Math 2233 - Lecture 7

Agenda
1. Review of Methods of Solving First Order ODEs

» Easiest Case: % = f(x)
» Separable Equations: M(x) + N(y)% =0
» Linear Equations: % + p(x)y = g(x)

» Exact Equations: M(x,y) + N(x,y)% = 0 with % = %\(’

2. Change of Variables



Solving 1st Order ODEs: the Easiest Case

Standard Form:

dy

Y _f 1

Y ) 1)
(1) = y(x) must be an anti-derivative of f(x).

Method: Integrate both sides and add in a arbitrary constant C to
obtain the most general anti-derivative of f(x) as a solution.

%:f(x) = y(x):/f(x)dx + C



Solving 1st Order ODEs: Separable Equations
Standard Form:

dy
M N(y)— = 2
() + N(y) L =0 )
Separable ODEs are derivable from algebraic equations of the form
Hi(x) + Ha(y) = C (3)

Method:

» Transform ODE into form (2) and identify the functions M(x)
and N(y) correctly.
> Calculate

Hl(x):/M(x)dx , Hg(y):/N(y)dy

and plug your results into the equation (3)
This will yield the implicit solution of (3)

» If possible, solve (algebraically) the implicit solution to
determine y as a function of x and C.



Solving 1st Order ODEs: Linear 1st Order ODEs

Standard Form:
dy

o) p(x)y = g(x) (4)

Method:

» Transform linear ODE into the standard form (4) to correctly
identify the coefficient functions p(x) and g(x)

» Compute the integrating factor ;i(x)

) = o9 | [ o) ox| )
» Compute the general solution of (4) as
1 C
V) = [ e + = @



Solving 1st Order ODEs: Exact Equations
Standard Form:
dy oM ON

M(x,y) + N(x,y) - =0 with By = Bx (7)

Exact Equations are ODEs that are derivable from algebraic
equations of the form

o (x,y)=C (8)
Method:
» Verify that the equation is exact (i.e, that the ODE is of the
form (7))
» Compute

Or(xy) = / M(x,y)0x + aly)

®a(cy) = [ Nxy)dy + e

» Adjust the arbitrary functions c1(y) and c(x) so that
(Dl(X?y) = ¢2(X7y) = q)(X,y)



Solving 1st Order ODEs: Exact Equations, Cont'd

» Insert the calculated ®(x, y) into
d(x,y)=C

to obtain the implicit solution of (7)

» If possible, solve the implicit solution for y as a function of x
and C.



Remark

Make sure your ODE is in the correct form before applying any of
the proceding methods.
Examples:

(i) -
2dy -0

xe¥ +y ™

Divide both sides by e¥
= x4+ e*yy2—y =0
dx
which is separable with M (x) = x and N (y) = e Vy?
(i)
d
xZX 4oy +eX=0

dx

Divide both sides by x to get
dy 2 e
dx Xy N

which is linear with p(x) = 2 and g (x) = —<



(iii)
d
2x2y2 + x + 2x3y—y =0
dx

Not exact since

9 2.2 2.2 2 _ 0 3
@(2xy +X)—4xy % 6xy—&(2x}/)

Divide ODE by x,

dy

2xy2 +1+2x%y—= =0
dx
Noting
0 0
— (2xy?) = 4xy = = (2x°
oy (207) =4y = 5 (2xy)

we see that the new equation is exact with

M(x,y)=2x*+1 , N(x,y)=2xy



Change of Variables

In each of the above examples, we used simple algebraic operations
to get the ODEs to a solvable standard form.

There is one more thing we could try to get an ODE into a
solvable standard form: make a change of variables.



Change of Variables: Example

Consider
Y =(x+y)
This ODE is Not Separable, Not Linear, and Not Exact.

Setz=x+y
Then
y=z-—x
and so
dy dz
dx  dx

Separately substitute for y and % in (9)

f_1222

dx



Change of Variables Example, Cont'd

or L 4
z
- 1
z2 + 1dx 0 (10)
Equation (10) is Separable with
-1
M(X) =1 N N(Z) = 2274_1

So the solutions of (10) coincide with solutions of

C:/M(x)dx+/N(z)dz:/1dx _ /1_:22dz

x—tan"t(z)=C

or

So the function z(x) must be
z=tan(x — C) (11)

We now need to back substitute z = x 4 y to get the solution to
the original differential equation



Change of Variables Example, Cont'd

Replacing z in (11) by x + y we find
(x+y)=tan(x - C)

So
y=tan(x—C)—x

This is the general solution of the original ODE.



Remarks

1. The key thing to remember is that both y and ~ have to be
separately substituted for.
2. Use the reverse relationship y = f(x, z) to calculate % in terms

of x, z, dx

3. Not always easy to guess what substitution might be helpful.



Change of Variables for Equations of Homogeneous Type

A 1st order ODE of the form
dy y
FY_F <7) 12
dx X (12)

is said to be of homogeneous type.
In this situation, the substitution

Y
Z_i

X

always leads to a Separable ODE for z(x).



Substitution for ODEs of the form % = F(<
Let

z== = y=zx = —=X——++2zZ
X

And so substituting for y and %, in (12) yields

E
dx

X

+z=F(z)

Multiplying by m yields

1 1 dz

x F)—zdx

which is separable with

F(z)—z



Example: Substitution for ODE of form % — F (i’)

d
xz—y:xy+y2
dx

Divide by x?
dy _xy+y?

N R )

Now introduce a change of variables

z = =

= y =zx
=



Example, Cont'd

or, after dividing both sides by xz? and simplying,

1_1dz
x  Z2dx
which is Separable with
1 1
M = - N =——
(=" . N@)=—

c - /M(x)dx+/N(z)dz

1
= /dx — /12dz
X z
1

= In|x|+ =
z



and so

1
z(x) = ——
(x) C —In|x]|
Finally, we rewrite in terms of original variable y:
y y 1
T x x  C—lInlx| v (x)

C —In|x]|



Example: HW Problem 2.4.21

Solve

1 d
;+2y2x—|—(2yx2—cos( y)) dﬁ =0
y(1) = =

Let's first find the general solution to the ODE. With

we have

oM
dy
oN
Ox



Example: HW Problem 2.4.21, Cont'd

Thus, %—'\yﬂ = %—Q’ and so the ODE is exact. This means that the
ODE has the same solution as an algebraic equation of the form

o (x,y)=C
with @ (x, y) determined by
o®
Ox
8£
dy

1
= I\/I(X,y):;+2y2x

= N(x,y)=2yx> — cos(y)



Example: HW Problem 2.4.21, Cont'd

To recover ® (x,y) from these conditions, we simply take
anti-partial derivatives by integrating both sides (and adding in
some arbitrary functions of the other variables). Thus,

o0y = [Miay)oxtal)
= /<i+2y2x>ax+c1(y)
= Inlx| +y>x® + a1 (y)
and
o(y) = [Ny +al)

- / (2yx* — cos (y)) Oy + o (x)

= y2x* —sin(y) + 2 (%)



Example: HW Problem 2.4.21, Cont'd

These two expressions for ® (x, y) agree only if

aly) = —sin(y)
o (x) = In|x|

Thus, with these choices,
b (x,y) = x2y2 + In|x| —sin(y)

and the implicit solution ® (x,y) = C to the orginal differential
equation will be

Xy +In|x| —sin(y) = € (*)

This is actually a transcendental equation in y, so we won't be
able to solve it explicitly to get y as a function of x.



Example: HW Problem 2.4.21, Cont'd

However, we can still determine the correct value for the constant
C by imposing the initial condition y (1) = 7. Substituting x =1
and y = 7 into (*) yields

(12 (@) +In|1|—sin(x)=C = C=n?

Thus, the implicit solution to the initial value problem will be

x%y? 4 In |x| — sin (y) = 72



Example: HW Problem 2.6.24

Q:y(|n|y|—|n|xl—|—1) (*)
dx X
This is to be an ODE of homogeneous type; i.e., an ODE of the
form J
Y_f(Y Kk
dx F (X) ()

So we want to get the right hand side of (*) into the form of a
function of the ratio of y to x. We have the following identity for
the natural log function:

In|ly| —In|x| =In ‘g‘

Thus, the right hand side of (*) can be written

2 (in| 2]+ 1)
X X

F(u)=u(in|u +1)

we get (*) in the form (*¥*).

Hence, by defining



Example: HW Problem 2.6.24, Cont'd

Good. Now we can try the change of variable

oy
zZ — .
X
= y = zx
N dy dz+
— =x— 4z
dx dx

In (*) we now substitute (x% + za) for % and z for £, to get
X% +z=2z(In|z|+1)=zIn|z| +z
Cancelling the z term that appears on both sides we get
dz
X =2 In|z|
or, after dividing by xzIn |z| are rearranging terms:
1 1 dz

x  zln|z| dx

This is a Separable ODE for z (x).

— (¥*¥)



Example: HW Problem 2.6.24, Cont'd

Next, we solve the separable ODE for z(x). Thus, we calculate

H1(x):/M(x)dx:/)1(dx:ln]x\

Hg(z):/N(z)dz:—/zl:|z|dz

This last integral can be carried out using the substitution

and

1
u=lInlz] = du==-dz
z
and so

_/lnlyz|<idz> :—/Llldu:—ln\u\:—ln(ln|z\)

and so
Hy (z) = —In(In|z|)



Example: HW Problem 2.6.24, Cont'd

The solution to the separable equation (***) is thus given
implicitly by

Hy (X) + Hy (Z) =C
or

Injx| —In(In]z]) = C

Now we have to convert back to our original unknown function

y(x).
Since, by our original change of variables,

_Y
=2
X

In|x| —In (In ’%D =C

In (ln ‘%D = C—In|x|

we have

or



Example: HW Problem 2.6.24, Cont'd
or, after exponentiating both sides,
y
| H — exp(C — |
n|>|= e (C—Inix)
exponentiating again,

% = exp [exp (C — In |x])]

or
y = xexp[exp (C —In|x])]
Now
exp(C —In|x|) = e exp (In|x|) = e“x
Thus,

y(x) = xexp <ecx)



