
Math 2233 - Lecture 14

Agenda:

1. Summary: Solving 2nd Order Linear ODEs

2. Examples

3. The Laplace Transform

4. The Laplace Transform Method for Solving ODEs



To solve
y ′′ + p (x) y ′ + q (x) y = g (x) (1)

1. Find at least 1 independent solution y1 (x) of

y ′′ + p (x) y ′ + q (x) y = 0 (0)

2. If only 1 solution is found in Step 1, calculate a 2nd
independent solution of (0)

y2 (x) = y1 (x)

∫
1

(y1 (x))2
exp

[
−
∫

p (x) dx

]
dx (2)

3. The general solution of (0) is now

y (x) = c1y1 (x) + c2y2 (x) (3)

4. Calculate 1st solution Yp of (1)

Yp (x) = −y1 (x)

∫
y2 (x) g (x)

W [y1, y2] (x)
dx + y2 (x)

∫
y1 (x) g (x)

W [y1, y2] (x)
dx

(4)
5. The general solution of (1) is now

Y (x) = Yp (x) + c1y1 (x) + c2y2 (x) (5)
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Example

Solve the following initial value problem

y ′′ − 3y ′ + 2y = 10

y(0) = 5

y ′(0) = −1

Step 1: We’ll first solve the corresponding homogeneous equation

y ′′ − 3y ′ + 2y = 0

which is second order linear with constant coefficients. Its
characteristic equation is

0 = λ2 − 3λ+ 2 = (λ− 2) (λ− 1)

and so we have two real roots λ = 2, 1 and two linearly
independent solutions

y1(x) = e2x

y2(x) = ex
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Step 2: We will now use the Variation of Parameters to determine
a particular solution Yp(x) of the original nonhomogeneous
equation.

First note that

g(x) = 10

W [y1, y2] (x) =
(
e2x
)

(ex)−
(
2e2x

)
(ex) = −e3x

and so

yp(x) = −y1(x)

∫ x y2(s)g(s)

W [y1, y2] (s)
ds + y2(x)

∫ x y1(s)g(s)

W [y1,y2] (s)
ds

= −e2x
∫ x es(10)

−e3s
ds + ex

∫ x e2s(10)

−e3s
ds

= +10e2x
∫ x

e−2sds − 10ex
∫ x

e−sds

= 10e2x
(
−1

2
e−2x

)
− 10ex

(
−e−x

)
= −5 + 10

= 5
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Thus the general solution is

y(x) = yp(x) + c1y1(x) + c2y2(x)

= 5 + c1e
2x + c2e

x

Step 3: Use the initial conditions to find appropriate values for c1
and c2
We have

5 = y (0) = 5 + c1 + c2 ⇒ c1 + c2 = 0

−1 = y ′ (0) = 2c1 + c2 ⇒ 2c1 + c2 = −1

and so

c1 = −1

c2 = 1

The solution to the initial value problem is thus

y (x) = 5 + e2x − ex
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The Laplace Transform

Definition
The Laplace transform of a function f (x) is

L[f ](s) =

∫ ∞
0

e−sx f (x) dx . (6)

We note that in the formula (6), s is the new variable upon which
the Laplace transform L[f ] depends.
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Example 1

L [1] (s) ≡
∫ ∞
0

(1) e−sxdx

= −1

s
e−sx

∣∣∣∣x=∞
x=0

= 0−
(
−1

s

)
=

1

s
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Example 2: L [xn]

L [xn] (s) ≡
∫ ∞
0

xne−sxdx

Integration by Parts:
∫ b
a udv = uv |ba −

∫ b
a vdu

u = xn dv = e−sxdx

↓ d
dx ↓

∫
du = nxn−1dx v = −1

s e
−sx

\

⇒ L [xn] (s) = (xn)

(
−1

s
e−sx

)∣∣∣∣x=∞
x=0

−
∫ ∞
0

nxn−1
(
−1

s
e−sx

)
dx

= 0− 0 +
n

s

∫
xn−1e−sxdx

=
n

s
L
[
xn−1

]
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Example 3

If f (x) = ebx , then

L[f ] =
∫∞
0 ebte−st dt

=
∫∞
0 e(b−s)tdt

= 1
b−s e

(b−s)t
∣∣∣∞
0

= 1
s−b (if s > b)

(If s ≤ b then the integral does not converge.)
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Example 4

If
f (x) = sin(ax)

then, integrating by twice by parts,

L[f ](s) =
∫∞
0 sin(ax)e−sx dx

= limN→∞
(
e−sx 1

a cos(ax)
)∣∣N

0
+ s

a

∫∞
0 e−sx cos(ax) dx

= 1
a + s

a

∫∞
0 e−sx cos(ax) dx

= 1
a + limN→∞

s
a

(
−1

ae
−sx sin(ax)

)∣∣N
0
− s2

a2

∫∞
0 e−sx sin(ax) dx

= 1
a + 0− s2

a2
L[f ](s) ,

we find
L[f ](s) =

a

1 + s2

a2

=
a

a2 + s2
.

(If s ≤ 0, the integral on the first line does not converge, so
L[f ](s) is only defined for s > 0.)
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A Table of Basic Laplace Transforms

L [tn] =
n!

sn+1

L
[
eat
]

=
1

s − a

L
[
tneat

]
=

n!

(s − a)n+1

L
[
eat sin (bt)

]
=

b

(s − a)2 + b2

L
[
eat cos (bt)

]
=

s − a

(s − a)2 + b2

L
[
eat sinh (bt)

]
=

b

(s − a)2 − b2

L
[
eat cosh (bt)

]
=

s − a

(s − a)2 − b2



Formal Properties of the Laplace Transform

Theorem

(i) L [c1f1 + c2f2] = c1L [f1] + c2L [f2]

(ii) L
[
df

dx

]
= sL [f ]− f (0)

(iii) L
[
d2f

dx2

]
= s2L [f ]− sf (0)− f ′ (0)
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Integrating by parts one finds
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L
[
d2f

dx2

]
= sL

[
df

dx

]
− df

dx
(0)

= s (sL [f ]− f (0))− df

dx
(0)

= s2L [f ]− sf (0)− df

dx
(0)



Proof of (iii) : L
[
d2f

dx2

]
= s2L [f ]− sf (0)− f ′ (0)

To prove (iii), we can use property (ii)

L
[
d2f

dx2

]
= sL

[
df

dx

]
− df

dx
(0)

= s (sL [f ]− f (0))− df

dx
(0)

= s2L [f ]− sf (0)− df

dx
(0)



Proof of (iii) : L
[
d2f

dx2

]
= s2L [f ]− sf (0)− f ′ (0)

To prove (iii), we can use property (ii)

L
[
d2f

dx2

]
= sL

[
df

dx

]
− df

dx
(0)

= s (sL [f ]− f (0))− df

dx
(0)

= s2L [f ]− sf (0)− df

dx
(0)



Proof of (iii) : L
[
d2f

dx2

]
= s2L [f ]− sf (0)− f ′ (0)

To prove (iii), we can use property (ii)

L
[
d2f

dx2

]
= sL

[
df

dx

]
− df

dx
(0)

= s (sL [f ]− f (0))− df

dx
(0)

= s2L [f ]− sf (0)− df

dx
(0)



Proof of (iii) : L
[
d2f

dx2

]
= s2L [f ]− sf (0)− f ′ (0)

To prove (iii), we can use property (ii)

L
[
d2f

dx2

]
= sL

[
df

dx

]
− df

dx
(0)

= s (sL [f ]− f (0))− df

dx
(0)

= s2L [f ]− sf (0)− df

dx
(0)



Application of Laplace Transforms to Initial Value
Problems

Consider the following initial value problem.

y ′′ − y ′ − 2y = 0
y(0) = 2
y ′(0) = 4

(7)

We could treat this as a Constant Coefficient type ODE

We will develop here another method based on the Laplace
transform.
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Let’s take the Laplace transform of the ODE:

L
[
y ′′ − y ′ − 2y

]
= L [0]
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Solving Initial Value Problems Using the Laplace Transform

1. Take the Laplace transform of both sides of the ODE using the
identities

L [y ′] (s) = sL[y ]− y(0)
L [y ′′] (s) = s2L[y ]− sy(0)− y ′(0)

for the derivative terms.
2. Use the specified initial values for y(0) and y ′(0)
3. Solve the resulting algebraic equation in order to express L [y ]
as an explicit function of s.
4. Try to identify a function f (x) such that L[f ](s) is the function
L[y ] of s found in Step 3.
5. The solution of the differential equation will be the function
f (x) determined in Step 4.

In what follows, we shall be concentrating on Step 4.
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Inverting the Laplace Transforms of Rational Functions

After the first three steps of the procedure outlined on the
preceding page, we arrive at an equation that expresses the Laplace
transform L [y ] of our solution as a function of s, the Laplace
transform variable.

Typically, this equation will look like

L [y ] =
P(s)

Q(s)

where P(s) and Q(s) are polynomials.
There will be basic three cases to consider; depending on the
nature of denominator Q(x).

1. Q(s) can be completely factored. In this case, we’ll use
Partial Fractions expansions to invert the Laplace transform.

2. Q(x) is of the form (s − a)2 + b2 (the denominator Q is a
sum of squares)

3. Q(x) is of the form (s − a)2 − b2 (the denominator Q is a
difference of squares)
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Digression: Review of Partial Fractions

Partial fraction expansions are a very useful tool for figuring out
inverse Laplace transforms.

A simple way to understand Partial
Fractions expansions is that they reverse the algebra that goes into
putting a sum of rational functions over a common denominator.
For example,

2

s + 1
+

3

s − 2
=

2 (s − 2) + 3 (s + 1)

(s + 1) (s − 2)
=

5s − 1

(s + 1) (s − 2)

or
5s − 1

(s + 1) (s − 2)
=

2

s + 1
+

3

s − 2

In the latter equation, the right hand side is the Partial Fractions
Expansion of 5s−1

(s+1)(s−2) .
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The following theorem prescribes the form of a Partial Fractions
Expansion of common family of rational functions.

Theorem
Suppose

Q (s) =
k∏

i=1

(s − ai )
mi ≡ (s − a1)m1 (s − a2)m2 · · · (s − ak)mk

and P (s) is a polynomial such that deg (P) < deg (Q) .
Then there exists numbers aij , i = 1..k , j = 1, . . . ,mi , such that

P (s)

Q (s)
=

k∑
i=1

mi∑
j=1

aij

(s − ai )
j
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Here is an example as to how this theorem is applied.

s2 − 3s + 1

(s − 3) (s + 2)3
=

a11
s − 3

+
a21
s + 2

+
a22

(s + 2)2
+

a23

(s + 2)3

for some particular numbers a11, a21, a22 and a23
(I’ll discuss below how to find the correct values for these
numbers.)
Rather than introducing indexed symbols aij . One typically just
uses different letters to represent the numbers in the numerators
on the right; e.g., as in

s2 − 3s + 1

(s − 3) (s + 2)3
=

A

s − 3
+

B

s + 2
+

C

(s + 2)2
+

D

(s + 2)3
(*)
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Also, rather than relying on the formula in the theorem, one
usually constructs the Partial Fractions Expansion by simply adding
up the contributions for each factor 1

(s−a)m in F (s) in the

denominator Q(x);

I a factor (s − a) in the denominator leads to a term of the
form A

s−z in the partial fractions expansion

I a factor (s − a)2 in the denominator leads to two terms,
A

s−a + B
(s−a)2 in the partial fractions expansion

I a factor (s − a)3 in the denominator leads to three terms,
A

s−a + B
(s−a)2 + C

(s−a)3 in the partial fractions expansion

I etc.,
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Example: Using Partial Fraction Expansions
Suppose we know

L [y ] =
2s + 1

s2 + 3s + 2

We have

L [y ] =
2s + 1

s2 − s + 2

=
2s + 1

(s + 1) (s − 2)

=
A

s + 1
+

B

s − 2

= A
1

s + 1
+ B

1

s − 2

= AL
[
e−x

]
+ BL

[
e2x
]

= L
[
Ae−x + Be2x

]
Now we just need to figure out the correct values for the constants
A and B.
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Let’s go back to the Partial Fractions expansion:

2s + 1

(s + 1) (s − 2)
=

A

s + 1
+

B

s − 2

Multiplying both sides by (s + 1)(s − 2) we have

2s + 1 = A(s − 2) + B(s + 1)

This equation must be true for all values of s.
Choosing s = −1 yields

−2 + 1 = A(−3) + B(0) =⇒ A = −1

3

Choosing s = 2 yields

4 + 1 = A(0) + B(3) =⇒ B =
5

3

Thus,
2s + 1

(s + 1) (s − 2)
= −1

3

1

s + 1
+

5

3

1

s − 2
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