Math 2233 - Lecture 7

Agenda
1. Review of Methods of Solving First Order ODEs

» Easiest Case: % = f(x)
» Separable Equations: M(x) + N(y)% =0
» Linear Equations: % + p(x)y = g(x)

» Exact Equations: M(x,y) + N(x,y)% = 0 with % = %\(’

2. Change of Variables
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Solving 1st Order ODEs: the Easiest Case

Standard Form: J
y

—~ =f 1

Y — f(x) 1)

(1) = y(x) must be an anti-derivative of f(x).

Method: Integrate both sides and add in a arbitrary constant C to
obtain the most general anti-derivative of f(x) as a solution.

%:f(x) N y(x):/f(x)dx + C
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Solving 1st Order ODEs: Separable Equations
Standard Form:

dy
M N(y)— = 2
(x) + N(y) S =0 (2)
Separable ODEs are derivable from algebraic equations of the form
Hi(x) + Ha(y) = C (3)

Method:

» Transform ODE into form (2) and identify the functions M(x)
and N(y) correctly.
» Calculate

i) = [ MG)de . () = [ Niy)dy

and plug your results into the equation (3)
This will yield the implicit solution of (3)

> If possible, solve (algebraically) the implicit solution to
determine y as a function of x and C.
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Solving 1st Order ODEs: Linear 1st Order ODEs

Standard Form: J
=+ p(x)y = g(x) (4)
Method:

» Transform linear ODE into the standard form (4) to correctly
identify the coefficient functions p(x) and g(x)

» Compute the integrating factor ;i(x)

) = o9 | [ o) ox| (5)

» Compute the general solution of (4) as
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Solving 1st Order ODEs: Exact Equations
Standard Form:
dy oM ON

Mlx,y) + Nix,y) g =0 with Z% = 2= (7)

Exact Equations are ODEs that are derivable from algebraic
equations of the form

(xy)=C (8)
Method:
» Verify that the equation is exact (i.e, that the ODE is of the
form (7))
> Compute

di(x,y) = //\/I(X,y)ax + aly)

®a(x,y) = /N(X,y)ay + c(x)

» Adjust the arbitrary functions ¢1(y) and c»(x) so that
¢1(X7y) = ¢2(Xay) = (D(Xay)
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Solving 1st Order ODEs: Exact Equations, Cont'd

» Insert the calculated ®(x, y) into
d(x,y)=C

to obtain the implicit solution of (7)

» If possible, solve the implicit solution for y as a function of x
and C.
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Remark

Make sure your ODE is in the correct form before applying any of
the proceding methods.
Examples:

(i) -
2dy -0

xe¥ +y ™

Divide both sides by e¥
= x4+ e*yy2—y =0
dx
which is separable with M (x) = x and N (y) = e Vy?
(i)
d
xX 4oy +eX=0

dx

Divide both sides by x to get
dy 2 e
dx Xy N

which is linear with p(x) = 2 and g (x) = —<
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(iii)
d
2x2y? + x + 2x3y—y =0
dx



(iii)
d
2x2y? + x + 2x3y—y =0
dx

Not exact since

2(2x2y2+x):4x2y + 6x2y:2

dy ax (22y)
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(iii)
d
2x2y? + x + 2x3y—y =0
dx

Not exact since

9 2.2 2.2 2 _ 0 3
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(iii)
d
2x2y? + x + 2x3y—y =0
dx

Not exact since

9 2.2 2.2 2 _ 0 3
@(2xy +X)—4xy % 6xy—&(2x}/)

Divide ODE by x,

dy

2xy2 +1+2x%y—= =0
dx
Noting
0 0
— (2x%) = 4xy = = (2x°
oy (207) =4y = 5 (2xy)

we see that the new equation is exact with

M(x,y)=2x*+1 , N(x,y)=2xy
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Change of Variables

In each of the above examples, we used simple algebraic operations
to get the ODEs to a solvable standard form.

There is one more thing we could try to get an ODE into a
solvable standard form: make a change of variables.
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Change of Variables: Example

Consider
y'=(x+y)
This ODE is Not Separable, Not Linear, and Not Exact.

Setz=x+y
Then
y=z-—x
and so
dy dz
dx  dx

Separately substitute for y and % in (9)

f_1222

dx
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z
TP ildk (10)
Equation (10) is Separable with
-1
M (X) =1 N N(Z) = 2274_1

So the solutions of (10) coincide with solutions of
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x—tan"t(z)=C

or

So the function z(x) must be

z=tan(x — C) (11)



Change of Variables Example, Cont'd

or L 4
z
- 1
z2 + 1dx 0 (10)
Equation (10) is Separable with
-1
M(X) =1 N N(Z) = 2274_1

So the solutions of (10) coincide with solutions of

C:/M(x)dx+/N(z)dz:/1dx _ /1_:22dz

x—tan"t(z)=C

or

So the function z(x) must be
z=tan(x — C) (11)

We now need to back substitute z = x 4 y to get the solution to
the original differential equation
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Replacing z in (11) by x + y we find

(x+y)=tan(x— C)



Change of Variables Example, Cont'd

Replacing z in (11) by x + y we find
(x+y)=tan(x— C)

So
y=tan(x —C)—x



Change of Variables Example, Cont'd

Replacing z in (11) by x + y we find
(x+y)=tan(x— C)

So
y=tan(x —C)—x

This is the general solution of the original ODE.
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Remarks

1. The key thing to remember is that both y and ~ have to be
separately substituted for.
2. Use the reverse relationship y = f(x, z) to calculate % in terms

of x, z, dx

3. Not always easy to guess what substitution might be helpful.
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A 1st order ODE of the form
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Change of Variables for Equations of Homogeneous Type

A 1st order ODE of the form
dy y
FY_F <7) 12
dx X (12)

is said to be of homogeneous type.
In this situation, the substitution

Y
Z_i

X

always leads to a Separable ODE for z(x).
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Substitution for ODEs of the form % = F(%)
Let J )
T - oy = dx ~ dx tz

And so substituting for y and %, in (12) yields



Substitution for ODEs of the form % = F(%)
Let
zZ = ; = y=zx = — =Xx— + 2z

And so substituting for y and %, in (12) yields

X%—i—z:F(z)
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And so substituting for y and %, in (12) yields

E
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Substitution for ODEs of the form % = F(%)
Let
zZ = ; = y=zx = — =Xx— + 2z

And so substituting for y and %, in (12) yields

E
dx

x— +z=F(2)

Multiplying by m yields

1 1 dz

x F@) _zdx °



Substitution for ODEs of the form % = F(<
Let

z== = y=zx = —=X——++2zZ
X

And so substituting for y and %, in (12) yields

E
dx

X

+z=F(z)

Multiplying by m yields

1 1 dz

x F)—zdx Y

which is separable with

F(z)—z
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Example: Substitution for ODE of form % — F (5)—;)

d
xz—y:xy—l—y2
dx

Divide by x?
dy _xy+y?

N R




Example: Substitution for ODE of form d—i

d
xz—y =xy +y?
dx

Divide by x?
dy xy+y>°

w0+

Now introduce a change of variables

Yy
z = Z
X
= y = zx
d dz
N y

& dx

F(

X I<



Example: Substitution for ODE of form % — F (i’)

d
xz—y:xy+y2
dx

Divide by x?
dy _xy+y?

N R

Now introduce a change of variables

z = =

= y =zx
=
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or, after dividing both sides by xz? and simplying,
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or, after dividing both sides by xz? and simplying,

1_1dz
x  Z2dx
which is Separable with
1 1
M = - N =——
(=" . N@)=—



Example, Cont'd

or, after dividing both sides by xz? and simplying,

1_1dz
x  Z2dx
which is Separable with
1 1
M = - N =——
(=" . N@)=—

c - /M(x)dx+/N(z)dz

1
= /dx — /12dz
X z
1

= In|x|+ =
z



o



and so

2 = C —In|x]|



and so

1
2 = C —In|x]|

Finally, we rewrite in terms of original variable y:



and so

1
z(x) = ——
(x) C —In|x]|
Finally, we rewrite in terms of original variable y:
y y 1
T x x  C—lInlx| y(x)

C —In|x]|
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Solve

1 dy
Z 4902 2vx2 — ol
. + 2y°x + (2yx* — cos (y)) ™

y(1)

Let's first find the general solution to the ODE.
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Example: HW Problem 2.4.21

Solve

1 d
;+2y2x—|—(2yx2—cos( y)) dﬁ =0
y(1) = =

Let's first find the general solution to the ODE. With

we have

oM
dy
oN
Ox
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ODE has the same solution as an algebraic equation of the form

o (x,y)=C



Example: HW Problem 2.4.21, Cont'd

Thus, %—'\yﬂ = %—Q’ and so the ODE is exact. This means that the
ODE has the same solution as an algebraic equation of the form

o (x,y)=C
with @ (x, y) determined by
o®
Ox
8£
dy

1
= I\/I(X,y):;+2y2x

= N(x,y)=2yx> —cos(y)
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To recover ® (x,y) from these conditions, we simply take
anti-partial derivatives by integrating both sides (and adding in
some arbitrary functions of the other variables). Thus,

O (xy) = /M(x,y>ax+c1(y)

= /<i+2y2x>ax+c1(y)

= Inlx| +y*x* +ci (y)



Example: HW Problem 2.4.21, Cont'd

To recover ® (x,y) from these conditions, we simply take
anti-partial derivatives by integrating both sides (and adding in
some arbitrary functions of the other variables). Thus,

o0y = [Micy)oxtal)
= /<i+2y2x>ax+c1(y)
= In|x| +y>x® + ¢ (y)
and
o0y = [Ny +al)

— / (2yx* — cos (y)) Oy + ¢ (x)

= y2x* —sin(y) + 2 (%)
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b (x,y) = x2y2 + In|x| —sin(y)
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These two expressions for ® (x, y) agree only if

aly) = —sin(y)
o (x) = In|x|

Thus, with these choices,
b (x,y) = x2y2 + In|x| —sin(y)

and the implicit solution ® (x,y) = C to the orginal differential
equation will be

2y +In|x| —sin(y) = € (*)

This is actually a transcendental equation in y, so we won't be
able to solve it explicitly to get y as a function of x.
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However, we can still determine the correct value for the constant
C by imposing the initial condition y (1) = 7.
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C by imposing the initial condition y (1) = 7. Substituting x =1
and y = 7 into (*) yields

(12 (@) +In|1|—sin(x)=C = C=n?



Example: HW Problem 2.4.21, Cont'd

However, we can still determine the correct value for the constant
C by imposing the initial condition y (1) = 7. Substituting x =1
and y = 7 into (*) yields

(12 (@) +In|1|—sin(x)=C = C=n?

Thus, the implicit solution to the initial value problem will be

x%y? +In |x| — sin (y) = 72
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form d
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function of the ratio of y to x.
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Q:y(|n|y|—|n|xl—|—1) (*)
dx X

This is to be an ODE of homogeneous type; i.e., an ODE of the

form J
Y Yy
&g (2) o
dx X (%)
So we want to get the right hand side of (*) into the form of a
function of the ratio of y to x. We have the following identity for
the natural log function:
Inly| —In|x| =In ‘X‘
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Example: HW Problem 2.6.24

Q:y(|n|y|—|n|xl—|—1) (*)
dx X

This is to be an ODE of homogeneous type; i.e., an ODE of the
form J
Yy Yy
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Q:y(|n|y|—|n|xl—|—1) (*)
dx X

This is to be an ODE of homogeneous type; i.e., an ODE of the
form J
Yy Yy
Y _ () -
dx X (%)
So we want to get the right hand side of (*) into the form of a

function of the ratio of y to x. We have the following identity for
the natural log function:

Inly| —In|x| =In ‘%‘

Thus, the right hand side of (*) can be written
2 (in|2]+1)
X X

F(u)=u(inlu +1)

Hence, by defining
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Good. Now we can try the change of variable

oy
zZ — .
X
= y = zx
N dy dz+
— =x— 4z
dx dx

In (*) we now substitute (x% + za) for % and z for £, to get

d
X—Z—I—z:z(|n|z\—|—1):z|n]z|+z

dx
Cancelling the z term that appears on both sides we get
dz Inlz|
X— = ZIn |z
dx

or, after dividing by xzIn |z| are rearranging terms:
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Good. Now we can try the change of variable

oy
zZ — .
X
= y = zx
N dy dz+
— =x— 4z
dx dx

In (*) we now substitute (x% + za) for % and z for £, to get
dz
x—+z=2z(In|z|+1)=zIn|z| +Zz
O 2= z(infzl+1) = zInlel +
Cancelling the z term that appears on both sides we get

dz
x— = zlIn|z|

dx
or, after dividing by xzIn |z| are rearranging terms:

1 1 dz

- B Kk
x  zln|z| dx (%)
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Good. Now we can try the change of variable

oy
zZ — .
X
= y = zx
N dy dz+
— =x— 4z
dx dx

In (*) we now substitute (x% + za) for % and z for £, to get
X% +z=2z(In|z|+1)=zIn|z| +z
Cancelling the z term that appears on both sides we get
dz
X =2 In|z|
or, after dividing by xzIn |z| are rearranging terms:
1 1 dz

x  zIn|z| dx

This is a Separable ODE for z (x).

— (¥*¥)
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Next, we solve the separable ODE for z(x). Thus, we calculate

H1(x):/l\/l(x)dx:/)1(dx:ln]x\

Hg(z):/N(z)dz:—/zl:|z|dz

This last integral can be carried out using the substitution

and

1
u=lInlz] = du=-dz
z

and so
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Next, we solve the separable ODE for z(x). Thus, we calculate

H1(x):/M(x)dx:/)1(dx:ln]x\

Hg(z):/N(z)dz:—/zl:|z|dz

This last integral can be carried out using the substitution

and

1
u=lInlz] = du=-dz
z
and so

_/In1’2|<idz> :—/Llldu:—ln\u\:—ln(ln|z\)

and so
Hy (z) = —In(In|z|)



Example: HW Problem 2.6.24, Cont'd



Example: HW Problem 2.6.24, Cont'd

The solution to the separable equation (***) is thus given
implicitly by



Example: HW Problem 2.6.24, Cont'd

The solution to the separable equation (***) is thus given
implicitly by
Hy (X) + H> (Z) =C



Example: HW Problem 2.6.24, Cont'd

The solution to the separable equation (***) is thus given
implicitly by

Hy (X) + H> (Z) =C
or

Injx| —In(In]z]) = C



Example: HW Problem 2.6.24, Cont'd

The solution to the separable equation (***) is thus given
implicitly by

Hy (X) + H> (Z) =C
or

Injx| —In(In]z]) = C

Now we have to convert back to our original unknown function
y(x).



Example: HW Problem 2.6.24, Cont'd
The solution to the separable equation (***) is thus given
implicitly by
Hi(x)+ Ha(z) = C
or
Injx| —In(In]z]) = C

Now we have to convert back to our original unknown function
y(x).
Since, by our original change of variables,

z==
X



Example: HW Problem 2.6.24, Cont'd

The solution to the separable equation (***) is thus given
implicitly by
Hy (X) + H> (Z) =C

or
Injx| —In(In]z]) = C

Now we have to convert back to our original unknown function

y(x).
Since, by our original change of variables,
_y
4
X
we have

In|x| —In <In ‘i—/D =C
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The solution to the separable equation (***) is thus given
implicitly by
Hy (X) + H> (Z) =C

or
Injx| —In(In]z]) = C

Now we have to convert back to our original unknown function

y(x)-
Since, by our original change of variables,
_y
4
X
we have
In|x| —In (In ‘XD =C
X
or

m@ﬂ%D:cme



Example: HW Problem 2.6.24, Cont'd



Example: HW Problem 2.6.24, Cont'd

or, after exponentiating both sides,



Example: HW Problem 2.6.24, Cont'd

or, after exponentiating both sides,

In ‘g‘ =exp(C —In|x|)



Example: HW Problem 2.6.24, Cont'd
or, after exponentiating both sides,
y
| H —exp(C |
n|>|=ew(C—Inix)
exponentiating again,

ii = exp [exp (C — In |x])]



Example: HW Problem 2.6.24, Cont'd

or, after exponentiating both sides,
In ‘X‘ =exp(C —In|x|)
X
exponentiating again,
y _
= =exp [exp (C — In|x|)]
X

or
y = xexp[exp(C — In|x])]



Example: HW Problem 2.6.24, Cont'd

or, after exponentiating both sides,
In ‘X‘ =exp(C —In|x|)
X
exponentiating again,
y _
= =exp [exp (C — In|x|)]
X

or
y = xexp[exp(C — In|x])]

Now

exp(C —In|x|) = e exp (In|x|) = e“x
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or, after exponentiating both sides,
y
| H —exp(C |
n|>|=ew(C—Inix)
exponentiating again,

% = exp [exp (C — In |x])]

or
y = xexp[exp (C — In|x])]
Now
exp(C —In|x|) = e exp (In|x|) = e“x
Thus,

y(x) = xexp <ecx)



