Math 2233 - Lecture 10: Reduction of Order

Agenda

1. Solutions of 2nd Order, Homogeneous, Linear ODEs
» E&U Theorem
» Superposition Principle
» Completeness Theorem
The Wronskian Condition and Linear Algebra
Reduction of Order

Examples
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Constant Coefficients Case



2nd Order Homogeneous, Linear ODEs

Most General 2nd Order Linear ODE
a(x)y” + b(x)y’ + c(x)y = d(x)
2nd Order, Linear ODEs : Standard Form
Y+ p(x)y" + a(x)y = g(x)
Homogeneous 2nd Order, Linear ODEs : Standard Form

' +q(x)y’ + p(x)y =0



Fundamental Theorems

Theorem (Existence and Uniqueness Theorem)
So long as the functions p (x), q(x), and g (x) are continuous,
there exists one and only one solution of

Y'+p(x)y' +q(x)y=g(x) (1)
satisfying

y(x) = y
Vo) = % )



The Superposition Principle

Theorem (Superposition Principle)

If y1(x) and y» (x) are two solutions of
Y'+p(x)y +q(x)y=0
then any function of the form

y (x) = ay (x) + cy2 (x)

will also be a solution of (3).



The Completeness Theorem

Theorem (Completeness Theorem)
If y1 (x) and y» (x) are two solutions of

Y'+p(x)y +q(x)y=0 (3)
such that
07 Wiy, yo] (x) = y1 (x) y3 (x) = 1 (x) y2 (%) (5)

Then every solution of (3) can be written as

y (x) = a1 (x) + cay2 (%) (6)

(5) is called the Wronskian Condition.
(6) is thus the form of the general solution to (3).

Solutions y1, y» satisfying (5) are called a fundamental set of
solutions (or independent solutions) of (3).



Geometric Interpretation of the Wronskian Condition

Digression: Independent Vectors in the Plane
Two non-zero vectors A, B € R? are said to be independent if

B # )\A
(i.e., A and B are neither parallel or anti-parallel).

Fact
If A,B € R? are independent vectors, then every vector V € R?

can be expressed as
V=cqgA+cB
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Connection with the Wronskian Condition

Now recall the Wronskian Condition

0 # Wy, y2] (x) = y1 (x) y2 (x) = y1 (x) y2 (x)

Suppose this condition does not hold for two functions y; (x) and
ya (x); ie.,

y1(x)ya (%) = y1 (x) y2(x) =0 (5)
Then we can think of (5) as a differential equation for y» (x) (with
y1 (x) a given function). After dividing (5) by y1 (x)

/ .y]/_(X) 0

> n(x)

This is a first order linear ODE in the standard form
Y +P((x)y' =6(x)

with P (x) = 109 and G (x) = 0. So we can readily solve it.




Connection with the Wronskian Condition, Cont'd
Noting that

9 (inlys ())) =

exp { / P (x) dx]

— o[- [ £ (nba o ex

= exp[—In|y1 (x)]]

1 (x)

and so

C
v (x) = #(X)/,u(x)G(x)dx—i—'u(X)
)/



Connection with the Wronskian Condition, Cont'd

We have just proved

Lemma
If y1 (x) and y» (x) fail to satisfy the Wronskian condition, then

y2 (x) = (x)

for some constant \.



The analogy:

> Let A, B be vectors in the plane, so long as
B # \A
every vector V in the plane R? can be expressed as
V =cA+ B
» Let y1 (x), y2 (x) be two solutions of
Y'+p(x)y' +q(x)y=0 (*)
If y1(x) and y» (x) satisfy the Wronskian Condition, then
y2 (x) # A1 (x)
and every solution of (*) can be expressed as

y (x) = a1 (x) + cay2 (x)



Reduction of Order

Recall that the general solution of a second order homogeneous
linear differential equation

Yy +p(x)y" +q(x)y =0 (1)

is given by
y(x) = ayi(x) + caya(x) (2)

where y; and y» are any two solutions such that
0 # Wiy, y2](x) = y1(x)ya(x) — yi(x)y2(x) (3)

I'll now show you how to find the general solution of (1) starting
with just a single solution of (1).



Hypothesis:
Suppose we have one non-trivial solution y;(x) of (1) and suppose
there is another solution of the form

ya(x) = v(x)y1(x)

(Here we are making an “ansatz” for a second solution.) Then

Wiy, y2l = yivs —yiye
= yn(vy1+wi) —yi(wi)
= (}’1)2V/
£ 0

unless v/ = 0.

Thus, any solution we construct by multiplying our given solution
y1(x) by a non-constant function v(x) will give us another linearly
independent solution.



So let's look for a second solution indirectly, by finding a function
v(x) so that v(x)y1(x) is a solution.

Inserting y(x) = v(x)y1(x) into (1):

2
0 = #(Vh)iﬂf(x)gfxﬁ(vﬂ)ﬂLq/(Wl) /
vy +2vy1 + vyl + p(x)Viy1 + p(x) vy + quyn
= v(yy 4+ p(x)yi +qg(x)y1) + v'y1 4+ (21 + p(x)y1) v/

The first term vanishes since y; is a solution of (1), so v(x) must
satisfy

0=y1v"+ (251 + p(x)y1) v/ (4)

or 5 ,
V' 4 (p(x) + yy1> V=0 . (5)

1

Note that this is a first order linear ODE for v/(x).



So set
u(x) = Vv'(x) .

Then (5) becomes

u'+(p(x)+2;/1{((;))>u:0 :

The integrating factor for this 1st Order Linear ODE is

4l = oo /( +56)
oI
- /( (n s () ) 0 | [ 50 ]

— eplnbn (e | [p00 e
)

= (0ew | [ o

= exp

“



And so
1

C
u(x) = M(X)/u(x)w)dw e

~ 0+ C(yl(lx))zexp [—/p(x)dx}

u(x) = (yl(i))z exp [— /X p(t)dt} .

and so




Now recall from (6) that u(x) is the derivative of the factor v(x)
which we originally sought out to find. (recall y2(x) = v(x)y1(x)
will be our second solution)

So

dt—l—D
2exp[ (t’)dt’” +D

vix) = [*
I

o



Since we only need one 2 second solution, we can take C =1 and
D =0.

So given one solution y;(x) of (1), a second solution y»(x) of (1)
can be formed by computing

where

u(x) = (yl(i))z exp [— /X p(t)dt}

and then setting
y2(x) = v(x)y1(x)

The general solution of (1) is then

y(x) = an(x) + e2v(x)yi(x)



This technique for constructing the general solution from single
solution of a second order linear homogeneneous differential
equation is called Reduction of Order.

Summarizing

Theorem (Reduction of Order)
If y1(x) is a solution of

Yy +p(x)y" +q(x)y =0 (1)

then a 2nd independent solution y»(x) can be calculated via the
formula

y2(x) = y1(x) /X 0/1(15))2 exp [— /S p(t)dt] ds

Once y» has been calculated, the general solution to (1) can be
written

y(x) = ayi(x) + cya(x)



Example 1

yi(x) =e"

is one solution of

y'+2y'+y=0
Find another linearly independent solution and then write down the

general solution.
Well, p(x) =2, so

u(x) = ghem [~ [ p(t)dt

e,% exp [—2x]
e2xe—2x

=1

v(x):/xu(t)dt:/xdt:x.

So



Example 1, Cont'd

Thus,
X

yo(x) = v(x)y1(x) = xe™

and so the general solution to the original ODE will be

X

y(x) = ce ™ + cxe”



Example 2

yi1(x) = x

is a solution of
x2y" +2xy' =2y =0

This time we'll use the Reduction of Order formula

y2(x) =wn (X)/(yl(lx))2e><p {—/p(x)dx} dx

(where I'm being a bit sloppy with respect to the variables of
integration).
Putting the DE in standard form

we see



We can now calculate a second solution

() = n() [ e - [ peod ax
- [ Lo [2a] o
- x/ L exp[=21n [x]] dx
_ /X
_ X/x

()
1
3

—2



The general solution to the original differential equation is thus

y(x) = ay )+ ay(x)

(5)
= X + Co —§X

= ce X+ ox?

In the last line, the constant factor of —% has been “absorbed”
into the arbitrary constant ¢, (for the sake of tidyness).



Second Order Linear Equations with Constant Coefficients
We are now ready to actually solve some linear ODE’s of degree 2
from scratch.

We shall begin with differential equations of a particularly simple
type; equations of the form

ay” + by +cy =0 9)

where a, b and ¢ are constants.

A clue as to how one might construct a solution to (9) comes from
the observation that (9) implies that y”, y’ and y are related to
one another by multiplicative constants.

But this is a property of exponential functions; i.e., a functions of
the form

y(x) =™ (10)
have the property that

yl _ )\e)\x — )\y and y// — )\2eAX — >\2y

We will therefore look for solutions of (9) having the form (10).



Constant Coefficients Case, Cont'd

Plugging (10) into (9) yields

0 = a\2e™ + bre™ + ce™ = (a)\2 + bA + ) e

Since the exponential function e

must have

never vanishes (for finite x) we

aN’+br+c=0

Equation (11) is called the characteristic equation for (9). Any
number X satisfying the characteristic equation will give us a
solution y(x) = e of the orginal differential equation (9).

Now because (11) is a quadratic equation we can employ the
Quadratic Formula to find all of its roots:

_ —b++Vb?—4ac

aN +b\+c=0 = A
2a




However, a root A of (11) need not be a real number.

We shall postpone until next week the case when the roots of (11)
are complex numbers.

For simplicity, and just for today, we'll assume that v/ b? — 4ac is a
positive real number and so

A _ —b+Vb%?—4ac

+ = 2a

A _ —b—Vb?2—4ac
- 2a

are distinct real roots of (11). Thus,
nx) = et~
vo(x) = e~

will both be solutions of (9).
Note that

Wy, 2] (x) = (e*”) (e/\—X), _ <eA+x>' (e/\_x>
= ()\_ _ )\+) e(>\++)\,)x

£ 0



Constant Coefficients Case, Cont'd

And so the solutions y; = e™* and y» = e

fundamental set of solutions.
The general solution to

A=x will form a

ay” +by +cy=0

will thus be
y(x) = c.e™* + e

A_x



Method for Constant Coefficients Case

ay” + by’ +cy=0 (12)

1. Substitute “trial solution” y (x) = e* into (9).
2. Divide result by e* to get the characteristic equation for

(9)
aN +brA+c=0 (13)
3. Solve (13) either by factoring the LHS or via the Quadratic
Formula
A —b+ Vb% — 4ac ) —b+ Vb% — 4ac
+ = ) - =
2a 2a

4. So long as b? — 4ac > 0, the roots A+ and A_ will be distinct
real numbers, and the functions y; = e*+* and y» = e*~* will
form a fundamental set of solutions. The general solution will

then be

y(x) = ce?* 4 et



What if b*> — 4ac < 07

» If b> — 4ac =0, then
A=A = yi1(x)=y2(x) = only1independent
solution
We need two independent solutions for to write down the
general solution.

» If b> — 4ac < 0, then Ay are complex numbers. What is e
when A € C?

Ax

We'll resolve these two issues in the next lecture.



Example 3

y'+3y' +2y =0
Setting y(x) = e and plugging into the differential equation we
get
0 = XM +3xe™ +2eN
= M (N +31+2)
= eMA+1) (A +2)

AX

Since e™* never vanishes for any finite x, we must have

A=-1 o A=-2

We thus find two distinct solutions

—X

—2x

nx) = e
v(x) = e



Example 3, Cont'd

Note that

w [)/17)’2] =

(
= (e7) (-2e7) = (=) (e7)
(

£ 0

2

and so y1(x) = e ™ and y»(x) = e~* are independent solutions.

The general solution is thus

y(x) = cre™™ + e *



