
Math 2233 - Lecture 5

Agenda: 1st Order ODEs:

1. Standard form dy
dx + p(x)y = g(x)

2. Case (i) : p(x) = 0

3. Case (ii): g(x) = 0

4. Case (iii): g(x) = a, a constant

5. The General Case



Solving 1st Order Linear ODEs

A linear first order ordinary differential equation is a
differential equation of the form

a(x)
dy

dx
+ b(x)y = c(x) . (1)

So long as a(x) 6= 0, this equation is equivalent to a differential
equation of the form

y ′ + p(x)y = g(x) (2)

where

y ′ =
dy

dx
, p(x) =

b(x)

a(x)
, g(x) =

c(x)

a(x)

We shall refer to a differential equation (2) as the standard form
of differential equation (1).
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Our goal now is to develop a formula for the general solution of
(2).

To acheive this goal, we shall first construct solutions for several
special cases.

Then with the knowledge gained from these simpler examples, we
will develop a general formula for the solution of any differential
equation of the form (2).
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Case (i): p(x) = 0, g(x) = some function of x

In this case, we have
dy

dx
= g(x) (3)

and so we are looking for a function whose derivative is g(x).
Last week we showed that, for this situation, the Fundamental
Theorem of Calculus yields the following general solution

y(x) =

∫
g(x)dx + C (4)

where C is an arbitrary constant of integration.
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Example

y ′ = 3 cos(4x) (5)

⇒ y(x) =

∫
3 cos(4x) dx + C

=
3

4
sin(4x) + C

So the general solution of (5) is

y(x) =
3

4
sin(4x) + C
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Case (ii): g(x) = 0, p(x) = some function of x

In this case we are trying to solve a differential equation of the form

y ′ + p(x)y = 0 . (6)

If we divide both sides of (6) by y and reorder terms, we get

p(x) +
1

y

dy

dx
= 0 (7)

This equation is a separable 1st order differential equation; i.e., an
ODE of the form

M(x) + N(y)
dy

dx
= 0
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Case (ii), Cont’d

Last week, we derived the following recipe for solving separable
equations in the form

M(x) + N(y)
dy

dx
= 0

I Compute functions H1(x) and H2(y) as

H1(x) =

∫
M(x) dx , H2(y) =

∫
N(y) dy

I Then solve
H1(x) + H2(y) = C

for y as a function of x and the constant C

Let’s apply this procedure to the case at hand;
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Case (ii), Cont’d
For the separable equation (7), we have

M(x) = p(x) =⇒ H1(x) =

∫
p(x) dx

N(y) =
1

y
=⇒ H2(y) = ln |y |

And so we need to solve∫
p(x) dx + ln |y | = C

Solving this last equation for y yields

y = exp

[
−
∫ x

p(x) dx + C

]
or

y = eC exp

[
−
∫ x

p(x) dx

]
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Case (ii), Cont’d

We can tidy this up a little bit by replacing eC , which is just an
arbitrary constant, by an equivalent arbitrary constant A, to write

y(x) = A exp

[
−
∫ x

p(x) dx

]
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We can tidy this up a little bit by replacing eC , which is just an
arbitrary constant, by an equivalent arbitrary constant A, to write

y(x) = A exp

[
−
∫ x

p(x) dx

]



Case (ii) Summary

The general solution of

y ′ + p(x) = 0

is given by

y = A exp

[
−
∫ x

p(x) dx

]
.

where A is an arbitrary constant.



Case (iii): g(x) 6= 0 , p(x) = a, a constant

In this case, we have

dy

dx
+ ay = g(x) .

To solve this equation we employ a trick.
Suppose we multiply both sides of this equation by eax :

eaxy ′ + aeaxy = eaxg(x).

Notice that the right hand side is d
dx (eaxy) (via the product rule

for differentiation) We thus have

d

dx
(eaxy) = eaxg(x)

We now take anti-derivatives of both sides to get

eaxy =

∫ x

eaxg(x) dx + C
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Case (iii), Cont’d

or

y(x) =
1

eax

∫ x

eaxg(x) dx + Ce−ax .

Thus, the general solution to

y ′ + ay = g(x)

is given by

y(x) =
1

eax

∫ x

eaxg(x) dx + Ce−ax

where C is an arbitrary constant.
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Example

y ′ − 2y = x2e2x

This equation is of type (iii) with

a = −2

g(x) = x2e2x .

So we multiply both sides by e−2x to get

d

dx

(
e−2xy

)
= e−2x

(
y ′ − 2y

)
= e−2x

(
x2e2x

)
= x2

Integrating both sides with respect to x , and employing the
Fundamental Theorem of Calculus on the left yields

e−2xy =
1

3
x3 + C

or

y =
1

3
x3e2x + Ce2x .
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Example, Cont’d

Let us now confirm that this is a solution

y ′ = x2e2x +
2

3
x3e2x + 2Ce2x

−2y = −2

3
x3e2x − 2Ce2x

so
y ′ − 2y = x2e2x
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1st Order Linear ODEs : The General Case

We are now ready to handle ODEs of the form

y ′ + p(x)y = g(x) (8)

with p(x) and g(x) are arbitrary functions of x .

Note: This case includes all the preceding cases of linear 1st order
ODEs.

We shall construct a solution of this equation in a manner similar
to case when p(x) is a constant. We will first will try find a
multiplying function µ(x) (analogous to our use of eax in the
preceding case) satisfying

µ(x)
(
y ′ + p(x)y

)
=

d

dx
(µ(x)y) (9)

If we had such a function µ(x), we could multiply (8) by µ(x) to
obtain

d

dx
(µ(x)y) = µ(x)g(x)
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d

dx
(µ(x)y) = µ(x)g(x)
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General Case of 1st Order Linear ODEs, Cont’d

Since the left hand side of this last equation is a pure derivative, it
is readily integrated.

Integrating both sides of

d

dx
(µ(x)y) = µ(x)g(x)

yields

µ(x)y =

∫
µ(x)g(x) dx + C

or

y =
1

µ(x)

∫
µ(x)g(x) dx +

C

µ(x)
(11)

and so we would end up with a closed formula for the solution.
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General Case of 1st Order Linear ODEs, Cont’d
It thus remains to find a suitable multiplier function µ(x) that
satisfies

d

dx
(µ(x)y) = µ(x)

(
y ′ + p (x) y

)
so that the computation just outlined can proceed. This will
certainly be true if

d

dx
µ(x) = p(x)µ(x) . (12)

For then

d

dx
(µ(x)y) = µ(x)y ′ +

(
d

dx
µ (x)

)
y = µ(x)y ′ + p (x)µ(x)y

But (12) is another first order, linear, differential equation of type
(iii); (This time, however, our unknown function is µ(x).)
As in the type (iii) case before, we recast (12) as a separable
equation

−p(x) +
1

µ

dµ

dx
= 0

in order to solve it:
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Applying our method for separable equations to

−p(x) +
1

µ

dµ

dx
= 0

we find

M(x) = −p(x) =⇒ H1(x) =

∫
M(x) dx =

∫
−p(x) dx

N(µ) =
1

µ
=⇒ H2(µ) =

∫
N(y) dy = ln(µ)

H1(x) + H2(µ) = C =⇒ −
∫

p(x) dx + ln(µ) = C

Solving this last equation for µ yields

µ(x) = exp

(∫
p(x)dx + C

)
= A exp

(∫
p(x) dx

)
(where A ≡ eC )
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So a suitable function µ(x) is

µ(x) = exp

(∫
p(x) dx

)

I set the constant A = 1, because we don’t need all the solutions of

d

dx
(µ(x)y) = µ(x)

(
y ′ + p (x) y

)
Any solution will do.
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Solving 1st Order Linear ODEs: The General Case
A 1st order linear ODE in standard form

y ′ + p(x)y = g(x) (13)

can be solved by the following procedure.

1. Calculate the “integrating factor” µ(x)

µ(x) = exp

[∫
p(x)dx

]
2. This function has the property µ(x) (y ′ + p(x)y) = d

dx (µ(x)y)
and so after we multiplying both sides of (13) by µ(x) we get

d

dx
(µ(x)y) = µ(x)g(x)

3. Integrating both sides yields

µ (x) y =

∫
µ (x) g (x) dx + C



Solving 1st Order Linear ODEs: The General Case
A 1st order linear ODE in standard form

y ′ + p(x)y = g(x) (13)

can be solved by the following procedure.

1. Calculate the “integrating factor” µ(x)

µ(x) = exp

[∫
p(x)dx

]

2. This function has the property µ(x) (y ′ + p(x)y) = d
dx (µ(x)y)

and so after we multiplying both sides of (13) by µ(x) we get

d

dx
(µ(x)y) = µ(x)g(x)

3. Integrating both sides yields

µ (x) y =

∫
µ (x) g (x) dx + C



Solving 1st Order Linear ODEs: The General Case
A 1st order linear ODE in standard form

y ′ + p(x)y = g(x) (13)

can be solved by the following procedure.

1. Calculate the “integrating factor” µ(x)

µ(x) = exp

[∫
p(x)dx

]
2. This function has the property µ(x) (y ′ + p(x)y) = d

dx (µ(x)y)
and so after we multiplying both sides of (13) by µ(x) we get

d

dx
(µ(x)y) = µ(x)g(x)

3. Integrating both sides yields

µ (x) y =

∫
µ (x) g (x) dx + C



Solving 1st Order Linear ODEs: The General Case
A 1st order linear ODE in standard form

y ′ + p(x)y = g(x) (13)

can be solved by the following procedure.

1. Calculate the “integrating factor” µ(x)

µ(x) = exp

[∫
p(x)dx

]
2. This function has the property µ(x) (y ′ + p(x)y) = d

dx (µ(x)y)
and so after we multiplying both sides of (13) by µ(x) we get

d

dx
(µ(x)y) = µ(x)g(x)

3. Integrating both sides yields

µ (x) y =

∫
µ (x) g (x) dx + C



Solving 1st Order Linear ODEs: The General Case
A 1st order linear ODE in standard form

y ′ + p(x)y = g(x) (13)

can be solved by the following procedure.

1. Calculate the “integrating factor” µ(x)

µ(x) = exp

[∫
p(x)dx

]
2. This function has the property µ(x) (y ′ + p(x)y) = d

dx (µ(x)y)
and so after we multiplying both sides of (13) by µ(x) we get

d

dx
(µ(x)y) = µ(x)g(x)

3. Integrating both sides yields

µ (x) y =

∫
µ (x) g (x) dx + C



Solving 1st Order Linear ODEs: The General Case, Cont’d

4. And then finally we solve

µ (x) y =

∫
µ (x) g (x) dx + C

for y to get

y (x) =
1

µ (x)

∫
µ (x) g (x) dx +

C

µ (x)
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Summary: Linear 1st Order ODEs

Theorem
The general solution to

y ′ + p(x)y = g(x)

is given by

y (x) =
1

µ (x)

∫
µ (x) g (x) dx +

C

µ (x)

where

µ(x) = exp

[∫
p(x)dx

]
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Example

xy ′ + 2y = sin(x) (14)

Putting this equation in standard form requires we set

p(x) = 2
x

g(x) = sin(x)
x

Now ∫
p(x) dx =

∫
2

x
dx = 2 ln(x) = ln

(
x2
)
,

so

µ(x) = exp
[∫ x

p(x) dx
]

= exp
[
ln
(
x2
)]

= x2
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Example, Cont’d

Hence

y(x) =
1

µ(x)

∫
µ(x)g(x) dx +

C

µ(x)

=
1

x2

∫
(x)2

sin(x)

x
dx +

C

x2

=
1

x2

∫
x sin(x) dx +

C

x2

Now ∫
x sin(x) dx

can be integrated by parts. Set

u = x , dv = sin(x)dx
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Example, Cont’d
Then

du = dx , v =

∫
dv = − cos(x)

and the integration by parts formula,∫
udv = uv −

∫
vdu ,

tells us that∫
x sin(x) dx = −x cos(x) +

∫
cos(x) dx

= −x cos(x) + sin(x) .

Therefore, we have as a general solution of (14),

y(x) =
1

x2
(−x cos(x) + sin(x)) +

C

x2

=
1

x2
sin(x)− 1

x
cos(x) +

C

x2
.
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Initial Value Problems for 1st Order Linear ODEs

Consider

x2y ′ + 3xy = 1

y (1) = 1

This is a 1st order linear ODE with an initial condition and so we
expect a unique solution. Here is how we can find it.
Step 1: Put the Diff E in standard form (for a 1st order linear
ODE): y ′ + p (x) y = g (x)

1

x2
(
x2y ′ + 3xy

)
=

1

x2
(1) ⇒ y ′ +

3

x
y =

1

x2

So

p (x) =
3

x
, g (x) =

1

x2
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Initial Value Problems, Cont’d

Step 2: Calculate the integrating factor µ (x) :

µ (x) = exp

[∫
p (x) dx

]
= exp

[∫
3

x
dx

]
= exp [3 ln |x |] = x3

where I used the identity

exp (λ ln |x |) = xλ
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Initial Value Problems, Cont’d
Step 3: Calculate the general solution

y (x) =
1

µ (x)

∫
µ (x) g (x) dx +

C

µ (x)

=
1

x3

∫ (
x3
)( 1

x2

)
dx +

C
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=
1
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(
1

2
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+
C
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=
1
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+

C

x3

Step 4: Impose the intitial condition on the general solution

1 = y (1) =

(
1

2x
+

C

x3

)∣∣∣∣
x=1

=
1

2
+ C

The extreme sides of this equation tell us that

C =
1

2
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Initial Value Problems, Cont’d

Step 5: Substitute the correct value for C into the general solution
to get the solution satisfying the initial condition

y (x) =
1

2x
+

1
2

x3
=

1

2x
+

1

2x3



An Alternative Procedure for Solving Initial Value
Problems for 1st Order Linear ODEs

Theorem
The unique solution to

y ′ + p (x) y ′ = g (x)

y (x0) = y0

can be obtained as follows:

I Compute

µ0 (x) = exp

[∫ x

x0

p (s) ds

]
I Then compute

y (x) =
1

µ0 (x)

∫ x

x0

µ0 (s) g (s) ds +
y0

µ0 (x)
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Comparing Formulas for Solutions of y ′ + p(x)y = g(x)
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