
Math 2233 - Lecture 9

Agenda:

1. 2nd Order Linear ODEs, Standard Form

2. The Existence and Uniqueness Theorem

3. Differential Operator Notation

4. Homogeneous vs. Nonhomogeneous Linear ODEs

5. Two Fundamental Theorems for Homogeneous 2nd Order
Linear ODEs
I The Superposition Principle
I The Completeness Theorem



Standard Form of a 2nd Order Linear ODE

A second order linear differential equation is a differential equation
of the form

A(x)y ′′ + B(x)y ′ + C (x)y = D(x) . (1)

(Here A,B,C and D are prescribed functions of x .)
As in the case of first order linear equations, in any interval where
A(x) 6= 0, we can replace such an equation by an equivalent one in
the standard form:

y ′′ + p(x)y ′ + q(x)y = g(x) (2)

where
p(x) = B(x)

A(x)

q(x) = C(x)
A(x)

g(x) = D(x)
A(x)
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The Simplest Example

Consider the ODE
d2x

dt2
= 0 (3)

We can solve this using just the Fundamental Theorem of Calculus
in two steps.
Let v ≡ dx

dt . Substituting into (3),

dv

dt
= 0 ⇒ v (t) = v0 , v0 a constant

But now v0 = v (t) = dx
dt implies

dx

dt
= v0 ⇒ x (t) =

∫
v0dt + x0 = v0t + x0

Thus, the general solution of (4) is

x (t) = v0t + x0

with v0 and x0 constants.
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Physical Intepretation of the Constants v0 and x0

So the general solution of

d2x

dt2
= 0

is
x(t) = v0t + x0

Note that we have

x(0) = 0 + x0 = x0

dx

dt
(0) = (v0 + 0)|t=0 = v0

Physical Interpretation: If the acceleration of an object is 0, then
its trajectory x(t) is completely determined by its initial position x0
and its initial velocity v0.
This is, effectively, Newton’s 1st Law of Motion.
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Moral of the Simple Example

I The general solution of a 2nd Order Linear ODE will involve 2
arbitrary constants. (Below I’ll refer to them as c1 and c2).

I To select a unique solution, two additional conditions will be
needed. (As we’ll need two equations to solve for two
unknowns c1 and c2)

In the 1st Order case, we used an initial condition

y (x0) = y0

to fix a unique solution.
For 2nd Order ODEs, an additional initial condition is needed. The
d2x

dt2
= 0 example suggests using

y (x0) = y0

y ′ (x0) = y ′0
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Existence and Uniqueness Theorem

Here is the precise statement about the existence and uniqueness
of solutions to homogeneous 2nd order linear ODEs.

Theorem
If the functions p, q and g are continuous on an open interval
I ⊂ R containing the point xo , then in some interval about xo ,
then there exists a unique solution to the differential equation

y ′′ + p(x)y ′ + q(x)y = g(x)

satisfying the initial conditions of the form

y(xo) = yo
y ′(xo) = y ′o .
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Summary and Remarks

I For any reasonable choice of functions p(x), q(x) , and g(x),
we will always have solutions to

y ′′ + p(x)y ′ + q(x)y = g(x) (2)

I The general solution of (2) will always involve two arbitary
constants

I There is only one solution if initial conditions

y(xo) = yo

y ′(xo) = y ′o

are imposed on the general solution.

I The E&U theorem does not address the issue of how to find
solutions of a second order linear ODE.

I In fact, finding solutions to ODEs of the form (2) is going to
be the main problem for the rest of the course.
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Differential Operator Notation

Consider the general second order linear differential equation

φ′′ + p(x)φ′ + q(x)φ = g(x) .

For notational ease, we shall often write differential equations like
this as

L[φ] = g(x)

where L is the linear differential operator

L =
d2

dx2
+ p(x)

d

dx
+ q(x) .

This will mean L acts on a function φ(x) by

L[φ] =
(

d2

dx2
+ p(x) d

dx + q(x)
)
φ

= d2φ
dx2

+ p(x)dφdx + q(x)φ .
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Homogeneous vs. Non-homogeneous Linear Differential
Equations

Rather than solve ODEs of the form

y ′′ + p(x)y ′ + q(x)y = g(x) (2)

directly, we will first study some simpler subcases.
In fact, in what follows, it will be important first to distinguish
between the cases when the function g(x) on the right hand side
of (2) is zero or non-zero.

Definition
A second order linear ODE is said to be homogeneous if when
written in the form (2), the function g(x) on the right is identically
0. So a homogeneous 2nd order linear ODE has the form

y ′′ + p(x)y ′ + q(x)y = 0 (4)

An ODE of the form (2) with g(x) 6= 0) is said to be
nonhomogeneous.
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The Superposition Principle

Our first results will be about solutions of homogeneous 2nd order
linear ODEs.

Theorem (The Superposition Principle)

Suppose y1(x) and y2(x) are two solutions of

L[y ] =
d2y

dx2
+ p(x)

dy

dx
+ q(x)y = 0

and c1 and c2 are constants. Then, any function of the form

y = c1y1(x) + c2y2(x)

is also a solution to the differential equation.
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Proof of the Superposition Principle

Given L [y1] = 0 and L [y2] = 0

L [c1y1 + c2y2] = d2

dx2
(c1y1 + c2y2)

+p(x) d
dx (c1y1 + c2y2)

+q(x) (c1y1 + c2y2)

= c1
(
d2y1
dx2

+ p(x)dy1dx + q(x)y1
)

+c2
(
d2y2
dx2

+ p(x)dy2dx + q(x)y2
)

= c1L [y1] + c2L [y2]
= c1 · 0 + c2 · 0
= 0
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Remarks

I The fact that a linear combination of solutions of a linear,
homogeneous differential equation is also a solution is
extremely important.

I For those of you who have had a little linear algebra, the
Superposition Principle says that the solution set of L[y ] = 0
is a vector space. (A set closed under scalar multiplication
and vector addition)

I As such, a lot of the results of Math 3013 Linear Algebra will
find direct application in the study of linear differential
equations.

I However, since Math 3013 is not a prerequisite for Math
2233, I will only make passing remarks about the connections
with Linear Algebra.
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Example 1

Consider
y ′′ + y = 0

I claim both y1 (x) = cos (x) and y2 = sin (x) are solutions. Indeed,

d2

dx2
cos (x) + cos (x) =

d

dx
(− sin (x)) + cos (x)

= − cos (x) + cos (x)

= 0
d2

dx2
sin (x) + sin (x) =

d

dx
(cos (x)) + sin (x)

= − sin (x) + sin (x)

= 0
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Example 1, Cont’d

The Superposition Principle then tells us that any function of the
form y(x) = c1y1 (x) + c2y2 (x) is also a solution of

y ′′ + y = 0

Indeed

d2y

dx2
+ y =

d2

dx2
(c1 cos (x) + c2 sin (x)) + (c1 cos (x) + c2 sin (x))

=
d

dx
(−c1 sin (x) + c2 cos (x)) + c1 cos (x) + c2 sin (x)

= −c1 cos (x)− c2 sin (x) + c1 cos (x) + c2 sin (x)

= 0
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Pseudo-Counter-Examples
Consider

y ′′ + 2y ′y = 0 (5)

(Note this is a non-linear ODE, so the Superposition Principle is
not applicable.) I claim both

y1 (x) = 1 , y2 (x) = x−1

are solutions of (5). Indeed

y ′′1 + 2y ′1y1 = 0 + 2(0) (1) = 0

y ′′2 + (y2)2 = +2x−3 + 2
(
−x−2

) (
x−1

)
= 0

Now consider the following linear combination of y1 and y2

y3 = y1 + y2 = 1 + x−1

We have

y ′′3 + 2y ′3y2 = −2x−3 + 2
(
−x−2

) (
1 + x−1

)
= −2x−2 6= 0

and so y3 is not a solution of (5).



Pseudo-Counter-Examples
Consider

y ′′ + 2y ′y = 0 (5)

(Note this is a non-linear ODE, so the Superposition Principle is
not applicable.)

I claim both

y1 (x) = 1 , y2 (x) = x−1

are solutions of (5). Indeed

y ′′1 + 2y ′1y1 = 0 + 2(0) (1) = 0

y ′′2 + (y2)2 = +2x−3 + 2
(
−x−2

) (
x−1

)
= 0

Now consider the following linear combination of y1 and y2

y3 = y1 + y2 = 1 + x−1

We have

y ′′3 + 2y ′3y2 = −2x−3 + 2
(
−x−2

) (
1 + x−1

)
= −2x−2 6= 0

and so y3 is not a solution of (5).



Pseudo-Counter-Examples
Consider

y ′′ + 2y ′y = 0 (5)

(Note this is a non-linear ODE, so the Superposition Principle is
not applicable.) I claim both

y1 (x) = 1 , y2 (x) = x−1

are solutions of (5).

Indeed

y ′′1 + 2y ′1y1 = 0 + 2(0) (1) = 0

y ′′2 + (y2)2 = +2x−3 + 2
(
−x−2

) (
x−1

)
= 0

Now consider the following linear combination of y1 and y2

y3 = y1 + y2 = 1 + x−1

We have

y ′′3 + 2y ′3y2 = −2x−3 + 2
(
−x−2

) (
1 + x−1

)
= −2x−2 6= 0

and so y3 is not a solution of (5).



Pseudo-Counter-Examples
Consider

y ′′ + 2y ′y = 0 (5)

(Note this is a non-linear ODE, so the Superposition Principle is
not applicable.) I claim both

y1 (x) = 1 , y2 (x) = x−1

are solutions of (5). Indeed

y ′′1 + 2y ′1y1 = 0 + 2(0) (1) = 0

y ′′2 + (y2)2 = +2x−3 + 2
(
−x−2

) (
x−1

)
= 0

Now consider the following linear combination of y1 and y2

y3 = y1 + y2 = 1 + x−1

We have

y ′′3 + 2y ′3y2 = −2x−3 + 2
(
−x−2

) (
1 + x−1

)
= −2x−2 6= 0

and so y3 is not a solution of (5).



Pseudo-Counter-Examples
Consider

y ′′ + 2y ′y = 0 (5)

(Note this is a non-linear ODE, so the Superposition Principle is
not applicable.) I claim both

y1 (x) = 1 , y2 (x) = x−1

are solutions of (5). Indeed

y ′′1 + 2y ′1y1 = 0 + 2(0) (1) = 0

y ′′2 + (y2)2 = +2x−3 + 2
(
−x−2

) (
x−1

)
= 0

Now consider the following linear combination of y1 and y2

y3 = y1 + y2 = 1 + x−1

We have

y ′′3 + 2y ′3y2 = −2x−3 + 2
(
−x−2

) (
1 + x−1

)
= −2x−2 6= 0

and so y3 is not a solution of (5).



Pseudo-Counter-Examples
Consider

y ′′ + 2y ′y = 0 (5)

(Note this is a non-linear ODE, so the Superposition Principle is
not applicable.) I claim both

y1 (x) = 1 , y2 (x) = x−1

are solutions of (5). Indeed

y ′′1 + 2y ′1y1 = 0 + 2(0) (1) = 0

y ′′2 + (y2)2 = +2x−3 + 2
(
−x−2

) (
x−1

)
= 0

Now consider the following linear combination of y1 and y2

y3 = y1 + y2 = 1 + x−1

We have

y ′′3 + 2y ′3y2 = −2x−3 + 2
(
−x−2

) (
1 + x−1

)
= −2x−2 6= 0

and so y3 is not a solution of (5).



Pseudo-Counter-Examples
Consider

y ′′ + 2y ′y = 0 (5)

(Note this is a non-linear ODE, so the Superposition Principle is
not applicable.) I claim both

y1 (x) = 1 , y2 (x) = x−1

are solutions of (5). Indeed

y ′′1 + 2y ′1y1 = 0 + 2(0) (1) = 0

y ′′2 + (y2)2 = +2x−3 + 2
(
−x−2

) (
x−1

)
= 0

Now consider the following linear combination of y1 and y2

y3 = y1 + y2 = 1 + x−1

We have

y ′′3 + 2y ′3y2 = −2x−3 + 2
(
−x−2

) (
1 + x−1

)
= −2x−2 6= 0

and so y3 is not a solution of (5).



Pseudo-Counter-Examples, Cont’d
Conclusion: The Superposition Principle does not hold for
nonlinear ODEs.

.

Nor does it hold for nonhomogeneous 2nd Order Linear ODEs.
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Remarks
Once we have two solutions y1(x) and y2(x) of a second order
linear homogeneous differential equation

y ′′ + p(x)y ′ + q(x)y = 0 (6)

the Superposition Principle allows us to construct an infinite set of
distinct solutions by setting

y(x) = c1y1(x) + c2y2(x) (7)

and letting the constants c1 and c2 run through the real numbers
R.
The following question then arises
Are all the solutions of (6) expressable in form (7) for some
choice of c1 and c2?
This will not always be the case; but when every solution of (6)
can be written as (7), we shall say that the two solutions y1 and y2
form a fundamental set of solutions if every solution of (6) can
be expressed in the form (7).
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The Completeness Theorem

The following theorem provides a simple way to check if a pair of
solutions is a fundamental set of solutions.

Theorem
Suppose y1 and y2 are two solutions of

y ′′ + p(x)y ′ + q(x)y = 0 (6)

that satisfy
y1(x)y ′2(x)− y ′1(x)y2(x) 6= 0 (8)

then every solution of (6) can be written in the form

y(x) = c1y1(x) + c2y2(x)

This theorem reduces to the problem of solving (6) completely, to
the task of finding two solutions, y1 and y2, for which (8) holds.
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Proof of the Completeness Theorem

Let y1 and y2 be two given solutions on an interval I and let Y be
any other solution on I . Choose a point xo ∈ I . From our the
Existence and Uniqueness Theorem, we know that there is only one
solution y(x) of (6) such that

y(xo) = Y0 ≡ Y (x0)
y ′(xo) = Y ′0 ≡ Y ′ (x0)

(9)

namely, Y (x).
Therefore if we can show that we can find numbers c1 and c2 such
that the

y(x) = c1y1(x) + c2y2(x)

(which is guaranteed to be a solution by the Superposition
Principle) satisfies the initial conditions (9), then we must have

Y (x) = c1y1(x) + c2y2(x).
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Proof of the Completeness Theorem, Cont’d

We now seek to find constants c1 and c2 so that these initial
conditions can be matched. We thus set

c1y1(xo) + c2y2(xo) = Yo

c1y
′
1(xo) + c2y

′
2(xo) = Y ′o .

(10)

This is just a series of two equations with two unknowns. Solving
the first equation for c1 yields

c1 =
Yo − c2y2(xo)

y1(xo)
. (11)

Plugging this into the second equation yields

Yo − c2y2(xo)

y1(xo)
y ′1(xo) + c2y

′
2(xo) = Y ′o

or

Yoy
′
1(xo)− c2y2(xo)y ′1(xo) + c2y1(xo)y ′2(xo) = y1(xo)Y ′o
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Proof of the Completeness Theorem, Cont’d

Solving this last equation for c2 yields

c2 =
y1(xo)Y ′o − y ′1(xo)Yo

y1(xo)y ′2(xo)− y ′1(xo)y2(xo)
(12)

Plugging this expression for c2 into (11) yields

c1 =
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y1(xo)y ′2(xo)− y ′1(xo)y2(xo)
. (13)

So long as the denominators on the RHS of (12) and (13) are
non-zero, we can thus find constants c1 and c2 such that an
arbitrary solution Y (x) and the solution y(x) = c1y1(x) + c2y2(x)
satisfy the same initial conditions And so by Uniqueness part of the
E&U Theorem

Y (x) = c1y1(x) + c2y2(x)
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The Wronskian

Definition
The expression

W (y1, y2) = y1(xo)y ′2(xo)− y ′1(xo)y2(xo)

is called the Wronskian of y1 and y2 and the condition

W (y1, y2) 6= 0

is called the Wronskian Condition.

Two solutions y1(x) and y2(x) satisfying the Wronksian Condition
form a fundamental set of solution. Sometimes, we’ll call two
solutions satisfying the Wronkskian Condition independent
solutions.
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Upshot: Solving 2nd Order, Linear, Homogeneous ODEs

To find all of the solutions of

y ′′ + p(x)y ′ + q(x)y = 0 (4)

it suffices to

1. Find, or even guess, two functions y1(x) and y2(x) that satisfy
the differential equation (4)

2. Check that y1 and y2 also satisfy the Wronskian Condition

0 6= W [y1, y2]

3. One can then write down the general solution to (4) as

y(x) = c1y1(x) + c2y2(x) (14)
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Upshot Cont’d: Solving 2nd Order Initial Value Problems

To solve an initial value problem of the form

y ′′ + p(x)y ′ + q(x)y = 0

y (x0) = y0

y ′ (x0) = y ′0

1. One first finds the general solution of the ODE (as outlined on
previous slide)

2. One then uses the initial conditions to deduce two equations
for the constants c1 and c2 appearing in the general solution.

3. Solving these equations for constants c1 and c2 identifies the
particular solution that satisfies the initial condition, and thus
solves the initial value problem.
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Example
Find the unique solution to

d2y

dx2
+ y = 0 (15)

satisfying

y(0) = 1

y ′(0) = 2

We saw in an earlier example, that both

y1(x) = cos(x) and y2(x) = sin(x)

satisfy the differential equation.
Let us check that their Wronskian does not vanish:

W (y1, y2) ≡ y1(x)y ′2(x)− y ′1(x)y2(x)
= cos(x) (cos(x))− (− sin(x)) sin(x)
= 1
6= 0 .
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Example, Cont’d

Good, since W [y1, y2] 6= 0, y1 and y2 will constitute a fundamental
set of solutions for (15)

The general solution of (15) is thus

y(x) = c1y1(x) + c2y2(x) = c1 cos(x) + c2 sin(x)

We now impose the initial conditions on the general solution:

1 = y (0) = c1 cos (0) + c2 sin (0) = c1 (1) + c2 (0) = c1

2 = y ′ (0) = −c1 sin (0) + c2 cos (0) = −c1 (0) + c2 (1) = c2

Thus, c1 = 1 and c2 = 2. And so the unique solution to the
original 2nd order initial value problem is

y (x) = cos (x) + 2 sin (x)
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Reduction of Order

The Completeness Theorem thus reduces to the problem of solving

y ′′ + p (x) y ′ + q (x) y = 0 (6)

to the problem of finding two independent solutions (i.e., a pair
y1, y2 of solutions satisfying W [y1, y2] 6= 0).

In fact, the main result of Tuesday’s lecture will reduced the
problem of solving (6) to that of finding a single solution y1 (x) .

Theorem
Suppose y1 (x) is a solution of (6). Then the function

y2 (x) ≡ y1 (x)

∫
1

(y1 (x))2
exp

[
−
∫

p (x) dx

]
dx

will be a second independent solution of (6).
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