
Math 2233 - Lecture 3

Agenda:

1. MyLab Math HW1 demo

2. First Order ODEs : Exact Solutions

3. The Fundamental Theorem of Calculus



First Order ODEs : Exact Solutions

I We now turn our attention to the problem of finding explicit
formulas for functions that satisfy a first order ODE. (as
opposed to finding the graphs of a solution or a table of
approximate values for a solution).

I Recall that our standard form for a 1st order ODE is

dy

dx
= F (x , y) (1)

I Even this simple form is too difficult to solve for most
functions F (x , y).

I So instead, we will begin by looking some special cases of (1)

I Then as our experience with the special cases grows, we be
able to handle more complicated cases of (1).



Case 1: F(x,y) = f(x) : Applying the Fundamental
Theorem of Calculus

Let us now specialize to the case where the function F (x , y) on the
R.H.S. (right hand side) of (1) actually only depends on the
underlying variable x , and not on the unknown function y .

dy

dx
= f (x) (2)

It turns out that a solution to (2) can be readily found by simply
integrating both sides of this equation with respect to x .
Indeed, suppose we multiply both sides of (2) by dx and then
integrate both sides with respect to x .∫

dy

dx
dx =

∫
f (x)dx



Now according to the Fundamental Theorem of Calculus, the left
hand side of the preceding equation is equal to∫

dy

dx
dx = y (x)

Thus,

y (x) =

∫
dy

dx
dx =

∫
f (x) dx

is a solution to the differential equation.



Example

dy

dx
= x cos (x)

We should have

y (x) =

∫
x cos (x) dx

Using integration-by-parts∫
u dv = uv −

∫
v du

with

u = x , dv = cos (x) dx

du = dx , v =

∫
dv =

∫
cos (x) dx = sin (x)

we find∫
x cos (x) dx = x sin x −

∫
sin (x) dx = x sin (x)− cos (x)



Example, Cont’d

So
y (x) = x sin (x)− cos (x)

is our solution.
This is easily verified:

d

dx
(x sin (x)− cos (x)) = (sin (x) + x cos (x))− sin (x) = x cos (x)

and so we indeed have found a solution.

But last week I told you that if a differential equation has a
solution, it will actually have infinitely many solutions. So where
are the other solutions?
Well, we won’t have to look too hard for them. All we really need
is more nuanced version of the Fundamental Theorem of Calculus.



Digression: Definite Integrals

Suppose f (x) is a continuous function on the closed interval [a, b].
If f (x) is a positive function, then the definite integral∫ b
a f (x) dx calculates the area under the graph of f (x) between

x = a and x = b. But more generally,
∫ b
a f (x) dx calculates the

difference between the areas A+and A− that lie between the graph
of f (x) and the x-axis, and between the lines x = a and x = b.



Definite Integrals, Cont’d

One has∫ b

a
f (x) dx ≡ lim

N→∞

N∑
i=1

f (xi ) ∆x , ∆x =
b − a

N

and then ∫ b

a
f (x)dx = A+ − A−

Note the result here is just a number.



Indefinite Integrals (Anti-Derivatives)
There is another type of integral, the indefinite integral, that
produces a function of x rather than just a number. The notation
for indefinite integrals are is like that of definite integrals except
there are no endpoints of integration∫

f (x) dx (3)

and the function F (x) =
∫
f (x) dx produced by an indefinite

integral is, by definition, an anti-derivative of the integrand f (x);
i.e., F satisfies

dF

dx
= f (x)

N.B., So, definite integrals and indefinite integrals, while having a
similar notation, are quite different conceptually.
• Definite integrals

∫ b
a f (x) dx computes a difference of areas by

taking a limit
• Indefinite integrals

∫
f (x) dx yields an anti-derivative of the

function f .



The indefinite integral notation (3) for anti-derivatives, however,
can be a bit misleading; because it suggests there is just one
anti-derivative of a function f (x). But if F (x) is an anti-derivative
of x and C is a constant

d

dx
(F (x) + C ) = f (x) + 0 = f (x)

so is any function of the form F (x) + C will also be an
anti-derivative of f (x). (It is because of this ambiguity, that we
call the integral (3) an indefinite integral).



Digression: Definite and Indefinite Integrals, Cont,d

There is yet another kind of integral that sort of interpolates
between the definite integrals and indefinite integrals. By regarding
the upper endpoint of integration in

∫ b
a f (x) dx as a variables, we

can regard the corresponding family of definite integrals as a
function of x

Fa (x) =

∫ x

a
f
(
x ′
)
dx ′

(the “dummy integration variable” x in (3) has been renamed as x ′

so its role can be distinguished from the x used as the endpoint of
integration). This integral still computes the area under the graph
of f (x ′) between x ′ = a and x ′ = x ; but we now allow x to vary.



With this detailed notation/nomenclature established, I can now
state the Fundamental Theorem of Calculus as it appears in
Calculus I.

Theorem
Suppose f (x) is a continuous function on the closed interval [a, b]
and let Fa (x) be defined as above. Then

(i) dFa
dx (x) = f (x)

Thus, Fa (x) is an anti-derivative of f (x) .

(ii) Suppose F̃ is any anti-derivative of f (x), then∫ b
a f (x) = F̃ (b)− F̃ (a)

(i) Tells us how a definite integrals lead to indefinite integrals
(anti-derivatives)
(ii) Tells us how we can use indefinite integrals (anti-derivatives) to
compute definite integrals.



The Fundamental Theorem of Calculus and 1st Order
ODEs

Let me now state the Fundamental Theorem of Calculus in a way
that more suitable for a differential equations course.

Theorem
The general solution of

dy

dx
= f (x) (4)

is

y (x) =

∫
f (x) dx + C

where C is an arbitrary constant.

Note that (5) says that y(x) must be an anti-derivative of f (x),
and that RHS of (5) is just a way of formulating the most general
anti-derivative of f (x).



Example

Consider
dy

dx
= x2 + 2x

(a) Find the general solution of this first order ODE.
(b) Find the unique solution satisfying y (0) = 1

According to the preceding theorem, the general solution will be

y (x) =

∫ (
x2 + 2x

)
dx + C =

1

3
x3 + x2 + C

This answers (a). This general solution constitutes the functional
form of every solution of the differential equation. In particular, a
solution satisfying y (0) = 1, should have this functional form - but
it may also require a special value for C .



Example, Cont’d

So, let’s see what’s needed for the constant C .
If we start with the form of the general solution

y (x) =
1

3
x3 + x2 + C

and impose the condition y (0) = 1,

1 = y (0) =
1

3
(0)3 + (0)2 + C = C

⇒ C = 1

Thus,

y (x) =
1

3
x3 + x2 + 1

will be the unique function satisfying both the differential equation
and the initial condition.



Summary: Solving dy
dx = f (x)

(i) The general solution is obtained by integrating f (x) with
respect to x and then adding “by hand” an arbitrary constant
C

y(x) =

∫
f (x)dx + C (5)

(ii) To find the solution satisfying a particular initial condition

y (x0) = y0 (6)

one inserts the general solution (5) into (6) and solves for the
appropriate value for constant C . The desired solution is then
the function obtained by replacing the unspecified constant C
in the general solution by that particular number that
guarantees the validity of (6).



Separable First Order ODEs

Let’s now move on to another special case of first order ODEs.

We’ll start with the standard form of a first order ODE

dy

dx
= F (x , y)

and immediately specialize to the case when the function F on the
right hand side is the quotient of a function M of x alone and a
function N of y alone.

F (x , y) = −M(x)

N(y)
(8)

Such equations (as well as equations that can be transformed into
this form) are called Separable Equations.



Separable First Order ODEs, Cont’d

Another way of writing a separable equation is

M(x) + N(y)
dy

dx
= 0 (9)

This latter form shows you why these equations are called
“separable” : because the y -dependent terms of the equation can
be completely separated from the x-dependent terms.



Solving Separable Equations : The Mneumonic Method

Below I’ll give a quick method for getting to the solution of a
separable equation
It’s only drawback is that is doesn’t really hold up to mathematical
scrutiny step-by-step.
Nevertheless, it still works.
Once I’ve demonstrated for you the quick and dirty method, I’ll
circle back and provide a more palatable mathematical explanation
of the method.



Solving Separable Equations : The Mneumonic Method,
Cont’d

Let me start with a separable equation in a form equivalent to (9).

N(y)
dy

dx
= −M(x) (9)

Multiplying both sides by dx we get

N(y) dy = −M(x) dx

If we now integrate both sides with respect to their respective
variables we get ∫

N(y) dy = −
∫

M(x) dx (10)

Notice that we have gotten rid of the derivative of y .



Solving Separable Equations : The Mneumonic Method,
Cont’d

What remains are two computable functions

H1(x) ≡
∫

M(x) dx

H2(y) ≡
∫

N(y) dy

which must be related by

H2(y) = −H1(x) (11)

But now (11) places an algebraic condition on the variables x and
y . Effectively, we have replaced the original differential equation by
an equivalent algebraic equation. If we now solve (algebraically)
equation (10) for y , we’ll end up with a solution of the differential
equation.



Example: Solving a Separable Equation via the Mneumonic
Method

Consider

y
dy

dx
= cos(x)

This is in the form (9) of a separable equation with

M(x) = cos(x) , N(y) = y .

Multiplying both sides by dx and integrating we get

1

2
y2 =

∫
y dy =

∫
cos(x) dx = sin(x)

Solving the extreme sides of this last equation for y , we get

y = ±
√

2 sin(x)

and indeed both

y(x) =
√

2 sin(x)

y(x) = −
√

2 sin(x)

satisfy the differential equation.



Critique of the Mneumonic Method

Our Mneumonic Method rapidly produces solutions to a separable
equation. However, a few of the steps are a bit questionable,
mathematically speaking.

I What does it mean to multiply both sides by dx? dx is
notational device not a number

I How can one integrate one side of an equation with respect to
y and the other side with respect to x and expect to maintain
consistency?

I Where are the other solutions?
(Introducing an arbitrary constant C at the end does not
produce new solutions)

In the next lecture I’ll show you the details of why this method
works and how we find all of the solutions.


