matrix equation

_y = Ay

2. An Easy Case

Suppose the matrix A corresponding to an n � n system of �rst order di¤erential equations is diagonal;
that is to say, of the form

A =

26664
�1 0 � � � 0
0 �2 � � � 0
...

. . .
...

0 0 � � � �n

37775
with non-zero entries only along the diagonal running from the upper left to the lower right. For such a
matrix the corresponding set of �rst order ODEs is easy to solve. The corresponding equations will be

dy1
dt

= �1y1

dy2
dt

= �2y2

...
dyn
dt

= �nyn

Notice that each of these equations depends on only one of the unknown functions and its derivative; and
indeed each of the di¤erential equations is just the di¤erential equation for an exponential function. Solving
these equations one by one we get

dy1
dt

= �1y1 ) y1 = C1e
�1t

dy2
dt

= �2y2 ) y2 = C2e
�2t

...
dyn
dt

= �nyn ) yn = Cne
�nt

and so we arrive at a complete solution involving n arbitrary constants C1; : : : ; Cn (which can be interpreted
as the initial values of y1; : : : ; yn at time t = 0).

3. The General Case

What�s beautiful about systems of di¤erential equations of the form (32.1) is that after a little linear algebra,
solving even a complicated set of di¤erential equations can be reduced to easy case solved above; where the
coe¢ cient matrix is diagonal.
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Here�s a sketch of how this will work. Suppose we had an invertible matrix C such that

C�1AC = D =

26664
�1 0 � � � 0
0 �2 � � � 0
...

. . .
...

0 0 � � � �n

37775
D bein a diagonal matrix. Then as above we could simple write down the general solution of

_z = Dz )

8>>><>>>:
z1 = C1e

�1t

z2 = C2e
�2t

...
zn = Cne

�nt

Let z (t) be such a solution, and consider the vector y (t) obtained by multiplying z (t) from the left by the
matrix C

y = Cz

Then

_y =
d

dt
(Cz) = C

d

dt
z = C_z = C (Dz)= C

�
C�1AC

�
z =

�
CC�1

�
ACz = IACz = A (Cz) = Ay

In other words, y = Cz will be a solution of our original di¤erential equation.

_y = Ay

Thus, systems of the form (32.1) can be easily solved if we can �nd an invertible matrix C such that C�1AC
is a diagonal matrix.

4. Diagonalization of Matrices

Recall that a diagonal matrix is a square n�n matrix with non-zero entries only along the diagonal from
the under left to the lower right (the main diagonal).

Diagonal matrices are particularly convenient for eigenvalue problems since the eigenvalues of a diagonal
matrix

A =

266664
a11 0 � � � 0

0 a22
...

... � � � . . . 0
0 � � � 0 ann

377775
coincide with the diagonal entries faiig and the eigenvector corresponding the eigenvalue aii is just the ith
coordinate vector.

Example 32.2. Find the eigenvalues and eigenvectors of

A =

�
2 0
0 3

�
� The characteristic polynomial is

PA (�) = det (A� �I) = det
�
2� � 0
0 3� �

�
= (2� �) (3� �)

Evidently PA(�) has roots at � = 2; 3. The eigenvectors corresponding to the eigenvalue � = 2
are solutions of

(A� (2)I)x = 0 )
�
0 0
0 1

� �
x1
x2

�
=

�
0
0

�
) x2 = 0

) x 2 span
��

1
0

��
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The eigenvectors corresponding to the eigenvalue � = 3 are solutions of

(A� (3)I)x = 0 )
�
�1 0
0 0

� �
x1
x2

�
=

�
0
0

�
) �x1 = 0

) x 2 span
��

0
1

��
This property (that the eigenvalues of a diagonal matrix coincide with its diagonal entries and the eigenvec-
tors corresponds to the corresponding coordinate vectors) is so useful and important that in practice one
often tries to make a change of coordinates just so that this will happen. Unfortunately, this is not always
possible; however, if it is possible to make a change of coordinates so that a matrix becomes diagonal we
say that the matrix is diagonalizable. More formally,

Lemma 32.3. Let A be a real (or complex) n� n matrix, let �1; �2; : : : ; �n be a set of n real (respectively,
complex) scalars, and let v1;v2; : : : ;vn be a set of n vectors in Rn (respectively, Cn ). Let C be the n� n
matrix formed by using vj for jth column vector, and let D be the n � n diagonal matrix whose diagonal
entries are �1; �2; : : : ; �n . Then

AC = CD

if and only if �1; �2; : : : ; �n are the eigenvalues of A and each vj is an eigenvector of A correponding the
eigenvalue �j .

Proof. Under the hypotheses

AC = A

24 j � � � j
v1 � � � vn
j � � � j

35 =
24 j � � � j
Av1 � � � Avn
j � � � j

35
CD =

24 j � � � j
v1 � � � vn
j � � � j

35
264 �1 � � � 0

...
. . .

...
0 � � � �n

375 =
2424 j � � � j

�1v1 � � � �nvn
j � � � j

3535
and so AC = CD implies

Av1 = �1v1
...

Avn = �nvn

and vice-versa. �

Now suppose AC = CD, and the matrix C is invertible. Then we can write

D = C�1AC.

And so we can think of the matrix C as converting A into a diagonal matrix.

Definition 32.4. An n� n matrix A is diagonalizable if there is an invertible n� n matrix C such that
C�1AC is a diagonal matrix. The matrix C is said to diagonalize A.

Theorem 32.5. An n�n matrix A is diagonalizable i¤ and only if it has n linearly independent eigenvectors.

Proof. The argument here is very simple. Suppose A has n linearly independent eigenvectors. Then the
matrix C formed by using these eigenvectors as column vectors will be invertible (since the rank of C will
be equal to n). On the other hand, if A is diagonalizable then, by de�nition, there must be an invertible
matrix C such that D = C�1AC is diagonal. But then the preceding lemma says that the columns vectors
of C must coincide with the eigenvectors of A. Since C is invertible, these n column vectors must be linearly
independent. Hence, A has n linearly independent eigenvectors. �
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Example 32.6. Find the matrix that diagonalizes

A =

�
2 6
0 �1

�
� First we�ll �nd the eigenvalues and eigenvectors of A.

0 = det (A� �I) = det
�
2� � 6
0 �1� �

�
= (2� �)(�1� �) ) � = 2;�1

The eigenvectors corresponding to the eigenvalue � = 2 are solutions of (A� (2)I)x = 0 or�
0 6
0 �3

� �
x1
x2

�
=

�
0
0

�
) 6x2 = 0

�3x2 = 0
) x2 = 0 ) x = r

�
1
0

�
The eigenvectors corresponding to the eigenvalue � = �1 are solutions of (A� (�1)I)x = 0 or�
3 6
0 0

� �
x1
x2

�
=

�
0
0

�
) 3x1 + 6x2 = 0

0 = 0
) x1 = �2x2 ) x = r

�
�2
1

�
So the vectors v1 = [1; 0] and v2 = [�2; 1] will be eigenvectors of A. We now arrange these two
vectors as the column vectors of the matrix C.

C =

�
1 �2
0 1

�
In order to compute the diagonalization of A we also need C�1. This we compute using the
technique of Section 1.5:�

1 �2
0 1

���� 1 0
0 1

�
R1 ! R1 + 2R2�����������!

�
1 0
0 1

���� 1 2
0 1

�
) C�1 =

�
1 2
0 1

�
Finally,

D = C�1AC = C�1 (AC)

=

�
1 2
0 1

���
2 6
0 �1

� �
1 �2
0 1

��
=

�
1 2
0 1

� �
2 2
0 �1

�
=

�
2 0
0 �1

�
Example 32.7. Find the general solution of the following system of di¤erential equations

dy1
dt

= y1 + 4y2

dy2
dt

= y1 + y2

The matrix formulation of this problem would be�
dy1
dt
dy2
dt

�
=

�
1 4
1 1

� �
y1
y2

�
And so we�ll begin by �nding a matrix C that diagonalizes A =

�
1 4
1 1

�
FIrst we �nd the eigenvalues of A

0 = det (A� �I) = (1� �)2 � 4 = 1� 2�+ �2 � 4 = �2 � 2�� 3 = (�+ 1) (�� 3)
) � = �1; 3
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Next, we �nd the corresponding eigenvectors

� = �1 : �
0
0

�
= (A� (�1) I)v =

�
1� (�1) 4
1 1� (�1)

� �
v1
v2

�
=

�
2v1 + 4v2
v1 + 2v2

�
) v1 + 2v2 = 0 ) v1 = �2v2 ) v = v2

�
�2
1

�
� = 3 : �

0
0

�
= (A� (3) I)v =

�
1� (3) 4
1 1� (3)

� �
v1
v2

�
=

�
�2v1 + 4v2
v1 � 2v2

�
) v1 � 2v2 = 0 ) v1 = 2v2 ) v = v2

�
2
1

�
Having found the eigenvectors and eigenvalues of A we can now write down the matrices C and D

C =

�
�2 2
1 1

�
; D =

�
�1 0
0 3

�
The general solution of

dz

dt
= Dz

will be

z =

�
c1e

�t

c2e
3t

�
And so the general solution of dydt = Ay will be

y = Cz =

�
�2 2
1 1

� �
c1e

�t

c2e
3t

�
=:

�
�2c1e�t + 2c2e3t
c1e

�t + c2e
3t

�


