
Math 2233 - Lecture 2

Agenda:

I Classification of Differential Equations: Examples

I Graphical Interpretation of First Order ODEs

I Numerical Method for First Order ODEs



Classification of DEs: Examples

Classify the following differential equations: determine their order,
if they are linear or non-linear, and if they are ordinary differential
equations or partial differential equations.
(a) y ′′ + cos(y) = x
• ODE , 2nd order, nonlinear

(b)
∂φ

∂y
+
∂2φ

∂x2
= y2

• PDE , 2nd order, linear

(c)
d3x

dt3
+ x2 dx

dt
+ x = 0

• ODE , 3rd order, non-linear
(d) a (x) y ′ + b (x) y + c (x) = 0
• ODE , 1st order, linear

(e) ∂Φ
∂ξ +

(
∂Φ
∂y

)2
= Φ

• PDE , 1st order , nonlinear



Standard Forms

It is easy to write down examples of first order, ordinary differential
equations; such as

x

(
dy

dx

)
− e2xy2 = sin(x)

log
(
y ′
)

= y cos (x)

However, these examples disguise somewhat the essence of a first
order ODE.
Now, just like algebraic equations, it is possible to manipulate a
differential equations in such a way that their solutions don’t
change.
(As a general rule, anytime you do the same mathematical
operation to both sides of an equation, you get an equivalent
equation; i.e., an equation with the same solutions)



Standard Forms, Cont’d

As we now begin to discuss how to solve differential equations, it
convenient to assume that we have already carried out algebraic
manipulations that have both

I simplied as much as possible, the essential form of a
differential equation, and

I provided a common starting point for solving the multitude of
equivalent equations.

In the case of 1st order ODEs, this most basic, common, standard
form is

dy

dx
= F (x , y) (1)

Our study of first order ordinary differential equations, therefore,
begins with looking for solutions of (1)



Example: Converting a 1st Order ODE to Standard Form

Consider (
y ′
)2

sin (x) = cos(xy)

If we “solve this equation for y ′” we get

y ′ = ±

√
cos (xy)

sin (x)

Note that the latter equation is in the desired “standard form”,
with

F (x , y) = ±

√
cos (xy)

sin (x)

As the course progresses, we’ll solve large families of differential
equations, one-by-one, by first specifying a common standard form,
and then working out the details of the solution for that fixed
standard form.



Graphical Interpretation of First Order ODEs

Our goal now is to find functions y(x) satisfying a differential
equation of the form

dy

dx
= F (x , y) (1)

However, even in this simple form, the case of 1st Order ODEs is
too difficult to be solved completely.
Yet, (1) is at least specific enough for us to extract some
qualitative information about its solutions.
I’ll next show how equation (1) can be used a figure out what the
graph of any of its solutions will look like.
In fact, the graphical method I’m about to present can be regarded
as method for constructing the graph of an solution (effectively, a
“visualization of the solution” rather than an explicit function)



Graphical Interpretation of First Order ODEs, Cont’d
Let us consider what the differential equation

dy

dx
= F (x , y) (1)

says about the graph of a solution function y(x).
From Calculus I, we know the LHS (left hand side) of (1) is
interpretable as the slope of the tangent line to the graph of y(x)
at the point (x , y(x)) along its graph.

Figure: The graph of a solution y(x) to dy
dx = F (x , y)



Graphical Interpretation of First Order ODEs, Cont’d

Put another way, if the graph of a solution passes through the
point (x , y) then it must pass through that point with slope
F (x , y).
Let’s remove, for the moment, the graph of the solution from the
picture, just so we can set up a more complete picture of the
solution. First, we form a nice rectangular grid of “sample” points
(xi , yj) in the xy -plane.



Next, we calculate the value of the function F (x , y) (the function
on the right hand side of the ODE) at each grid point (xi , yj).
By virtue of the ODE it satisfies, if a solution passes through the
grid point (xi , yj) it must do so with slope equal to the number
F (xi , yj).
We indicate this on our figure by drawing a short arrow with the
proper slope at each of our grid points.

We call this figure with its grid of points and attached arrows, a
direction field plot for the differential equation.



I admit the preceding figure looks a bit crude and uninformative,
but that’s because only 16 sample points were used.
With the aid of a computer, one can handle hundreds of sample
points, and one can produce direction field plots like

Figure: The Direction Field Plot for dy
dx = y sin(x)

With such a figure in hand, we can now readily sketch out
solutions to the differential equation.



One simply has to put one’s pencil down on the graph and draw a
curve that always follows the direction of the arrows closest to it.

Figure: A Sketch of a Solution to dy
dx = y sin(x)

The resulting curve then provides a good sketch of the graph of an
actual solution to the differential equation.
In fact, by simply choosing different starting points, we can readily
use the above direction field plot to sketch out multiple solutions
of the differential equation.



So while we do not yet know the explicit functional form of a
solution y(x) that satisfies the differential equations dy

dx = y sin(x),
we can at least figure out what the (graphs of) solutions must look
like.

This graphical methodology also tells us something vitally
important to our understanding of first order ODEs.

Given a 1st Order ODE (i.e., given a function
F (x , y)fortheR.H.S .of (1), once we choose a starting point, or
initial condition, for a solution, the its graph is completely
determined by the direction field plot, which in turn is prescribed
by the function F (x , y).



Existence and Uniqueness Theorem for 1st Order ODEs
In fact, we have

Theorem
So long as the function F (x , y) is well-defined and continuous with
respect to its variables, there will be one, and only one, solution to

dy

dx
= F (x , y) (1)

satisfying a given initial condition

y(x0) = y0 (2)

This theorem, by the way, closes the theoretical gap I mentioned in
the first lecture. With this theorem in hand, anytime we find can
find a function form for y(x) that

I satisfies the differential equation (1),

I satisfies all possible initial conditions (2)

we will have found all of the solutions of the differential equation.



A Numerical Method for solving dy
dx = F (x , y)

The graphical interpretation of first order ODEs just developed can
also be leveraged to determine a table of approximate values for a
solution y(x).
Let us again interpret the differential equation

dy

dx
= F (x , y)

as saying that if a solution passes thru the point (x0, y0) in the
xy -plane, then it does so with slope F (x0, y0).
Now the tangent line to the graph of the solution at (x0, y0) is
interpretable as the best straight line fit to the actual solution near
the point (x0, y0).
If we follow this straight line approximation for y(x) out a bit by
increasing x0 to x1 = x0 + ∆x , then along that line, y will change
by

∆y =
∆y

∆x
∆x = (slope) ∆x ≈ dy

dx
∆x = F (x0, y0) ∆x



Thus, if we set

x1 = x0 + ∆x

y1 = y0 + ∆y = y0 + F (x0, y0) ∆x

then the point (x1, y1) will also live on this best straight line fit to
the actual solution and so should be a good approximation to a
point on the actual solution. In other words, y(x1) ≈ y1. We can
now repeat the process to find more approximate values for y(x),

I regard (x1, y1) as a point on the graph of a solution

I compute the slope of the solution at (x1, y1) as F (x1, y1),

I find a new line that best approximates the actual solution
y (x) near the point (x1, y1), and

I then use that line to find another approximate point on the
solution graph

x2 = x1 + ∆x

y2 = y1 + F (x1, y1) ∆x



Repeating this process over and over, we can readily generate a
table of approximate values for the solution of the stated
differerential equation and initial condition.

Example

Consider the following initial value problem.

y ′ = x2y

y (1) = 2

Estimate y (1.3) using step sizes of ∆x = 0.1.

The initial condition gives an initial value, 1, for x and an initial
value, 2, for y . Thus we set,

x0 = 1

y0 = 2



Next, we increase x to

x1 = x0 + ∆x = 1 + 0.1 = 1.1

and try the follow the best straight line fit to the actual solution
through (1, 2). We’ll then arrive at

y1 = y0 +F (x0, y0) ∆x = 2+ x2y
∣∣
x=1
y=2

∆x = 2+(1)2 (2) (0.1) = 2.2

Thus,
y (1.1) ≈ 2.2

Now increase x again to x2 = x1 + ∆x = 1.2. The corresponding
value of y will be

y2 = y1 + F (x1, y1) ∆x = 2.2 + (1.1)2 (2.2) (0.1) = 2.4662

So
y (1.2) ≈ 2.4662



Repeating this process one more time, we get

x3 = x2 + ∆x = 1.3

y3 = y2 + F (x2, y2) ∆x = 2.4662 + (1.2)2 (2.4662) (0.1) = 2. 821 3

and we can conclude

y (1.3) ≈ 2.8213



Euler’s Method: Summary
Given

y ′ = F (x , y)

y (x0) = y0

Choose a (small) ∆x and set

x1 = x0 + ∆x

y1 = y0 + F (x0, y0) ∆x

and then compute successive pairs (xi , yi ) via

xi = xi−1 + ∆x

yi = yi−1 + F (xi−1, yi−1) ∆x

Each time you do this you get a new approximate point on the
solution of the initial value problem.
This will allow you to build up a table of (approximate) values for
the actual solution.


