
Math 2233 - Lecture 4

Agenda:

1. Separable Equations: Theory

2. Examples of Solving Separable Equation

3. 1st Order Linear ODEs, Intro



Separable First Order ODEs

At the end of the last lecture we considered the case of 1st Order
Separable ODEs:
i.e., differential equations that can be written in the form

M(x) + N(y)
dy

dx
= 0 (1)

I also gave a quick and dirty method for writing down some exact
solutions; the so-called Mneumonic Method, whereby, one converts
the original separable differential equation (1) to an equivalent
algebraic equation.
The equivalent algebraic equation is then used to solve for y ; and
the resulting formula for y will yield a function of x that solves the
original differential equation.



The Mneumonic Method

1. Rewrite the differential equation as

N(y)
dy

dx
= −M(x)

2. Multiply both sides by dx to get

N(y) dy = −M(x) dx

3. Now integrate both sides∫
N(y) dy =

∫
−M(x) dx (3)

4. Let H1(x) ≡
∫
M(x) dx and let H2(y) ≡

∫
N(y) dy , then (3)

is equivalent to
H1(x) + H2(y) = 0 (2)

5. An exact solution of the original separable equation is found
by solving (2) for y .



Critique of the Mneumonic Method

Our Mneumonic Method rapidly produces solutions to a separable
equation.
However, a few of the steps are a bit questionable, mathematically
speaking.

I What does it mean to multiply both sides by dx? dx is
notational device not a number

I How can one integrate one side of an equation with respect to
y and the other side with respect to x and expect to maintain
consistency?

I Where are the other solutions?
(Introducing an arbitrary constant C at the end does not
produce new solutions)

Today, I’ll show you the details of why this method works and how
we find all of the solutions.



Separable Equations Understood Properly

The essence of the Mneumonic Method is that it purports to solve
a differential equation by solving instead an equivalent algebraic
equation.

This raises another question: How can a differential equation be
related to an algebraic equation?



Digression: Implicit Differentiation
Suppose you have an algebraic equation, like

x2 + y2 = 1

If we solve for y , we end up prescribing the variable y as a certain
function of x

y = ±
√

1− x2

Let’s make this interpretation of y explicit in the original equation
by writing

x2 + (y(x))2 = 1

Now, differentiate both sides of this equation with respect to x
(this is a valid mathematical operation, since we are doing exactly
the same thing to both sides of an equality)

d

dx

(
x2 + (y(x))2

)
=

d

dx
(1)

=⇒ 2x + 2 ∗ y(x)
dy

dx
= 0



Digression: Implicit Differentiation, Cont’d

Note how the Chain Rule

d

dx
(h (y(x))) =

dh

dy

dy

dx

was employed to compute d
dx (y(x))2 . as 2y dy

dx )

We have thus derived a differential equation from the original
algebraic equation.

It follows that solutions of the differential equation will also be
solutions the original algebraic equation.



Constructing Separable ODEs by Implicit Differentiation
This process by which we differentiate an algebraic equation to
yield a differential equation is called implicit differentiation.
Suppose we now start with an algebraic equation of the form

H1(x) + H2(y) = C (*)

where C is a constant.
If we carry out implicit differentiation of this equation, we get

H ′1(x) + H ′2(y)
dy

dx
= 0

Note that the resulting differential equation is of the form

M(x) + N(y)
dy

dx
= 0

with
M(x) = H ′1(x) , N(y) = H ′2(y)

Thus, implicit differentiation of algebraic equation of the form (*)
produces a separable ODE with the same solution set.



Deriving an Algebraic Equation from a Separable ODE
However, we want to reverse this process: We want to derive an
equivalent algebraic equation from a separable ODE.
So let’s now suppose that a separable differential equation

M(x) + N(y)
dy

dx
= 0

was derived from an algebraic equation of the form

H1(x) + H2(y) = C (**)

Then, as we showed above, we must have

M(x) = H ′1(x)

N(y) = H ′2(y)

Let us now think of these two equations as differential equations
for H1(x) and H2(y). Both of these equations are readily solved
using the Fundamental Theorem of Calculus (as we discussed at
the beginning of this lecture)



Deriving an Algebraic Equation from a Separable ODE,
Cont’d

M(x) = H ′1(x) =⇒ H1(x) =

∫
M(x) dx + c1

N(y) = H ′2(y) =⇒ H2(y) =

∫
N(y) dy + c2

Substituting these results into the original algebraic equation we
get ∫

M(x) dx + c1 +

∫
N(y) dy + c2 = C



Consolidating the three additive arbitrary constants into a single
arbitrary constant, by effectively absorbing the values of c1 and c2
into C , we end up with∫

M(x) dx +

∫
N(y) dy = C

When C equals 0 we get the same algebraic equation that was
produced by our (mathematically improper) Mneumonic Method.
Moreover, we now see how to get more solutions from our
Mneumonic method; for, in the present derivation, C is an
arbitrary constant, not necessarily equal to 0.



Summary: Solving Separable Equations

Let

M(x) + N(y)
dy

dx
= 0

be a Separable ODE.
The following proceduce solves this ODE:

1. Compute

H1(x) =

∫
M(x) dx

H2(y) =

∫
N(y) dy

2. Set up the equivalent algebraic equation

H1(x) + H2(y) = C

3. Solve the algebraic equation for y as a function of x and C .



Example 1

Show that the following equation is separable and then solve it.

y cos(x) + sin(x)
dy

dx
= 0

This equation is not yet in explicit separable form.
We need to separate the x-dependency from the y -dependency.
This we do by multiplying both sides by 1

y sin(x) .

cos (x)

sin (x)
+

1

y

dy

dx
= 0 (4)

(4) is of Separable Form, with

M (x) =
cos (x)

sin (x)
, N (y) =

1

y



Example 1, Cont’d
We thus need to solve (4) as a Separable Equation.
We have

H1 (x) ≡
∫

M (x) dx =

∫
cos (x)

sin (x)
dx = ln (sin (x))

H2 (y) ≡
∫

N (y) dy =

∫
1

y
dy = ln |y |

So (4) is equivalent to the following algebraic algebraic equation

H1 (x) + H2 (y) = C ⇒ ln (sin (x)) + ln (y) = C

Solving this last equation of y , we get

ln |y | = C − ln (sin (x))

or, after exponentiating both sides,

exp (ln |y |) = exp (C − ln (sin (x))) (5)



Example 1, Cont’d
Next, we use some identities for exponential and logarithmic
functions

exp (C ) ≡ eC

exp (ln |x |) = x

exp (A + B) = exp (A) exp (B)

exp (λB) = exp (B)λ

to simplify both sides of (5) We find

LHS = exp (ln |y |) = y

and

RHS = exp (C − ln (sin (x)))

= exp (C ) exp (− ln (sin (x)))

= exp (C ) (exp (ln (sin (x))))−1

= eC (sin (x))−1

=
eC

sin (x)



Example 1, Cont’d

Equating the left and right hand sides, we get

y(x) =
eC

sin (x)

This is the functional form of the general solution to the
differential equation.



Example 2
Find the solution of

dy

dx
= y2/x (6)

satisfying the initial condition

y(1) = 2 (7)

Recasting this (6) in explicitly separable form, we have

−1

x
+

1

y2
dy

dx
= 0

Thus,

M (x) = −1

x
⇒ H1 (x) ≡

∫
M (x) dx = −

∫
1

x
dx = ln |x |

N (y) =
1

y2
⇒ H2 (y) ≡

∫
N (y) dy =

∫
1

y2
dy = −1

y

and so, (6) is equivalent to

− ln |x | − 1

y
= C



Example 2, Cont’d

or
1

y
= ln |x | − C

or

y (x) =
1

ln |x | − C
(8)

This is our general solution; the functional form of every solution
of (6). .



Example 2, Cont’d

Let’s now find the particular solution that satisfies the initital
condition (7).
This we do by substituting the general solution (8) into the initial
condition (7) and solving for C .

2 = y (1) =

(
1

ln |x | − C

)∣∣∣∣
x=1

=
1

ln (1)− C
=

1

0− C
= − 1

C

The extreme sides of this last equation tells us that C = −1
2 when

(7) is satisfied.
Thus,

y (x) =
1

ln |x |+ 1
2

is the solution to the differential equation (6) that satisfies the
initial condition (7).



Exact Solutions of 1st Order ODEs: Results Thus Far

Standard Form of a 1st Order ODE

dy

dx
= F (x , y) (*)

Methods for Special Cases:

1. F (x , y) = f (x)

Solution: y(x) =

∫
f (x) dx + C

by the Fundamental Theorem of Calculus

2. F (x , y) = −M(x)
N(y) Solution found by converting the differential

equation to an algebraic equation∫
M(x) dx +

∫
N(y) dy = C

and solving this equation for y as a function of x .



The next special case: 1st Order Linear ODEs

We will next consider the case where the function F on the RHS of
(*) is of the form

F (x , y) = −p(x)y + g(x)

where p and g are function of x alone.
In this case, the ODE (*) can be rewritten as

dy

dx
+ p(x)y = g(x) (9)

So this form of F (x , y) leads to a 1st Order Linear ODE.
Our goal now is to find solutions of differential equations of the
form (9).



Homogeneous, 1st Order, Linear, ODEs

In the next lecture, I will derive a formula for the general solution of

dy

dx
+ p(x)y = g(x) (9)

Today, however, we will just look at a special subcase such
equations: where the function g(x) on the RHS is 0.

ODEs of the form
dy

dx
+ p(x)y = 0 (10)

are called homogeneous, linear 1st order, ODEs. The qualification
“homogeneous”, simply means that the function g (x) that
appears on the RHS of (9) is 0.
Thus, we begin our study of first order linear ODEs with the
equations of the form (10)



Homogeneous, 1st Order, Linear, ODEs, Cont’d

Happily, we already have a method for solving this case. If we
multiply both sides of (10) by 1

y , we get

p (x) +
1

y

dy

dx
= 0

which is a separable ODE with

M (x) = p (x)

N (y) =
1

y



Homogeneous, 1st Order, Linear, ODEs Cont’d

Let’s then apply the technique for solving separable ODEs.
We have

H1 (x) =

∫
M (x) dx =

∫
p (x) dx

H2 (y) =

∫
N (y) dy =

∫
1

y
dy = ln |y |

and so solutions of (10) must satisfy an algebraic equation of the
form H1 (x) + H2 (y) = C , or∫

p (x) dx + ln |y | = C

or

ln |y | = C −
∫

p (x) dx



Homogeneous, 1st Order, Linear, ODEs Cont’d
or

y = exp (ln |y |) = exp

[
C −

∫
p (x) dx

]
= eC exp

[
−
∫

p (x) dx

]
If C is to be an arbitrary number, eC will be just as arbitary. It is
a common to practice to replace the arbitary constant factor eC by
a simpler constant factor A. Then we have

Theorem
The general solution to

dy

dx
+ p (x) y = 0

is given by

y (x) = A exp

[
−
∫

p (x) dx

]



Example

Find the general solution of

dy

dx
+

2

x
y = 0

This ODE is of the form y ′ + p (x) y = 0 with p (x) = 2
x .

Using the formula just derived we have, as the general solution,

y (x) = A exp

[
−
∫

p (x) dx

]
= A exp

[
−
∫

2

x
dx

]
= A exp [−2 ln |x |]
= A (exp (ln |x |))−2

= A (x)−2

=
A

x2


