
Math 2233 - Lecture 16

Agenda

1. 2nd Order Linear ODEs (general case)

2. Taylor Series Method

3. Power Series Method



Review: Solving y ′′ + p(x)y ′ + q(x)y = g(x)

1. Find at least 1 independent solution y1 (x) of

y ′′ + p (x) y ′ + q (x) y = 0 (0)

2. If only 1 solution is found in Step 1, calculate a 2nd
independent solution of (0)

y2 (x) = y1 (x)

∫
1

(y1 (x))2
exp

[
−
∫

p (x) dx

]
dx (2)

3. The general solution of (0) is now

y (x) = c1y1 (x) + c2y2 (x) (3)

4. Calculate 1st solution Yp of (1)

Yp (x) = −y1 (x)

∫
y2 (x) g (x)

W [y1, y2] (x)
dx + y2 (x)

∫
y1 (x) g (x)

W [y1, y2] (x)
dx

(4)
5. The general solution of (1) is now

Y (x) = Yp (x) + c1y1 (x) + c2y2 (x) (5)
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Upshot:

The crux of the problem of solving

y ′′ + p(x)y ′ + q(x)y = g(x) (1)

boils down to finding one solution of the corresponding
homogenoeus linear ODE

y ′′ + p(x)y ′ + q(x)y = 0 (0)

But, at this point, we only know how to solve two special cases of
(0)

I Constant Coefficients Case : ay ′′ + by ′ + cy = 0

I Euler-type Case: ax2y ′′ + bxy ′ + cy = 0

The principal goal for the rest of the course will be to develop a
means of attacking the general case of Eq. (0) head on.
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Making an Ansatz for the First Solution

We were able to find solutions to the Constant Coefficient and
Euler-type ODEs because we were clever enough to guess some
reasonable trial solutions that actually worked.

ay ′′ + by ′ + cy = 0 ⇒ try y(x) = eλx

ax2y ′′ + bxy ′ + cy = 0 ⇒ try y(x) = x r

However, the equation

y ′′ + p(x)y ′ + q(x)y = 0 (0)

is too general to allow us to simply guess what the solution should
look like.
Or so one might think.
But there is a particular way of writing a smooth function f (x)
which is, in a certain sense, has a similar form no matter what
f (x) is.
(Remark: a function f (x) is smooth at a point x if f is continuous

at x and all of the derivatives
dnf

dxn
are defined at the point x .)
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Taylor Series

Theorem (Taylor Expansion Theorem)

Let f (x) be a function that is smooth within a neighborhood of
the point x0. Then

f (x) =
∞∑
n=0

f (n) (x0)

n!
(x − x0)n

= f (x0) + f ′ (x0) (x − x0) +
f ′′ (x0)

2!
(x − x0)2 + · · ·

at least on a neighborhood of x0.

In Calculus II, Taylor’s Theorem is motivated mostly by goal of
finding a easy way to approximate an arbitrary function of x by a
finite polynomial.
However, here in Math 2233, our goal will be to interpret the
infinite series on right hand side as a simply another way of writing
down a formula for the function f (x).
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In this interpretation, once we know the numbers

f (n) (x0)

n!
,

the equality

f (x) =
∞∑
n=0

f (n) (x0)

n!
(x − x0)n

tells us exactly what the function f (x) is near x0 – so long as we
account for all of the terms on the right hand side.

What I show you next is that if f (x) obeys an ODE of the form

y ′′ + p(x)y ′ + q(x)y = 0 (0)

then it is possible to determine all the numbers f (n)(x0)
n! explicitly.

In fact, we will solve differential equations of the form (0) by
determining the Taylor expansions of solutions.
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Example: Taylor Series Method

Find the first five terms of the Taylor expansion about x = 0 of the
solution to

y ′′ + 2xy ′ + y = 0

y(0) = 1

y ′(0) = 0

The Taylor expansion of the solution y(x) about x = 0 is given by
the formula

y(x) = y(0) + y ′(0)x +
y ′′(0)

2!
x2 +

y ′′′(0)

3!
x3 +

y iv (0)

4!
x4 + · · ·

To make this explicit, we need to figure out numerical values for
y(0), y ′(0), y ′′(0), . . .. Now the values of y(0) and y ′(0) are
determined by the initial conditions

y(0) = 1

y ′(0) = 0
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Example, Cont’d
To determine y ′′ (0), we can evaluate the differential equation itself
at x = 0:

y ′′(0) + 2xy ′(0) + y(0) = 0

=⇒ y ′′(0) = (−2xy ′ − y) |x=0) = 0− y(0)

= −1

To get a value for y ′′′(0), we can differentiate the differential
equation and evaluate the result at x = 0:

y ′′′(0) =
(
−2y ′(x)− 2xy ′′(x)− y ′(x)

)
|x=0

= 0− 0− 0 = 0

To get a value for y iv (0) we differentiate the differential equation
again:

y iv (0) =
(
−2y ′′(x)− 2y ′′(x)− 2xy ′′

′
(x)− y ′′(x)

)
|x=0

= −2(−1)− 2(−1)− 0− (−1) = 5
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Example, Cont’d

Thus, to order x4

y(x) = y(0) + y ′(0)x +
y ′′(0)
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x3 +
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x4 + · · ·

= 1 + 0x − 1
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6
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x4 + · · ·

= 1− 1
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x4 + · · ·
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Let’s now condense our notation a bit by setting

an =
f (n)(xo)

n!
(6)

so that a Taylor expansion can be expressed as

f (x) =
∞∑
n=0

an(x − xo)n (7)

If we had an explicit formula for f (x) then obviously we could
compute each of the coefficients an in its Taylor expansion using
equation (6). On the other hand, if we have formulas for all the
coefficients an then can still write down the Taylor expansion of
f (x) via (3) and so we have effectively determined f (x). The point
of all this is that every smooth function can be expressed in the
form (7) and by determining all the values of the constants an you
effectively specify f (x).
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Power Series Nomenclature

When

y(x) =
∞∑
n=0

an(x − xo)n (8)

I the infinite summation on the right is called the power series
expression for y(x)

I the constants an are called the coefficients of the power series

I the number x0 is referred to as the expansion point

I the expressions an (x − x0)n are the individual terms of the
power series
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Now I can state our strategy for solving a general second order
linear differential equation

y ′′ + p(x)y ′ + q(x)y = 0

We shall assume that our solution is a smooth function and so it
has a Taylor expansion about a point x0:

y(x) =
∞∑
n=0

an(x − x0)n (8)

We’ll then plug this power series expression for y(x) into the
differential equation and try to determine the coefficients an by
demanding that (8) actually solves the ODE. So the parameters
a0, a1, a2, · · · will be used like the parameter λ was used in
constant coefficients case (where we looked for solutions of the
form y(x) = eλx), or like the parameter r in the Euler-typecase
(where we looked for solutions of the form y(x) = x r ).
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Some Basic Facts about Convergent Power Series

An expression of the form

∞∑
n=0

an (x − x0)n (7)

is called a formal power series. The reason for the qualification
“formal” is because the summation over infinitely many terms can
not actually be carried out (contrary to what the notation
suggests) However, if it happens that

lim
N→∞

N∑
n=0

an (x − x0)n exists for all x close enough to x0

then we say that (7) is a convergent power series, and the
expression (7) is interpretable as a legitimate function of x :

f (x) ≡ lim
N→∞

N∑
n=0

an (x − x0)n
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Some Basic Facts about Convergent Power Series, Cont’d

Theorem
Let f (x) =

∑∞
n=0 an (x − x0)n be a convergent power series.

(i) If f (x) = 0 for all x , then an = 0 for all n.

(ii) f (x) is differentiable and

df

dx
(x) =

∞∑
n=0

nan (x − x0)n−1

is another convergent power series.

(iii) If g (x) =
∑∞

n=0 bn (x − x0)n is another convergent power
series, then

f (x) + g (x) =
∞∑
n=0

(an + bn) (x − x0)n
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(iii) If g (x) =
∑∞

n=0 bn (x − x0)n is another convergent power
series, then

f (x) + g (x) =
∞∑
n=0

(an + bn) (x − x0)n
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Taylor Series vs. Power Series

The Taylor series of a function f (x) about a point x0 is defined as

f (x) =
∞∑
n=0

f (n)(x0)

n!
(x − x0)n

Thus, a Taylor series is determined by the numbers f (n)(x0)
n! .

OTOH, if f (x) is a function defined by a convergent power series:

f (x) ≡ lim
N→∞

N∑
n=0

an (x − x0)n (9)

then f (x) is identical to its Taylor series; i.e., if f (x) is of the form
(9) then

f (n)(x0)

n!
= an
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Taylor Series vs. Power Series, Cont’d
To see this, suppose

f (x) = lim
N→∞

N∑
n=0

an (x − x0)n (8)

Then

1

0!
f (x0) = lim

N→∞

N∑
n=0

an (x − x0)n

∣∣∣∣∣
x=x0

=
(
a0 + a1 (x − x0) + a2 (x − x0)2 + · · ·

)∣∣∣
x=x0

= a0

1

1!

df

dx
(x0) =

1

1!
lim

N→∞

N∑
n=0

nan (x − x0)n−1

∣∣∣∣∣
x=x0

=
(

(0) a0 (x − x0)−1 + (1) a1 (x − x0)0 + (2) a2 (x − x0)1 + · · ·
)∣∣∣

x=0
= a1
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Taylor Series vs. Power Series, Cont’d

and

1

2!

d2f

dx2
(x0) =

1

2!
lim

N→∞

N∑
n=0

n (n − 1) an (x − x0)n−2

∣∣∣∣∣
x=x0

=
1

2

(
(0) (−1) a0 (x − x0)−2 + (1) (0) a1 (x − x0)−1

+(2)(1)a2 (x − x0)0 + (3) (2) a3 (x − x0)1 + · · ·
)∣∣∣

x=x0

= 0 + 0 + a2 + 0 + 0 + · · ·

and, similar computations show that

1

n!

dnf

dxn
(x0) = an

and so the Taylor expansion of the function defined by power series
is exactly the same as the original power series.
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Example 2

Find a power series solution to

y ′′ − y = 0

y(0) = 1

y ′(0) = 1

We shall assume a trial solution of the form

y(x) =
∞∑
n=0

anx
n = a0 + a1x + a2x

2 + a3x
3 + · · ·

and we’ll try to use the the differential equations and the initial
conditions to determine the constants an.
Once we find all the coefficients an, we can regard the initial value
problem as having been solved.
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Example 2, Cont’d

Imposing the first initial condition on this y(x) at x = 0 yields

1 = y(0)

= a0 + a1(0) + a2(0)2 + · · ·
= a0

so a0 = 1.
Imposing the second initial condition:

1 = y ′(0)

=
d

dx

(
a0 + a1x + a2x

2 + a3x
3 + · · ·

)∣∣∣∣
x=0

=
(
0 + a1 + 2a2x + 3a3x

2 + · · ·
)∣∣

x=0

= 0 + a1 + 0 + 0 + · · ·
= a1

so a1 = 1.
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Now we still need to determine the coefficients a2, a3, . . ..

However, this time, rather than differentiating the differential
equation to determine y ′′′(0) , y (iv)(0), . . ., we shall determine the

coefficients an = f (n)(0)
n! by imposing the differential equation

directly on the function y(x) =
∑∞

n=0 anx
n.

Substituting y(x) =
∑∞

n=0 anx
n directly into the differential

equation yields

0 = y ′′ − y

=
d2

dx2

( ∞∑
n=0

anx
n

)
−
∞∑
n=0

anx
n

=
∞∑
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n (n − 1) anx
n−2 −
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n
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∞∑
n=0

n (n − 1) anx
n−2 = 0 (0− 1) a0x

−2 + (1) (0) a1x
−1

+ (2) (1) a2x
0 + (3)(2)a3x

1 + · · ·
= 0 + 0 + (2)(1)a2x

0 + (3)(2)a3x
1

+ (4) (3) a4x
2 + · · ·

=
∞∑
n=0

(n + 2) (n + 1) an+2x
n

And so we have

0 =
∞∑
n=0

(n + 2) (n + 1) an+2x
n −

∞∑
n=0

anx
n

=
∞∑
n=0

[(n + 2) (n + 1) an+2 − an] xn



Example 2, Cont’d
Now

∞∑
n=0

n (n − 1) anx
n−2 = 0 (0− 1) a0x

−2 + (1) (0) a1x
−1

+ (2) (1) a2x
0 + (3)(2)a3x

1 + · · ·

= 0 + 0 + (2)(1)a2x
0 + (3)(2)a3x

1

+ (4) (3) a4x
2 + · · ·

=
∞∑
n=0

(n + 2) (n + 1) an+2x
n

And so we have

0 =
∞∑
n=0

(n + 2) (n + 1) an+2x
n −

∞∑
n=0

anx
n

=
∞∑
n=0

[(n + 2) (n + 1) an+2 − an] xn



Example 2, Cont’d
Now

∞∑
n=0

n (n − 1) anx
n−2 = 0 (0− 1) a0x

−2 + (1) (0) a1x
−1

+ (2) (1) a2x
0 + (3)(2)a3x

1 + · · ·
= 0 + 0 + (2)(1)a2x

0 + (3)(2)a3x
1

+ (4) (3) a4x
2 + · · ·

=
∞∑
n=0

(n + 2) (n + 1) an+2x
n

And so we have

0 =
∞∑
n=0

(n + 2) (n + 1) an+2x
n −

∞∑
n=0

anx
n

=
∞∑
n=0

[(n + 2) (n + 1) an+2 − an] xn



Example 2, Cont’d
Now

∞∑
n=0

n (n − 1) anx
n−2 = 0 (0− 1) a0x

−2 + (1) (0) a1x
−1

+ (2) (1) a2x
0 + (3)(2)a3x

1 + · · ·
= 0 + 0 + (2)(1)a2x

0 + (3)(2)a3x
1

+ (4) (3) a4x
2 + · · ·

=
∞∑
n=0

(n + 2) (n + 1) an+2x
n

And so we have

0 =
∞∑
n=0

(n + 2) (n + 1) an+2x
n −

∞∑
n=0

anx
n

=
∞∑
n=0

[(n + 2) (n + 1) an+2 − an] xn



Example 2, Cont’d
Now

∞∑
n=0

n (n − 1) anx
n−2 = 0 (0− 1) a0x

−2 + (1) (0) a1x
−1

+ (2) (1) a2x
0 + (3)(2)a3x

1 + · · ·
= 0 + 0 + (2)(1)a2x

0 + (3)(2)a3x
1

+ (4) (3) a4x
2 + · · ·

=
∞∑
n=0

(n + 2) (n + 1) an+2x
n

And so we have

0 =
∞∑
n=0

(n + 2) (n + 1) an+2x
n −

∞∑
n=0

anx
n

=
∞∑
n=0

[(n + 2) (n + 1) an+2 − an] xn



Example 2, Cont’d
Now

∞∑
n=0

n (n − 1) anx
n−2 = 0 (0− 1) a0x

−2 + (1) (0) a1x
−1

+ (2) (1) a2x
0 + (3)(2)a3x

1 + · · ·
= 0 + 0 + (2)(1)a2x

0 + (3)(2)a3x
1

+ (4) (3) a4x
2 + · · ·

=
∞∑
n=0

(n + 2) (n + 1) an+2x
n

And so we have

0 =
∞∑
n=0

(n + 2) (n + 1) an+2x
n −

∞∑
n=0

anx
n

=
∞∑
n=0

[(n + 2) (n + 1) an+2 − an] xn



Example 2, Cont’d

We have now managed to express the right hand side of the
differential equation as a single power series.

From the first basic fact about convergent power series, we know

0 =
∞∑
n=0

An (x − x0)n ⇒ An = 0 for all n

Thus, satisfaction of the differential equation requires

(n + 2) (n + 1) an+2 − an = 0 for n = 0, 1, 2, 3, . . .

or
an+2 =

an
(n + 2) (n + 1)

, n = 0, 1, 2, 3, . . .

This last set of equations are called the recursion relations of the
problem. Using them, over and over, we can determine all the
coefficients an.
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We have already seen that the initial conditions imply

y (0) = 1 ⇒ a0 = 1

y ′ (0) = 1 ⇒ a1 = 1
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Now we’ll begin to apply the recurion relations

an+2 =
an

(n + 2) (n + 1)
(RRn)

Now, the recursion relation corresponding to n = 0 is

RRn=0 ⇒ a2 = a0+2 =
a0

(0 + 2) (0 + 1)
=

1

2 · 1

and similarly,

RRn=1 ⇒ a3 = a1+2 =
a1

(1 + 2) (1 + 1)
=

1

3 · 2

RRn=2 ⇒ a4 = a2+2 =
a2

(2 + 2) (2 + 1)
=

1

4 · 3 · 2 · 1



Example 2, Cont’d

Now we’ll begin to apply the recurion relations

an+2 =
an

(n + 2) (n + 1)
(RRn)

Now, the recursion relation corresponding to n = 0 is

RRn=0 ⇒ a2 = a0+2 =
a0

(0 + 2) (0 + 1)
=

1

2 · 1

and similarly,

RRn=1 ⇒ a3 = a1+2 =
a1

(1 + 2) (1 + 1)
=

1

3 · 2

RRn=2 ⇒ a4 = a2+2 =
a2

(2 + 2) (2 + 1)
=

1

4 · 3 · 2 · 1



Example 2, Cont’d

Now we’ll begin to apply the recurion relations

an+2 =
an

(n + 2) (n + 1)
(RRn)

Now, the recursion relation corresponding to n = 0 is

RRn=0 ⇒ a2 = a0+2 =
a0

(0 + 2) (0 + 1)
=

1

2 · 1

and similarly,

RRn=1 ⇒ a3 = a1+2 =
a1

(1 + 2) (1 + 1)
=

1

3 · 2

RRn=2 ⇒ a4 = a2+2 =
a2

(2 + 2) (2 + 1)
=

1

4 · 3 · 2 · 1



Example 2, Cont’d

Now we’ll begin to apply the recurion relations

an+2 =
an

(n + 2) (n + 1)
(RRn)

Now, the recursion relation corresponding to n = 0 is

RRn=0 ⇒ a2 = a0+2 =
a0

(0 + 2) (0 + 1)
=

1

2 · 1

and similarly,

RRn=1 ⇒ a3 = a1+2 =
a1

(1 + 2) (1 + 1)
=

1

3 · 2

RRn=2 ⇒ a4 = a2+2 =
a2

(2 + 2) (2 + 1)
=

1

4 · 3 · 2 · 1



Example 2, Cont’d

Now we’ll begin to apply the recurion relations

an+2 =
an

(n + 2) (n + 1)
(RRn)

Now, the recursion relation corresponding to n = 0 is

RRn=0 ⇒ a2 = a0+2 =
a0

(0 + 2) (0 + 1)
=

1

2 · 1

and similarly,

RRn=1 ⇒ a3 = a1+2 =
a1

(1 + 2) (1 + 1)
=

1

3 · 2

RRn=2 ⇒ a4 = a2+2 =
a2

(2 + 2) (2 + 1)
=

1

4 · 3 · 2 · 1



Example 2, Cont’d

Now we’ll begin to apply the recurion relations

an+2 =
an

(n + 2) (n + 1)
(RRn)

Now, the recursion relation corresponding to n = 0 is

RRn=0 ⇒ a2 = a0+2 =
a0

(0 + 2) (0 + 1)
=

1

2 · 1

and similarly,

RRn=1 ⇒ a3 = a1+2 =
a1

(1 + 2) (1 + 1)
=

1

3 · 2

RRn=2 ⇒ a4 = a2+2 =
a2

(2 + 2) (2 + 1)
=

1

4 · 3 · 2 · 1



Example 2, Cont’d

Now we’ll begin to apply the recurion relations

an+2 =
an

(n + 2) (n + 1)
(RRn)

Now, the recursion relation corresponding to n = 0 is

RRn=0 ⇒ a2 = a0+2 =
a0

(0 + 2) (0 + 1)
=

1

2 · 1
=

1

2!

and similarly,

RRn=1 ⇒ a3 = a1+2 =
a1

(1 + 2) (1 + 1)
=

1

3 · 2
=

1

3!

RRn=2 ⇒ a4 = a2+2 =
a2

(2 + 2) (2 + 1)
=

1

4 · 3 · 2 · 1
=

1

4!



Example 2, Cont’d

In fact, this pattern continues and we find

an =
1

n!
for all n

We can thus conclude

y (x) =
∞∑
n=0

anx
n =

∞∑
n=0

1

n!
xn

and so our solution is

y (x) =
∞∑
n=0

1

n!
xn
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