
Math 2233 - Lecture 7

Agenda
1. Review of Methods of Solving First Order ODEs

I Easiest Case: dy
dx = f (x)

I Separable Equations: M(x) + N(y)dydx = 0

I Linear Equations: dy
dx + p(x)y = g(x)

I Exact Equations: M(x , y) + N(x , y)dydx = 0 with ∂M
∂y = ∂N

∂x

2. Change of Variables



Solving 1st Order ODEs: the Easiest Case

Standard Form:
dy

dx
= f (x) (1)

(1) =⇒ y(x) must be an anti-derivative of f (x).

Method: Integrate both sides and add in a arbitrary constant C to
obtain the most general anti-derivative of f (x) as a solution.

dy

dx
= f (x) =⇒ y(x) =

∫
f (x) dx + C



Solving 1st Order ODEs: Separable Equations
Standard Form:

M(x) + N(y)
dy

dx
= 0 (2)

Separable ODEs are derivable from algebraic equations of the form

H1(x) + H2(y) = C (3)

Method:

I Transform ODE into form (2) and identify the functions M(x)
and N(y) correctly.

I Calculate

H1(x) =

∫
M(x) dx , H2(y) =

∫
N(y) dy

and plug your results into the equation (3)
This will yield the implicit solution of (3)

I If possible, solve (algebraically) the implicit solution to
determine y as a function of x and C .



Solving 1st Order ODEs: Linear 1st Order ODEs

Standard Form:
dy

dx
+ p(x)y = g(x) (4)

Method:

I Transform linear ODE into the standard form (4) to correctly
identify the coefficient functions p(x) and g(x)

I Compute the integrating factor µ(x)

µ(x) = exp

[∫
p(x) dx

]
(5)

I Compute the general solution of (4) as

y(x) =
1

µ(x)

∫
µ(x)g(x) dx +

C

µ(x)
(6)



Solving 1st Order ODEs: Exact Equations
Standard Form:

M(x , y) + N(x , y)
dy

dx
= 0 with

∂M

∂y
=
∂N

∂x
(7)

Exact Equations are ODEs that are derivable from algebraic
equations of the form

Φ (x , y) = C (8)

Method:
I Verify that the equation is exact (i.e, that the ODE is of the

form (7))
I Compute

Φ1(x , y) =

∫
M(x , y) ∂x + c1(y)

Φ2(x , y) =

∫
N(x , y) ∂y + c2(x)

I Adjust the arbitrary functions c1(y) and c2(x) so that
Φ1(x , y) = Φ2(x , y) ≡ Φ(x , y)



Solving 1st Order ODEs: Exact Equations, Cont’d

I Insert the calculated Φ(x , y) into

Φ(x , y) = C

to obtain the implicit solution of (7)

I If possible, solve the implicit solution for y as a function of x
and C .



Remark
Make sure your ODE is in the correct form before applying any of
the proceding methods.
Examples:

(i) :

xey + y2
dy

dx
= 0

Divide both sides by ey

⇒ x + e−yy2
dy

dx
= 0

which is separable with M (x) = x and N (y) = e−yy2

(ii)

x
dy

dx
+ 2y + ex = 0

Divide both sides by x to get

dy

dx
+

2

x
y = −ex

x

which is linear with p (x) = 2
x and g (x) = − ex

x



(iii)

2x2y2 + x + 2x3y
dy

dx
= 0

Not exact since

∂

∂y

(
2x2y2 + x

)
= 4x2y 6= 6x2y =

∂

∂x

(
2x3y

)
Divide ODE by x ,

2xy2 + 1 + 2x2y
dy

dx
= 0

Noting
∂

∂y

(
2xy2

)
= 4xy =

∂

∂x

(
2x2y

)
we see that the new equation is exact with

M (x , y) = 2xy2 + 1 , N (x , y) = 2x2y



Change of Variables

In each of the above examples, we used simple algebraic operations
to get the ODEs to a solvable standard form.

There is one more thing we could try to get an ODE into a
solvable standard form: make a change of variables.



Change of Variables: Example

Consider
y ′ = (x + y)2 (9)

This ODE is Not Separable, Not Linear, and Not Exact.

Set z = x + y
Then

y = z − x

and so
dy

dx
=

dz

dx
− 1

Separately substitute for y and dy
dz in (9)

dz

dx
− 1 = z2



Change of Variables Example, Cont’d
or

1− 1

z2 + 1

dz

dx
= 0 (10)

Equation (10) is Separable with

M (x) = 1 , N (z) =
−1

z2 + 1

So the solutions of (10) coincide with solutions of

C =

∫
M (x) dx +

∫
N (z) dz =

∫
1dx −

∫
1

1 + z2
dz

or
x − tan−1 (z) = C

So the function z(x) must be

z = tan (x − C ) (11)

We now need to back substitute z = x + y to get the solution to
the original differential equation



Change of Variables Example, Cont’d

Replacing z in (11) by x + y we find

(x + y) = tan (x − C )

So
y = tan (x − C )− x

This is the general solution of the original ODE.



Remarks

1. The key thing to remember is that both y and dy
dx have to be

separately substituted for.
2. Use the reverse relationship y = f (x , z) to calculate dy

dx in terms

of x , z , dzdx

3. Not always easy to guess what substitution might be helpful.



Change of Variables for Equations of Homogeneous Type

A 1st order ODE of the form

dy

dx
= F

(y
x

)
(12)

is said to be of homogeneous type.
In this situation, the substitution

z =
y

x

always leads to a Separable ODE for z(x).



Substitution for ODEs of the form dy
dx = F (yx )

Let

z =
y

x
⇒ y = zx ⇒ dy

dx
= x

dz

dx
+ z

And so substituting for y and dy
dx , in (12) yields

x
dz

dx
+ z = F (z)

Multiplying by 1
x(F (z)−z) yields

1

x
− 1

F (z)− z

dz

dx
= 0

which is separable with

M (x) =
1

x

N (z) = − 1

F (z)− z



Example: Substitution for ODE of form dy
dx = F

(
y
x

)
x2

dy

dx
= xy + y2

Divide by x2

dy

dx
=

xy + y2

x2
=
(y
x

)
+
(y
x

)2
Now introduce a change of variables

z =
y

x
⇒ y = zx

⇒ dy

dx
= x

dz

dx
+ z

Substitute these expressions for y and dy
dx back into (10)

x
dz

dx
+ z = z + z2



Example, Cont’d

or, after dividing both sides by xz2 and simplying,

1

x
− 1

z2
dz

dx
= 0

which is Separable with

M (x) =
1

x
, N (z) = − 1

z2

C =

∫
M (x) dx +

∫
N (z) dz

=

∫
1

x
dx −

∫
1

z2
dz

= ln |x |+ 1

z



and so

z (x) =
1

C − ln |x |
Finally, we rewrite in terms of original variable y :

z =
y

x
⇒ y

x
=

1

C − ln |x |
⇒ y (x) =

x

C − ln |x |



Example: HW Problem 2.4.21

Solve

1

x
+ 2y2x +

(
2yx2 − cos (y)

) dy
dx

= 0

y (1) = π

Let’s first find the general solution to the ODE. With

M (x , y) =
1

x
+ 2y2x

N (x , y) = 2yx2 − cos (y)

we have

∂M

∂y
=

∂

∂y

(
1

x
+ 2y2x

)
= 0 + 4xy

∂N

∂x
=

∂

∂x

(
2yx2 − cos (y)

)
= 4xy − 0



Example: HW Problem 2.4.21, Cont’d

Thus, ∂M
∂y = ∂N

∂x and so the ODE is exact. This means that the
ODE has the same solution as an algebraic equation of the form

Φ (x , y) = C

with Φ (x , y) determined by

∂Φ

∂x
= M (x , y) =

1

x
+ 2y2x

∂Φ

∂y
= N (x , y) = 2yx2 − cos (y)



Example: HW Problem 2.4.21, Cont’d
To recover Φ (x , y) from these conditions, we simply take
anti-partial derivatives by integrating both sides (and adding in
some arbitrary functions of the other variables). Thus,

Φ (x , y) =

∫
M (x , y) ∂x + c1 (y)

=

∫ (
1

x
+ 2y2x

)
∂x + c1 (y)

= ln |x |+ y2x2 + c1 (y)

and

Φ (x , y) =

∫
N (x , y) ∂y + c2 (x)

=

∫ (
2yx2 − cos (y)

)
∂y + c2 (x)

= y2x2 − sin (y) + c2 (x)



Example: HW Problem 2.4.21, Cont’d

These two expressions for Φ (x , y) agree only if

c1 (y) = − sin (y)

c2 (x) = ln |x |

Thus, with these choices,

Φ (x , y) = x2y2 + ln |x | − sin (y)

and the implicit solution Φ (x , y) = C to the orginal differential
equation will be

x2y2 + ln |x | − sin (y) = C (*)

This is actually a transcendental equation in y , so we won’t be
able to solve it explicitly to get y as a function of x .



Example: HW Problem 2.4.21, Cont’d

However, we can still determine the correct value for the constant
C by imposing the initial condition y (1) = π. Substituting x = 1
and y = π into (*) yields

(1)2 (π)2 + ln |1| − sin (π) = C ⇒ C = π2

Thus, the implicit solution to the initial value problem will be

x2y2 + ln |x | − sin (y) = π2



Example: HW Problem 2.6.24

dy

dx
=

y (ln |y | − ln |x |+ 1)

x
(*)

This is to be an ODE of homogeneous type; i.e., an ODE of the
form

dy

dx
= F

(y
x

)
(**)

So we want to get the right hand side of (*) into the form of a
function of the ratio of y to x . We have the following identity for
the natural log function:

ln |y | − ln |x | = ln
∣∣∣y
x

∣∣∣
Thus, the right hand side of (*) can be written

y

x

(
ln
∣∣∣y
x

∣∣∣+ 1
)

Hence, by defining

F (u) = u (ln |u|+ 1)

we get (*) in the form (**).



Example: HW Problem 2.6.24, Cont’d
Good. Now we can try the change of variable

z =
y

x
⇒ y = zx

⇒ dy

dx
= x

dz

dx
+ z

In (*) we now substitute
(
x dz
dx + za

)
for dy

dx and z for y
x , to get

x
dz

dx
+ z = z (ln |z |+ 1) = z ln |z |+ z

Cancelling the z term that appears on both sides we get

x
dz

dx
= z ln |z |

or, after dividing by xz ln |z | are rearranging terms:

1

x
− 1

z ln |z |
dz

dx
= 0 (***)

This is a Separable ODE for z (x).



Example: HW Problem 2.6.24, Cont’d
Next, we solve the separable ODE for z(x). Thus, we calculate

H1 (x) =

∫
M (x) dx =

∫
1

x
dx = ln |x |

and

H2 (z) =

∫
N (z) dz = −

∫
1

z ln |z |
dz

This last integral can be carried out using the substitution

u = ln |z | ⇒ du =
1

z
dz

and so

−
∫

1

ln |z |

(
1

z
dz

)
= −

∫
1

u
du = − ln |u| = − ln (ln |z |)

and so
H2 (z) = − ln (ln |z |)



Example: HW Problem 2.6.24, Cont’d
The solution to the separable equation (***) is thus given
implicitly by

H1 (x) + H2 (z) = C

or
ln |x | − ln (ln |z |) = C

Now we have to convert back to our original unknown function
y(x).
Since, by our original change of variables,

z =
y

x

we have
ln |x | − ln

(
ln
∣∣∣y
x

∣∣∣) = C

or
ln
(

ln
∣∣∣y
x

∣∣∣) = C − ln |x |



Example: HW Problem 2.6.24, Cont’d

or, after exponentiating both sides,

ln
∣∣∣y
x

∣∣∣ = exp (C − ln |x |)

exponentiating again,

y

x
= exp [exp (C − ln |x |)]

or
y = x exp [exp (C − ln |x |)]

Now
exp (C − ln |x |) = eC exp (ln |x |) = eCx

Thus,

y (x) = x exp
(
eCx

)


