
Math 2233 - Lecture 11 : Homogeneous Linear ODEs with
Constant Coefficients

Agenda:

1. Homogeneous Linear ODEs with Constant Coefficients

2. Difficulties with Roots of the Characteristic Equation
I What to do when the Characteristic Equation has only one

solution
I What to do when the Characteristic Equation has only

complex numbers as solutions

3. Summary of the 3 basic cases

4. Examples



Solutions of Homogeneous ODEs

Recall that the general solution of a 2nd order linear
homogeneous differential equation

L[y ] = y ′′ + p(x)y ′ + q(x)y = 0 (1)

is always a linear combination

y(x) = c1y1(x) + c2y2(x) (2)

of two linearly independent solutions y1 and y2, Here
“independent” means

0 6= W [y1, y2] (x) ≡ y1(x)y ′2(x)− y ′1(x)y2(x) (3)
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Homogeneous Equations with Constant Coefficients

Let us now return to the special case of a homogeneous second
order linear differential equation with constant coefficients; i.e.,
differential equations of the form

ay ′′ + by ′ + cy = 0 (4)

where a, b and c are constants.
We saw in the last lecture that one can construct solutions of the
differential equation (4) by looking for solutions of the form

y(x) = eλx . (*)

Let us recall that construction. Plugging (*) into (4) yields

0 = aλ2eλx + bλeλx + ceλx =
(
aλ2 + bλ+ c

)
eλx .

Since the exponential function eλx never vanishes we must have

aλ2 + bλ+ c = 0 . (5)
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The Characteristic Equation

The equation
aλ2 + bλ+ c = 0 . (5)

is called the characteristic equation (“auxiliary equation” in the
text) for the differential equation

ay ′′ + by ′ + cy = 0 (4)

Each solution λ of the characteristic equation can be used to
construct an exponential function y(x) = eλx that will be a
solution of (4). Now because (5) is a quadratic equation, we can
employ the Quadratic Formula to find all of its roots:

aλ2 + bλ+ c = 0 ⇒ λ = λ± ≡
−b ±

√
b2 − 4ac

2a

Using the two roots λ+ and λ− of the characteristic equation, we
can now write down two associated solutions of (4)

y1(x) = eλ+x , y2(x) = eλ−x
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But are y1(x) and y2(x) are independent solutions of (4)?

Well, if
0 6= W (y1, y2)

= y1y
′
2 − y ′1y2

= λ−e
λ+xeλ−x − λ+eλ+xeλ−x

= (λ− − λ+) e(λ++λ−)x

=
√
b2−4ac

a e−
b
a
x

And so we can conclude that if b2 − 4ac 6= 0, then the roots (6)
furnish two linearly independent solutions of (4)

The general solution will thus be

y(x) = c1e
λ+x + c2e

λ−x
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Summarizing:

ay ′′ + by ′ + c = 0 (constant coeff. ODE)

⇓ (try looking for solutions of the form eλx)

aλ2 + bλ+ c = 0 (Ch. Eq)

⇓ (Quadratic formula)

λ = λ± =
−b ±

√
b2 − 4ac

2a
(roots of the Ch. Eq.)

⇓
y1 (x) = eλ+x , y2 = eλ−x (indep. solutions if λ+ 6= λ−)

⇓
y (x) = c1e

λ+x + c2e
λ−x (general solution of the ODE)
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Caveats to this Procedure

Looking more closely at our formula for the roots of the
characteristic equation

λ± =
−b ±

√
b2 − 4ac

2a
(*)

we see that this procedure runs into some obstacles if b2− 4ac ≤ 0
I If b2 − 4ac = 0, then λ+ = λ− and so our two solutions

y1(x) = eλ+x and y2(x) = eλ−x coincide. So in this case, we
only get 1 independent solution.
But we need 2 independent solutions in order to write down
the general solution of (4). What do we do to complete the
solution?

I If b2 − 4ac < 0, then to apply the formula (*) above, we have
to take the square root of a negative number.
This is going to mean that the numbers λ± kicked out by the
Quadratic Formula are going to be complex numbers.
What is eλx if λ is a complex number?

Let’s consider, in detail now, the various possibilities, case-by-case.
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Case (i): b2 − 4ac > 0

Because b2 − 4ac is positive,
√
b2 − 4ac is a positive real number

and

λ+ = −b+
√
b2−4ac
2a

λ− = −b−
√
b2−4ac
2a

(6)

are distinct real roots of (5). Thus,

y1 = eλ+x

y2 = eλ−x

will be independent solutions of (4).
The general solution will be

y(x) = c1e
λ+x + c2e

λ−x

(No caveats in this case.)



Case (i): b2 − 4ac > 0

Because b2 − 4ac is positive,
√
b2 − 4ac is a positive real number

and
λ+ = −b+

√
b2−4ac
2a

λ− = −b−
√
b2−4ac
2a

(6)

are distinct real roots of (5).

Thus,

y1 = eλ+x

y2 = eλ−x

will be independent solutions of (4).
The general solution will be

y(x) = c1e
λ+x + c2e

λ−x

(No caveats in this case.)



Case (i): b2 − 4ac > 0

Because b2 − 4ac is positive,
√
b2 − 4ac is a positive real number

and
λ+ = −b+

√
b2−4ac
2a

λ− = −b−
√
b2−4ac
2a

(6)

are distinct real roots of (5). Thus,

y1 = eλ+x

y2 = eλ−x

will be independent solutions of (4).
The general solution will be

y(x) = c1e
λ+x + c2e

λ−x

(No caveats in this case.)



Case (i): b2 − 4ac > 0

Because b2 − 4ac is positive,
√
b2 − 4ac is a positive real number

and
λ+ = −b+

√
b2−4ac
2a

λ− = −b−
√
b2−4ac
2a

(6)

are distinct real roots of (5). Thus,

y1 = eλ+x

y2 = eλ−x

will be independent solutions of (4).
The general solution will be

y(x) = c1e
λ+x + c2e

λ−x

(No caveats in this case.)



Case (i): b2 − 4ac > 0

Because b2 − 4ac is positive,
√
b2 − 4ac is a positive real number

and
λ+ = −b+

√
b2−4ac
2a

λ− = −b−
√
b2−4ac
2a

(6)

are distinct real roots of (5). Thus,

y1 = eλ+x

y2 = eλ−x

will be independent solutions of (4).

The general solution will be

y(x) = c1e
λ+x + c2e

λ−x

(No caveats in this case.)



Case (i): b2 − 4ac > 0

Because b2 − 4ac is positive,
√
b2 − 4ac is a positive real number

and
λ+ = −b+

√
b2−4ac
2a

λ− = −b−
√
b2−4ac
2a

(6)

are distinct real roots of (5). Thus,

y1 = eλ+x

y2 = eλ−x

will be independent solutions of (4).
The general solution will be

y(x) = c1e
λ+x + c2e

λ−x

(No caveats in this case.)



Case (i): b2 − 4ac > 0

Because b2 − 4ac is positive,
√
b2 − 4ac is a positive real number

and
λ+ = −b+

√
b2−4ac
2a

λ− = −b−
√
b2−4ac
2a

(6)

are distinct real roots of (5). Thus,

y1 = eλ+x

y2 = eλ−x

will be independent solutions of (4).
The general solution will be

y(x) = c1e
λ+x + c2e

λ−x

(No caveats in this case.)



Case (i): b2 − 4ac > 0

Because b2 − 4ac is positive,
√
b2 − 4ac is a positive real number

and
λ+ = −b+

√
b2−4ac
2a

λ− = −b−
√
b2−4ac
2a

(6)

are distinct real roots of (5). Thus,

y1 = eλ+x

y2 = eλ−x

will be independent solutions of (4).
The general solution will be

y(x) = c1e
λ+x + c2e

λ−x

(No caveats in this case.)



Case (ii): b2 − 4ac = 0

If b2 − 4ac = 0, however, the characteristic equation only gives us
one distinct root; because in this case

λ+ =
−b +

√
b2 − 4ac

2a
= − b

2a
=
−b −

√
b2 − 4ac

2a
= λ−

and so

y1 (x) = e−
b
2a
x = y2 (x) ⇒ W [y1, y2] (x) = 0

So we have not yet found two independent solutions.

To find a second fundamental solution, we can use the method of
Reduction of Order.
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Using Reduction of Order to find a 2nd solution

Theorem (Reduction of Order)

If y1 (x) is a solution of y ′′ + p (x) y ′ + q (x) y = 0, a second
independent solution can be calculated as

y2(x) = y1(x)

∫ x 1

(y1(s))2
exp

[∫ s

−p(t)dt

]
ds

In the case at hand, the ODE in standard form is

y ′′ +
b

a
y ′ +

c

a
y = 0

and y1(x) = e−
b
2a
x is the solution corresponding to the root

λ = − b
2a . In the next slide, we’ll plug in y1(x) = e−

b
2a
x and

p(x) = −b
a into the Reduction of Order formula to calculate a

second independent solution.
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x

= xy1(x)
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Summary of Case (ii) where b2 − 4ac = 0

When b2 − 4a = 0

I we only have one root of the characterisitic equation

I so we obtain only 1 independent exponential solution

y1(x) = e−
b
2a
x of the original ODE.

I To get a second independent solution, y2(x), we must use
Reduction of Order.

I However, in the case when b2 − 4ac = 0, the Reduction of
Order calculation always produces a second solution of the
form

y2 (x) = xy1(x) = xe−
b
2a
x

Thus, when b2 − 4ac = 0, the general solution will be

y(x) = c1e
− b

2a
x + c2xe

− b
2a
x
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The Main Question for Case (iii)

So how do we use the complex roots λ± = α± iβ of the
characteristic equation to get functions that are solutions of the
differential equations?

We’ll answer this by working out how to make sense of functions of
the form

y(x) = e(α+iβ)x
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So what is eax+iβx?

We will now address the problem of ascribing some calculable
meaning to

eαx+iβx

as a function of x .
Let’s begin by recalling a little bit about the complex numbers. A
complex number z is an expression of the form

z = x + iy (*)

where x and y are ordinary (real) numbers, and i =
√
−1 has the

property that i2 = −1

The real number x on the R.H.S. of (*) is called the real part of z
(often written x = Re (z) and the real number y is called the
imaginary part of z (denoted Im (z)). Thus, we specify complex
numbers by prescribing their real and imaginary parts.
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Polynomial Functions of a Complex Variable

The simple rule i2 = −1 is all we need in order to carry out
complex arithemetic. For example, to multiply two complex
numbers z = a + ib, and z ′ = c + id

zz ′ = (a + ib) (c + id) = ac+ibd+iad+i2bd = (ac − bd)+i (ad + bc)

In this way, we view complex arithmetic as an extension of the
ordinary arithmetic of the real numbers.
Having a notion of complex arithmetic, we can now convert a
polynomial p (x) in a real variable x into a complex-valued
function. If

p (x) = anx
n + · · ·+ a1x + a0

then

p (z) = the complex number found by evaluating

anz
n + · · ·+ a1z + a0 using complex arithmetic
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p (z) = the complex number found by evaluating

anz
n + · · ·+ a1z + a0 using complex arithmetic



Example: Converting a polynomial to a complex function

Let

p (x) = x2 − 1

⇒ p (z) = z2 − 1

⇒ p (x + iy) = (x + iy)2 − 1

=
(
x2 − y2 − 1

)
+ i2xy
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Complex Exponential Functions

Okay, so any polynomial function p (x) can be converted into a
function of a complex variable z taking values in C.

What about exponential functions of the form e(α+iβ)x?

Well, what we’ll do is try to think of such functions as kinda like
polynomials.

We’ll use the idea of Taylor expansions to make such an
interpretation plausible.
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The Taylor Expansion of ex

Recall from Calculus II, the idea of Taylor expansions. Any nice
differentiable function f (x) has a Taylor series about x = 0

f (x) = f (0)+f ′ (0) x+
f ′′ (0)

2!
x2+

f
′′′

(0)

3!
x3+ · · ·+ f (n) (0)

n!
xn+ · · ·

Note how we can interpret the right hand side of the Taylor
expansion as a sort of infinite polynomial. This will be the key
idea here.
Let’s look at the Taylor expansion of the exponential function.
This is easy to compute since

d

dx
ex = ex ⇒ dn

dxn
ex = ex ⇒ dn

dxn
ex
∣∣∣∣
x=0

= 1 for all n
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The Taylor Expansion of ex , Cont’d

Thus,

ex = 1 + x +
x2

2!
+

x3

3!
+ · · ·+ xn

n!
+ · · ·

This suggests setting

ez ≡ 1 + z +
z2

2!
+

z3

3!
+ · · ·+ zn

n!
+ · · ·

And this works very well.
In fact, using this definition of ez , one arrives at a function of a
complex variable z that retains all of the nice properties of the
usual exponential function.
In particular

ez+z ′ = ezez
′
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Now let’s look at ez as ex+iy . We have

ex+iy = exe iy

Now the factor ex is just the exponential function of the real
variable x . The mysterious part is the purely imaginary exponential
factor e iy . So let’s look more closely at that

e iy = 1 + (iy) +
(iy)2

2!
+

(iy)3

3!
+

(iy)4

4!
+ · · · (*)

Now because

i0 = 1

i1 = i

i2 = −1

i3 = i2 (i) = −i
i4 =

(
i2
) (

i2
)

= (−1) (−1) = 1

we see that powers of i end up being reducible to either ±1 or ±i .
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In fact, the even powers of i will always be ±1 and the odd powers
of i will be ±i .

This then allows us to split the right hand side of
(*) into even powered terms that are purely real, and the odd
powers that will be purely imaginary.
One finds

e iy =

(
1− y2

2!
+

y4

4!
+ · · ·

)
+ i

(
y − y3

3!
+

y5

5!
+ · · ·

)
And here a miracle occurs. It turns out the Taylor expansion of the
cosine function is

cos (y) =

(
1− y2

2!
+

y4

4!
+ · · ·

)
and the Taylor expansion of the sine function is

sin (y) = y − y3

3!
+

y5

5!
+ · · ·
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Making these identifications, we then have

Theorem (The Euler Formula)

e iy = cos (y) + i sin (y)

Now you can compute, for example, e3i on your calculator. It will
be

e3i = cos (3) + i sin (3)

We can also compute ez = ex+iy as

ex+iy = exe iy = ex cos (y) + iex sin (y) .

And we can compute e(α+iβ)x as

e(α+iβ)x = eαxe iβx = eαx cos (βx) + ieαx sin (βx)
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Returning to Case (iii): ay ′′ + by ′ + cy = 0 with
b2 − 4ac < 0

The solutions of the characteristic equation are complex numbers

λ± =
−b ± i

√
4ac − b2

2a

We’ll write this as
λ± = α± iβ

where

α =
−b
2a

, β =

√
4ac − b2

2a

The corresponding solutions to the ODE will be of the form

ỹ1 (x) = e(α+iβ)x = eαx cos (βx) + ieαx sin (βx)

ỹ2 (x) = e(α−iβ)x = eαx cos (βx) + ieαx sin (−βx)
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Constructing Real-Valued Solutions

Using the Superposition Principle, we can take linear combinations
of these two solutions to produce more solutions; in fact, solutions
that allow us to completely avoid using complex numbers.
Set

y1 (x) ≡ 1

2
ỹ1 (x) +

1

2
ỹ2 (x)

=
1

2
eαx (cos (x) + cos (x)) + i

1

2
eαx (sin (βx) + sin (−βx))

= eαx cos (x) +
i

2
eαx (sin (βx)− sin (βx))

= eax cos (x)

where in the third step we used the fact that sin (x) is an odd
function of x

sin (−x) = − sin (x) for all x
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ỹ2 (x)

=
1

2
eαx (cos (x) + cos (x)) + i

1

2
eαx (sin (βx) + sin (−βx))

= eαx cos (x) +
i

2
eαx (sin (βx)− sin (βx))

= eax cos (x)

where in the third step we used the fact that sin (x) is an odd
function of x

sin (−x) = − sin (x) for all x



Constructing Real-Valued Solutions

Using the Superposition Principle, we can take linear combinations
of these two solutions to produce more solutions; in fact, solutions
that allow us to completely avoid using complex numbers.
Set

y1 (x) ≡ 1

2
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Similarly, we set

y2 (x) ≡ 1

2i
ỹ1 (x)− 1

2i
ỹ2 (x)

=
eαx

2i
(cos (βx) + i sin (βx)− cos (βx)− i sin (−βx))

=
eαx

2i
(0 + 2i sin (βx))

= eαx sin (βx)

Thus, we have obtained from our two complex valued solutions,
two independent real valued solutions.
We will adopt these two real-valued solutions as our fundamental
solutions to the original differential equation.
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Summary: Case (iii) where b2 − 4ac < 0

We have thus seen that when b2 − 4ac < 0, the solutions to the
characteristic equation

aλ2 + bλ+ c = 0

are complex numbers
λ± = α± iβ

we’ll have the following two real-valued solutions to
ay ′′ + by ′ + cy = 0

y1 (x) = eαx cos (βx)

y2 (x) = eαx sin (βx)

and so the general solution to the differential equation will be

y (x) = c1e
αx cos (βx) + c2e

αx sin (βx)
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Example 1

The differential equation

y ′′ − 2y ′ − 3y

has as its characteristic equation

λ2 − 2λ− 3 = 0 .

The roots of the characteristic equation are given by

λ = 2±
√
4+12
2

= 3,−1 .

These are distinct real roots, so the general solution is

y(x) = c1e
3x + c2e

−x .
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