
Math 2233 - Lecture 6

Agenda

1. Comments on Homework Problems

2. Examples of 1st Order Linear ODEs

3. Exact Equations



HW2 : Problem 2.2.21

Solve the initial value problem

1

θ

dy

dθ
=

y cos (θ)

y3 + 1
, y (π) = 1 (1)

Note that for this ODE

I θ is the underlying variable

I y is the unknown function



HW Example, Cont’d

First, we recast the equation into to the manifestly separable form
M (θ) + N (y) dy

dθ = 0. This we do by multiplying both sides by

θ y
3+1
y and putting everything on the left hand side.

−θ cos (θ) +

(
y2 +

1

y

)
dy

dθ
= 0

M (θ) = −θ cos (θ)

⇒ H1 (θ) =

∫
M (θ) dθ = −

∫
θ cos (θ) dθ = −θ sin (θ)− cos (θ)

N (y) = y2 +
1

y

⇒ H2 (y) =

∫
N (y) dy =

∫ (
y2 +

1

y

)
dy =

1

3
y3 + ln |y |



HW Example, Cont’d
The differential equation (being separable) is then equivalent to
the following algebraic equation

−θ sin (θ)− cos (θ) +
1

3
y3 + ln |y | = C (2)

Unfortunately, this equation can not be solved for y as a function
of x and C
(it is what’s called a transcendental equation; a valid equation
that cannot be solved by algebraic methods).
We call equation (2) the implicit solution to the ODE in equation
(1).
Yet, we can still employ (2) and the initial condition to fix a value
for the constant C .
When θ = π, we must have y = 1 and so (2) requires

−π sin (π)− cos (π) +
1

3
+ 0 = C ⇒ C =

4

3



HW Example, Cont’d

Thus, the implicit solution to the initial value problem (ODE and
initial condition) is

−θ sin (θ)− cos (θ) +
1

3
y3 + ln |y | =

4

3



Review of Linear ODEs with Initial Values

In order to review the results of the last lecture, let’s work out the
solution to

dy

dx
− 1

x
y = xex

y (1) = e − 1

two different ways.



Method 1: Find the General Solution and then figure out
the right value for the constant C

Theorem
The general solution to

y ′ + p (x) y = g (x)

is found by computing

µ (x) ≡ exp

[∫
p (x) dx

]
and then

y (x) =
1

µ (x)

∫
µ (x) g (x) dx +

C

µ (x)



1st Method for Linear IVPs, Cont’d
In the case at hand,

p (x) = −1

x
, g (x) = xex

and so

µ (x) = exp

[
−
∫

1

x
dx

]
= exp [− ln |x |] = x−1 =

1

x

and

y (x) =
1
1
x

∫
1

x
(xex) dx +

C
1
x

= x

∫
exdx + Cx

= xex + Cx

So our general solution is

y (x) = xex + Cx



1st Method for Linear IVPs, Cont’d

Now let’s impose the initial condition y (1) = e − 1

e − 1 = y (1) = e + C ⇒ C = −1

and so the solution to the initial value problem is

y (x) = xex − x



Method 2: Use the formula for the solution of a 1st order,
linear, initial value problem

Theorem
The unique solution to

y ′ + p (x) y = g (x) , y (x0) = y0

is found by computing

µ0 (x) ≡ exp

[∫ x

x0

p (s) ds

]
and then

y (x) =
1

µ0 (x)

∫ x

x0

µ0 (s) g (s) dx +
y0

µ0 (x)

We still have

p (x) = −1

x
, g (x) = xex

and our initial condition tells us that

x0 = 1 , y0 = e − 1



Method 2 for Linear IVPs, Cont’d

So we can begin calculating:

µ0 (x) = exp

[∫ x

1

(
−1

s

)
dx

]
= exp [− ln [s]|s=x

s=1] = exp (− ln |x |+ 0) =
1

x

y (x) =
1
1
x

∫ x

1

(
1

s

)
(ses) ds +

e − 1
1
x

= x

∫ x

1
esds + (e − 1) x

= x (ex − e) + (e − 1) x

= xex − x

Thus,
y (x) = xex − x



Exact Equations
The next special type of 1st order ODEs we’ll consider is that of
Exact Equations.
The method for exact equations is a generalization of the method
we used for separable equations. The basic idea will again be to
solve the differential equation by solving an equivalent algebraic
equation.
Recall that we solved separable equations of the form

M (x) + N (y)
dy

dx
= 0 (3)

by solving instead
H1 (x) + H2 (y) = C (4)

where

H1 (x) =

∫
M (x) dx , H2 (y) =

∫
N (y) dy (5)

This worked because if H1 (x) and H2 (y) are defined by (5) then
we can derive (3) from (4) via implicit differentiation.



Exact Equation, Cont’d

Equation (4), however, is not the most general form for an
algebraic equation relating x and y .
In fact, we might call (4) a separable algebraic equation, since
the x-dependent terms are separate from the y -dependent terms in
the equation.
A more general algebraic relationship between x and y can be
expressed as

Φ (x , y) = C (6)

(and then (4) is just a special case of (6)).

I’ll now derive a differential equation from (6) using implicit
differentiation.
But first, we’ll need a generalization of the chain rule.



Digression: The Chain Rule for Functions of 2 variables

For functions of a single variable, the Chain Rule is

d

dx
(f (y (x))) =

df

dy

dy

dx

If s, t are functions of x and y , then

∂

∂x
F (s (x , y) , t (x , y)) =

∂F

∂s

∂s

∂x
+

∂

∂t

∂t

∂x
∂F

∂y
F (s (x , y) , t (x , y)) =

∂F

∂s

∂s

∂y
+
∂F

∂t

∂t

∂y



Exact Equations, Cont’d

Now suppose we carry out implicit differentiation of (6), from our
multi-variable chain rule we have

d

dx
(Φ (x , y (x))) =

d

dx
(C ) ⇒ ∂Φ

∂x

dx

dx
+
∂Φ

∂y

dy

dx
= 0 (7)

or
∂Φ

∂x
+
∂Φ

∂y

dy

dx
= 0 (8)

N.B., The term ∂Φ
∂x and the factor ∂Φ

∂y will, in general, depend on
both x and y .



Exact Equations, Cont’d

And so (8) will have the form

M (x , y) + N (x , y)
dy

dx
= 0 (9)

But there is also an additional hidden condition on the functions
M (x , y) and N (x , y). Since

∂M

∂y
=

∂

∂y

(
∂Φ

∂x

)
=

∂

∂x

(
∂Φ

∂y

)
=
∂N

∂x

Thus, if (9) is to be derivable from an algebraic equation of the
form Φ(x , y) = C , we must have

∂M

∂y
=
∂N

∂x



Exact Equations, Cont’d

Definition
A differential equation

M (x , y) + N (x , y)
dy

dx
= 0

is called exact, if
∂M

∂y
=
∂N

∂x



Theorem
Suppose

M (x , y) + N (x , y)
dy

dx
= 0 (10)

is exact (i.e., ∂M∂y = ∂N
∂x ). Then (10) is has the same solutions as

an algebraic equation of the form

Φ (x , y) = C (11)

with Φ (x , y) determined (up to a constant) by the conditions

∂Φ

∂x
= M (x , y) ,

∂Φ

∂y
= N (x , y) (12)

Of course, this immediately raises the question of exactly how
Φ (x , y) is determined by (12).
To answer this question, we just need the 2-variable version of the
Fundamental Theorem of Calculus.



Fundamental Theorem of Calculus for functions of 2
variables

Theorem
The most general solution of

∂Φ

∂x
= M (x , y)

is

Φ (x , y) =

∫
M (x , y) ∂x + h1 (y)

where h1 (y) is an arbitrary function depending only on y.
Similiarly, the most general solution of

∂Φ

∂y
= N (x , y)

is

Φ (x , y) =

∫
N (x , y) ∂y + h2 (x)

with h2 (x) an arbitrary function depending only on x.

Remark: The integrals
∫
M (x , y) ∂x and

∫
N (x , y) ∂y are really

anti-partial derivatives. One integrates∫
M (x , y) ∂x

by using the usual integration rules for functions of x while
regarding y as a constant. Similarly,

∫
N (x , y) ∂y is integrated

using the rules for integrating the y dependence of N (x , y) with
respect to y and treating x as a constant.



Exact Equation Example

I’ll now do an explicit example so that you see how this works.

Consider (
2xy2 + 1

)
+
(
2x2y

) dy
dx

= 0 (13)

For this equation we have

M (x , y) = 2xy2 + 1

N (x , y) = 2x2y

Noting that
∂M

∂y
= 4xy =

∂N

∂x

we confirm that the differential equation is exact.



Exact Equations Example, Cont’d

The theorem about exact equations tells that (13) will have the
same solutions as

Φ (x , y) = C

with Φ (x , y) determined by

∂Φ

∂x
= M (x , y) = 2xy2 + 1

∂Φ

∂y
= N (x , y) = 2x2y



Exact Equations Example, Cont’d

Applying our 2-variable Fundamental Theorem of Calculus

∂Φ

∂x
= 2xy2 + 1

⇒ Φ (x , y) =

∫ (
2xy2 + 1

)
∂x + h1 (y)

= x2y2 + x + h1 (y)

∂Φ

∂y
= 2x2y

⇒ Φ (x , y) =

∫ (
2x2y

)
∂y + h2 (x)

= x2y2 + h2 (x)



Exact Equations Example, Cont’d

Now we have two separate equations for Φ (x , y)

Φ (x , y) = x2y2 + x + h1 (y)

Φ (x , y) = x2y2 + h2 (x)

These do not agree automatically. However, h1 (y) and h2 (x) are
arbitrary functions that we can adjust to make these two
expressions for Φ (x , y) agree with each other. If we set

h1 (y) = 0 and h2 (x) = x

Then both equations say

Φ (x , y) = x2y2 + x



Exact Equations Example, Cont’d

Having found the correct Φ (x , y), we can now solve (13) by
solving instead

C = Φ (x , y) = x2y2 + x

or

y (x) = ±
√

C − x

x2
(14)

(14) will thus be the general solution to the exact equation (13).



Summary: Solving Exact Equations

An exact differential equation of the form

M (x , y) + N (x , y)
dy

dx
= 0 (15)

with
∂M

∂y
=
∂N

∂x
(16)

can be solved as follows:

0. Confirm the exactness condition ∂M
∂y = ∂N

∂x is true.

1. If the equation is exact, then the differential equation is
equivalent to an algebraic equation of the form

Φ (x , y) = C



Summary: Solving Exact Equations, Cont’d

3. Φ (x , y) is determined by calculating

Φ1 (x , y) =

∫
M (x , y) ∂x + h1 (y)

Φ2 (x , y) =

∫
N (x , y) ∂y + h2 (x)

and then adjusting the arbitrary functions h1 (y) and h2 (x) so
that Φ1 (x , y) = Φ2 (x , y)

4. We then set Φ (x , y) = Φ1 (x , y) (= Φ2 (x , y)) and solve (if
possible)

Φ (x , y) = C (17)

for y as a function of x and C



Summary: Solving Exact Equations, Cont’d

It sometimes happens that the algebraic equation

Φ(x , y) = C (17)

ends up being a transcendental equation which can not be
explicitly solved for y .
In such cases, one just stops at equation (17) and refers to
equation (17) as the implicit solution of (15).



Exact Equation Example 2

Consider

x + 2y + (2x + y)
dy

∂x
= 0 (18)

For this differential equation, we have

M (x , y) = x + 2xy

N (x , y) = x + y

we have

∂M

∂y
= 2

∂N

∂x
= 2

and so the equation is exact.



Exact Equations Example 2, Cont’d
We now try to find the function Φ (x , y) so that solutions of (18)
can be found by solving Φ (x , y) = C

Φ1 (x , y) =

∫
M (x , y) ∂x + h1 (y) =

∫
(x + 2y) ∂x + h1 (y)

=
1

2
x2 + 2xy + h1 (y)

Φ2 (x , y) =

∫
N (x , y) ∂y + h2 (x) =

∫
(2x + y) ∂y + h2 (x)

= 2xy +
1

2
y2 + h2 (x)

To get Φ1 (x , y) = Φ2 (x , y), we need to set

h1 (y) =
1

2
y2

h2 (x) =
1

2
x2



Exact Equations Example 2, Cont’d

Thus, with these choices for h1 (y) and h2 (x)

Φ (x , y) =
1

2
x2 + 2xy +

1

2
y2



Exact Equations Example 2, Cont’d

The last step is to set Φ (x , y) equal to a constant C and solve for
y :

1

2
x2 + 2xy +

1

2
y2 = C

⇒ y =
−2x ±

√
(2x)2 − 4

(
1
2

) (
1
2x

2 − C
)

2
(

1
2

)
where I have applied the Quadratic Formula

ay2 + by + c = 0 ⇒ y =
−b ±

√
b2 − 4ac

2a


