
Math 2233 - Lecture 12

Agenda

1. Summary of Constant Coefficients Case

2. Physical Interpretation: Oscillatory Systems

3. Euler-type Equations

4. Examples



Summary: Solving ay ′′ + by ′ + cy = 0

Method:

1. Substitute trial solution y(x) = eλx into Constant Coefficient
ODE

2. =⇒ aλ2 + bλ+ c = 0

3. =⇒ λ = λ± = −b±
√
b2−4ac
2a

4. Three Cases:
(i) When b2 − 4ac > 0

I Characteristic equation has 2 distinct real roots λ1 and λ2

I General solution : y(x) = c1e
λ1x + c2e

λ2x

(ii) When b2 − 4ac = 0
I Characteristic equation has only distinct real root λ = − b

2a
I General solution : y(x) = c1e

λx + c2xe
λx

(ii) When b2 − 4ac < 0
I Characteristic equation has 2 distinct complex roots α+ iβ

and α− iβ
I General solution : y(x) = c1e

αx cos(βx) + c2e
αx sin(βx)
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Example 1 : y ′′ − 2y ′ − 3y = 0

The characteristic equation in this example is

λ2 − 2λ− 3 = 0 .

The roots of the characteristic equation are given by

λ± = 2±
√
4+12
2

= 3,−1 .

These are distinct real roots, so the general solution is

y(x) = c1e
3x + c2e

−x .
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Physical Application: Oscillatory Systems

We’ve seen the general solutions to differential equations of the
form

ay ′′ + by ′ + cy = 0

of the form

I y(x) = c1e
λ1x + c2e

λ2x

(when the C.Eq. has two, distinct, real roots); or

I y(x) = c1e
λx + c2xe

λx

(when the C.Eq. has one solution λ); or

I y(x) = c1e
αx cos (βx) + c2e

αx sin (βx)
(when the C.Eq has a pair of complex roots α± iβ)

Let me spend a minute or so to connect such solutions with a
simple physical application.
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A Simple Oscillatory System: a mass on a spring

Here we’ll consider Newton’s 2nd Law of Motion, F = ma, applied
to a simple mass-on-a-spring situation.

A box of mass m rests on a surface and is connected by a Hooke’s
Law type spring. We consider the situation where this mass is
subject to two forces:

I When the box is moved from its equilibrium position by an
displacement x , then the spring exerts a force Fspr = −kx on
the mass.

I When the box is moving it feels a frictional force due to its
sliding on the surface. This force is given by Ffric = −γ dx

dt
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Mass on a Spring, Cont’d

For this situation, Newton’s 2nd Law says

F = ma =⇒ −kx − γ dx
dt

= m
d2x

dt2

or

m
d2x

dt2
+ γ

dx

dt
+ kx = 0 (1)

which is a 2nd order, linear, homogeneous, ODE with constant
coefficients.
My aim here is to correlate the solutions to constant coefficient
ODEs discussed above with various physical situations.
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Frictionless Case

When γ = 0 the governing ODE is

m
d2x

dt2
+ kx = 0

for which the characteristic equation

mλ2 + k = 0

has two complex roots

λ± = ±i
√

k

m

This means we’re in Case (iii) with α = 0 and β =
√

k
m .
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Frictionless Case, Cont’d

The general solution to the governing differential equation will thus
be

x (t) = c1e
0x cos

(√
k

m
t

)
+ c2e

0x sin

(√
k

m
t

)

= c1 cos

(√
k

m
t

)
+ c2 sin

(√
k

m
t

)

To facilitate the physical interpretation of such solutions, I’ll need
to fiddle around with above expression a bit.
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Converting the solution to a more understandable form
Consider a right triangle with sides of length c1 and c2.

The hypothenus then has length

A =

√
(c1)2 + (c2)2

and the adjacent angle δ is

δ = tan−1
(
c2
c1

)
Reversing these relations, we have

c1 = A cos (δ)

c2 = A sin (δ)
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Frictionless Case, Cont’d

So in terms of the parameters A and δ, or solution is

A cos (δ) cos

(√
k

m
t

)
+ A sin (δ) sin

(√
k

m
t

)

Employing the Trig Identity

cos (α) cos (β) + sin (α) sin (β) = cos (α− β)

We can write

x (t) = A cos

(√
k

m
t − δ

)
This sort of function is readily interpretable as a oscillatory motion

with amplitude A, angular frequency
√

k
m and phase shift δ.
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Introducing Friction
Next, let’s introduce some friction into the situation.

We’ll start with just a little friction. We’ll assume γ2 < 4mk so
that the spring force continues to dominate the situation.
In this case, the characteristic equation will be

mλ2 + γλ+ k = 0 ⇒ λ =
−γ ±

√
γ2 − 4mk

2m

Since we’re supposing γ2 < 4mk , the expression inside the square
root will be negative, and so our roots will be complex numbers of
the form

λ± =
−γ
2m
± i

√
4mk − γ2

4m2

and the general solution to the governing ODE will be

x (t) = c1e
− γ

2m
t cos

(√
γ2 − 4mk

4m2
t

)
+c2e

− γ
2m

t sin

(√
γ2 − 4mk

4m2

)
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Small Friction Case, Cont’d

Using the same trignometric trick as before we can rewrite this as

x (t) = Ae−
γ
2m

t cos

(√
γ2 − 4mk

4m2
t + δ

)

A =
√
c21 + c22 , δ = tan−1

(
c2
c1

)
The cosine factor again amounts to an oscillatory type motion, but
now the overall amplitude is Ae−

γ
2m

t .

We thus obtain an oscillatory motion that oscillates with a

particular frequency
√

γ2−4mk
4m2 , but with a decaying amplitude.

Exactly, what one should expect given the physical setup.
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Mass on a Spring with Lots of Friction

Now let’s consider another extreme.

Suppose that spring force is relatively weak compared to the
frictional force. For this case, you might imagine a laboratory
situation where the mass is sitting on a bed of tar or some other
sticky surface.
Now when 4mk < γ2, we won’t have to worry about taking the
square root of a negative number and the roots of the
characteristic equation are going to be a pair of distinct real
numbers

λ± =
−γ ±

√
γ2 − 4mk

2m
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Lots of Friction Case, Cont’d

In fact, both roots will be negative numbers

: to see that the root
λ+ will be negative, just note that since 4mk < γ2,√

γ2 − 4mk <
√
γ2 = γ

and so
−γ −

√
γ2 − 4mk < 0

So in this case, both fundamental solutions

x1 (t) = eλ+x and x2 (t) = eλ−t

will be decaying exponential functions. And so every solution will
have the property that x → 0 as t →∞.

In this situation, if you pull the mass back and then release it,
there are no oscillations, rather the mass is just slowly dragged
back to its equilibrium position.
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Euler-type Equations

We are now going to consider how to construct solutions of
another prevalent family of 2nd order, linear, homogeneous, ODEs.

These will be ODEs of the form

ax2y ′′ + bxy ′ + cy = 0 , (2)

where a, b and c are constants. A differential equation of this form
is called an Euler-type equation.

Note that what characterizes an Euler type ODE is that, for each
term on the left, the order of the derivative is the same as the
power of x .
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Solving ax2y ′′ + bxy ′ + cy = 0

To solve Euler-type ODEs, we make the following ansatz for a trial
solution:

y(x) = x r . (3)

Then
y ′ = rx r−1

y ′′ = r(r − 1)x r−2

and so plugging (3) into (2) yields

0 = ax2
(
r(r − 1)x r−2

)
+ bx

(
rx r−1

)
+ cx r

= (ar(r − 1) + br + c) x r

=
(
ar2 + (b − a)r + c

)
x r .
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Solving Euler-type Equations, Cont’d

We can thus ensure that (3) is a solution of (2) by demanding

ar2 + (b − a)r + c = 0

or

r = r± ≡
(a− b)±

√
(a− b)2 − 4ac

2a
.

Like that the case of second order differential equations with
constant coefficients, we have three different kinds of solutions,
depending on the nature of the quantity inside the square root.
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Case (i): (a − b)2 − 4ac > 0

In this case, the expression inside the radical is positive and we end
up with two distinct real roots

r+ =
a−b+

√
(a−b)2−4ac
2a

r− =
a−b−

√
(a−b)2−4ac
2a

and, accordingly, two linearly independent solutions

y1(x) = x r+ , y2(x) = x r− .

The general solution is thus

y(x) = c1x
r+ + c2x
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Case (ii): (a − b)2 − 4ac = 0

In this case, we only have one distinct root

r =
a− b ±

√
(a− b)2 − 4ac

2a
=

a− b

2a

and so obtain only one distinct solution

y1(x) = x r = x
a−b
2a .

A second linearly independent solution however may be found
using Reduction of Order: To apply the Reduction of Order
formula, we first put the differential equation in standard form so
that we correctly identify the function p (x)

ax2y ′′+bxy ′+cy0 → y ′′+
b

ax
y ′+

c

ax2
y = 0 =⇒ p (x) =

b

ax
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Reduction of Order calculation for Case (ii)

y2(x) = y1(x)
∫ x 1

(y1(t))
2 exp

(
−
∫ t

p(s)ds
)
dt

= x
a−b
2a

∫ x 1(
t
a−b
2a

)2 exp
(
−
∫ t b

as )ds
)
dt

= x
a−b
2a

∫ x
t
−a+b

a exp
(
−
∫ t b

as ds
)
dt

= x
a−b
2a

∫ x
t
−a+b

a exp
(
−b

a ln |t|
)
dt

= x
a−b
2a

∫ x
t
−a+b

a t−b/adt

= x
a−b
2a

∫ x
t−1tb/at−b/adt

= x
a−b
2a

∫ x
t−1dt

= x
a−b
2a ln |x | .

So in this case, the general solution is

y(x) = c1x
a−b
2a + c2x

a−b
2a ln |x | .
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Summary: Solving Euler-type Equations

The table below summarizes our method Euler type equations and
compares that case with the constant coefficients case

Constant Coefficients Euler-type
ODE ay ′′ + by ′ + cy = 0 ax2y ′′ + bxy ′ + cy = 0

Ansatz y (x) = eλx y (x) = x r

Aux. Eq. aλ2 + bλ+ c = 0 ar2 + (b − a) r + c = 0
Case (i)

2 real roots
y (x) = c1e

λ1x + c2e
λ2x y (x) = c1x

r1 + c2x
r2

Case (ii)
1 real root

y (x) = c1e
λx + c2xe

λx y (x) = c1x
r + c2x

r ln |x |

Case (iii)
2 complex roots

α± iβ

y (x) = c1e
αx cos (βx)

+c2e
αx sin (βx)

y (x) = c1x
α cos (β ln |x |)

+c2x
α sin (β ln |x |)



Example 4 : x2y ′′ − 2xy ′ + 2y = 0

Substituting y(x) = x r into this differential equation yields

r(r − 1)x r − 2 (rx r ) + 2x r = 0

or (
r2 − r − 2r + 2

)
x r = 0

so we must have

0 = r2 − r − 2r + 2 = r2 − 3r + 2 = (r − 2)(r − 1)

Thus, we have r = 2, 1. The general solution is thus

y(x) = c1x
2 + c2x

1
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Example 5 : x2y ′′ + 7xy ′ + 9y = 0

Substituting y(x) = x r into this differential equation yields

r(r − 1)x r + 7 (rx r ) + 9x r = 0

or (
r2 − r + 7r + 9

)
x r = 0

So we must have

0 = r2 − r + 7r + 9 = r2 + 6r + 9 = (r + 3)2

Thus, we have only a single root of the indicial equation r = −3.
The general solution is thus

y(x) = c1x
−3 + c2 ln |x |x−3
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Example 6: x2y ′′ + xy ′ + 4y = 0

Substituting y(x) = x r into this differential equation yields

r(r − 1)x r + (rx r ) + 4x r = 0

or (
r2 − r + r + 4

)
x r = 0

so we must have

0 = r2 − r + r + 4 = r2 + 4 = (r + 2i)(r − 2i)

Thus, we have a pair of complex roots r = 0 + 2i , 0− 2i .
The general solution is thus

y(x) = c1x
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0 sin (2 ln |x |)
= c1 cos (2 ln |x |) + c2 sin (2 ln |x |)
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