
Math 2233 - Lecture 10: Reduction of Order
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2nd Order Homogeneous, Linear ODEs

Most General 2nd Order Linear ODE

a(x)y ′′ + b(x)y ′ + c(x)y = d(x)

2nd Order, Linear ODEs : Standard Form

y ′′ + p(x)y ′ + q(x)y = g(x)

Homogeneous 2nd Order, Linear ODEs : Standard Form

y ′′ + q(x)y ′ + p(x)y = 0



Fundamental Theorems

Theorem (Existence and Uniqueness Theorem)

So long as the functions p (x), q (x), and g (x) are continuous,
there exists one and only one solution of

y ′′ + p (x) y ′ + q (x) y = g (x) (1)

satisfying
y (x0) = y0
y ′ (x0) = y ′0

(2)



The Superposition Principle

Theorem (Superposition Principle)

If y1 (x) and y2 (x) are two solutions of

y ′′ + p (x) y ′ + q (x) y = 0 (3)

then any function of the form

y (x) = c1y1 (x) + c2y2 (x) (4)

will also be a solution of (3).



The Completeness Theorem

Theorem (Completeness Theorem)

If y1 (x) and y2 (x) are two solutions of

y ′′ + p (x) y ′ + q (x) y = 0 (3)

such that

0 6= W [y1, y2] (x) ≡ y1 (x) y ′2 (x)− y ′1 (x) y2 (x) (5)

Then every solution of (3) can be written as

y (x) = c1y1 (x) + c2y2 (x) (6)

(5) is called the Wronskian Condition.
(6) is thus the form of the general solution to (3).

Solutions y1, y2 satisfying (5) are called a fundamental set of
solutions (or independent solutions) of (3).



Geometric Interpretation of the Wronskian Condition
Digression: Independent Vectors in the Plane
Two non-zero vectors A,B ∈ R2 are said to be independent if

B 6= λA

(i.e., A and B are neither parallel or anti-parallel).

Fact
If A,B ∈ R2 are independent vectors, then every vector V ∈ R2

can be expressed as
V = c1A + c2B
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Connection with the Wronskian Condition
Now recall the Wronskian Condition

0 6= W [y1, y2] (x) = y1 (x) y ′2 (x)− y ′1 (x) y2 (x)

Suppose this condition does not hold for two functions y1 (x) and
y2 (x); i.e.,

y1 (x) y ′2 (x)− y ′1 (x) y2 (x) = 0 (5)

Then we can think of (5) as a differential equation for y2 (x) (with
y1 (x) a given function). After dividing (5) by y1 (x)

y ′2 −
y ′1 (x)

y1 (x)
y2 = 0

This is a first order linear ODE in the standard form

y ′ + P (x) y ′ = G (x)

with P (x) =
y ′1(x)
y1(x)

and G (x) = 0. So we can readily solve it.



Connection with the Wronskian Condition, Cont’d
Noting that

d

dx
(ln |y1 (x)|) =

1

y1 (x)
y ′1 (x) = −P (x)

µ (x) = exp

[∫
P (x) dx

]
= exp

[
−
∫

d

dx
(ln |y1 (x)|) dx

]
= exp [− ln |y1 (x)|]

=
1

y1 (x)

and so

y2 (x) =
1

µ (x)

∫
µ (x)G (x) dx +

C

µ (x)

= y1 (x)

∫
1

y1 (x)
(0) dx + Cy1 (x)

= 0 + Cy1 (x)



Connection with the Wronskian Condition, Cont’d

We have just proved

Lemma
If y1 (x) and y2 (x) fail to satisfy the Wronskian condition, then

y2 (x) = λy1 (x)

for some constant λ.



The analogy:
I Let A,B be vectors in the plane, so long as

B 6= λA

every vector V in the plane R2 can be expressed as

V = c1A + c2B

I Let y1 (x), y2 (x) be two solutions of

y ′′ + p (x) y ′ + q (x) y = 0 (*)

If y1 (x) and y2 (x) satisfy the Wronskian Condition, then

y2 (x) 6= λy1 (x)

and every solution of (*) can be expressed as

y (x) = c1y1 (x) + c2y2 (x)



Reduction of Order

Recall that the general solution of a second order homogeneous
linear differential equation

y ′′ + p(x)y ′ + q(x)y = 0 (1)

is given by
y(x) = c1y1(x) + c2y2(x) (2)

where y1 and y2 are any two solutions such that

0 6= W [y1, y2](x) = y1(x)y ′2(x)− y ′1(x)y2(x) (3)

I’ll now show you how to find the general solution of (1) starting
with just a single solution of (1).



Hypothesis:
Suppose we have one non-trivial solution y1(x) of (1) and suppose
there is another solution of the form

y2(x) = v(x)y1(x) .

(Here we are making an “ansatz” for a second solution.) Then

W [y1, y2] = y1y
′
2 − y ′1y2

= y1(v ′y1 + vy ′1)− y ′1(vy1)
= (y1)2v ′

6= 0

unless v ′ = 0.
Thus, any solution we construct by multiplying our given solution
y1(x) by a non-constant function v(x) will give us another linearly
independent solution.



So let’s look for a second solution indirectly, by finding a function
v(x) so that v(x)y1(x) is a solution.
Inserting y(x) = v(x)y1(x) into (1):

0 = d2

dx2
(vy1) + p(x) d

dx (vy1) + q (vy1)
= v ′′y1 + 2v ′y ′1 + vy ′′1 + p(x)v ′y1 + p(x)vy ′1 + qvy1
= v (y ′′1 + p(x)y ′1 + q(x)y1) + v ′′y1 + (2y ′1 + p(x)y1) v ′

The first term vanishes since y1 is a solution of (1), so v(x) must
satisfy

0 = y1v
′′ +

(
2y ′1 + p(x)y1

)
v ′ (4)

or

v ′′ +

(
p(x) +

2y ′1
y1

)
v ′ = 0 . (5)

Note that this is a first order linear ODE for v ′(x).



So set
u(x) = v ′(x) . (6)

Then (5) becomes

u′ +

(
p(x) +

2y ′1(x)

y1(x)

)
u = 0 . (7)

The integrating factor for this 1st Order Linear ODE is

µ (x) = exp

[∫ (
p (x) +

2y ′1 (x)

y1 (x)

)
dx

]
= exp

[∫
2y ′1 (x)

y1 (x)

]
exp

[∫
p (x) dx

]
= exp

[
2

∫ (
d

dx
(ln |y1 (x)|)

)
dx

]
exp

[∫
p (x) dx

]
= exp [2 ln [y1 (x)]] exp

[∫
p (x) dx

]
= (y1 (x))2 exp

[∫
p (x) dx

]



And so

u (x) =
1

µ (x)

∫
µ (x) (0) dx +

C

µ (x)

= 0 + C
1

(y1 (x))2
exp

[
−
∫

p (x) dx

]
and so

u(x) =
C

(y1(x))2
exp

[
−
∫ x

p(t)dt

]
.



Now recall from (6) that u(x) is the derivative of the factor v(x)
which we originally sought out to find. (recall y2(x) = v(x)y1(x)
will be our second solution)
So

v(x) =
∫ x

u(t) dt + D

=
∫ x
[

C
(y1(t))

2 exp
[
−
∫ t

p(t ′)dt ′
]]

+ D



Since we only need one 2 second solution, we can take C = 1 and
D = 0.
So given one solution y1(x) of (1), a second solution y2(x) of (1)
can be formed by computing

v(x) =

∫ x

u(t) dt

where

u(x) =
1

(y1(x))2
exp

[
−
∫ x

p(t)dt

]
and then setting

y2(x) = v(x)y1(x) .

The general solution of (1) is then

y(x) = c1y1(x) + c2v(x)y1(x) .



This technique for constructing the general solution from single
solution of a second order linear homogeneneous differential
equation is called Reduction of Order.
Summarizing

Theorem (Reduction of Order)

If y1(x) is a solution of

y ′′ + p(x)y ′ + q(x)y = 0 (1)

then a 2nd independent solution y2(x) can be calculated via the
formula

y2(x) = y1(x)

∫ x 1

(y1(s))2
exp

[
−
∫ s

p(t)dt

]
ds

Once y2 has been calculated, the general solution to (1) can be
written

y(x) = c1y1(x) + c2y2(x)



Example 1

y1(x) = e−x

is one solution of

y ′′ + 2y ′ + y = 0 .

Find another linearly independent solution and then write down the
general solution.
Well, p(x) = 2, so

u(x) = 1
(y1(x))

2 exp
[
−
∫ x

p(t)dt
]

= 1
e−2x exp [−2x ]

= e2xe−2x

= 1

So

v(x) =

∫ x

u(t) dt =

∫ x

dt = x .



Example 1, Cont’d

Thus,
y2(x) = v(x)y1(x) = xe−x .

and so the general solution to the original ODE will be

y(x) = c1e
−x + c2xe

−x



Example 2

y1(x) = x

is a solution of
x2y ′′ + 2xy ′ − 2y = 0 .

This time we’ll use the Reduction of Order formula

y2 (x) = y1 (x)

∫
1

(y1 (x))2
exp

[
−
∫

p (x) dx

]
dx

(where I’m being a bit sloppy with respect to the variables of
integration).
Putting the DE in standard form

y ′′ +
2

x
y ′ − 2

x2
y = 0

we see

p (x) =
2

x
, q (x) = − 2

x2



We can now calculate a second solution

y2 (x) = y1 (x)

∫
1

(y1 (x))2
exp

[
−
∫

p (x) dx

]
dx

= x

∫
1

x2
exp

[
−
∫

2

x
dx

]
dx

= x

∫
1

x2
exp [−2 ln |x |] dx

= x

∫
1

x2
x−2dx

= x

∫
x−4dx

= x

(
−1

3
x−3

)
= −1

3
x−2



The general solution to the original differential equation is thus

y (x) = c1y1 (x) + c2y2 (x)

= c1x + c2

(
−1

3
x−2

)
= c1e

−x + c2x
−2

In the last line, the constant factor of −1
3 has been “absorbed”

into the arbitrary constant c2 (for the sake of tidyness).



Second Order Linear Equations with Constant Coefficients
We are now ready to actually solve some linear ODE’s of degree 2
from scratch.
We shall begin with differential equations of a particularly simple
type; equations of the form

ay ′′ + by ′ + cy = 0 (9)

where a, b and c are constants.
A clue as to how one might construct a solution to (9) comes from
the observation that (9) implies that y ′′, y ′ and y are related to
one another by multiplicative constants.
But this is a property of exponential functions; i.e., a functions of
the form

y(x) = eλx (10)

have the property that

y ′ = λeλx = λy and y ′′ = λ2eλx = λ2y

We will therefore look for solutions of (9) having the form (10).



Constant Coefficients Case, Cont’d

Plugging (10) into (9) yields

0 = aλ2eλx + bλeλx + ceλx =
(
aλ2 + bλ+ c

)
eλx .

Since the exponential function eλx never vanishes (for finite x) we
must have

aλ2 + bλ+ c = 0 .

Equation (11) is called the characteristic equation for (9). Any
number λ satisfying the characteristic equation will give us a
solution y(x) = eλx of the orginal differential equation (9).
Now because (11) is a quadratic equation we can employ the
Quadratic Formula to find all of its roots:

aλ2 + bλ+ c = 0 ⇒ λ =
−b ±

√
b2 − 4ac

2a
.



However, a root λ of (11) need not be a real number.
We shall postpone until next week the case when the roots of (11)
are complex numbers.
For simplicity, and just for today, we’ll assume that

√
b2 − 4ac is a

positive real number and so

λ+ = −b+
√
b2−4ac
2a

λ− = −b−
√
b2−4ac
2a

are distinct real roots of (11). Thus,

y1(x) = eλ+x

y2(x) = eλ−x

will both be solutions of (9).
Note that

W [y1, y2] (x) =
(
eλ+x

)(
eλ−x

)′
−
(
eλ+x

)′ (
eλ−x

)
= (λ− − λ+) e(λ++λ−)x

6= 0



Constant Coefficients Case, Cont’d

And so the solutions y1 = eλ+x and y2 = eλ−x will form a
fundamental set of solutions.
The general solution to

ay ′′ + by ′ + cy = 0 (9)

will thus be
y(x) = c1e

λ+x + c2e
λ−x



Method for Constant Coefficients Case

ay ′′ + by ′ + cy = 0 (12)

1. Substitute “trial solution” y (x) = eλx into (9).

2. Divide result by eλx to get the characteristic equation for
(9)

aλ2 + bλ+ c = 0 (13)

3. Solve (13) either by factoring the LHS or via the Quadratic
Formula

λ+ =
−b +

√
b2 − 4ac

2a
, λ− =

−b +
√
b2 − 4ac

2a

4. So long as b2 − 4ac > 0, the roots λ+ and λ− will be distinct
real numbers, and the functions y1 = eλ+x and y2 = eλ−x will
form a fundamental set of solutions. The general solution will
then be

y (x) = c1e
λ+x + c2e

λ−x



What if b2 − 4ac ≤ 0?

I If b2 − 4ac = 0, then
λ+ = λ− ⇒ y1 (x) = y2 (x) ⇒ only 1 independent
solution
We need two independent solutions for to write down the
general solution.

I If b2 − 4ac < 0, then λ± are complex numbers. What is eλx

when λ ∈ C?

We’ll resolve these two issues in the next lecture.



Example 3

y ′′ + 3y ′ + 2y = 0 .

Setting y(x) = eλx and plugging into the differential equation we
get

0 = λ2eλx + 3λeλx + 2eλx

= eλx
(
λ2 + 3λ+ 2

)
= eλx (λ+ 1) (λ+ 2)

Since eλx never vanishes for any finite x , we must have

λ = −1 or λ = −2 .

We thus find two distinct solutions

y1(x) = e−x

y2(x) = e−2x .



Example 3, Cont’d

Note that

W [y1, y2] =
(
e−x

)( d

dx
e−2x

)
−
(
d

dx
e−x

)(
e−2x

)
=

(
e−x

) (
−2e−2x

)
−
(
−e−x

) (
e−2x

)
= (−2 + 1) e−3x

6= 0

and so y1(x) = e−x and y2(x) = e−2x are independent solutions.
The general solution is thus

y(x) = c1e
−x + c2e

−2x .


