
Math 2233 - Lecture 18

Agenda:

1. Solutions via Taylor Series

2. Using Power Series as Trial Solutions

3. Manipulating Power Series

4. Shifts of Summation Indices

5. Example: Solving an ODE via Power Series

6. Summary of the Power Series Method



We saw in Lecture 16 that, given a general initial value problem like

y ′′ + p (x) y ′ + q (x) y = 0

y (0) = y0

y ′ (0) = y ′0

one can directly compute the Taylor expansion

y (x) =
∞∑
n=0

y (n) (0)

n!
xn = y(0) + y ′(0)x +

y ′′(0)

2!
x2 + · · ·

of the solution using only the initial conditions and the differential
equation. For

y (0) = y0

y ′ (0) = y ′0

y ′′ (0) =
(
−p (x) y ′ (x)− q (x) y (x)

)∣∣
x=0

= −p (0) y ′0 − q (0) y0



Taylor Series Solutions, Cont’d

To get values of the higher derivatives, y ′′′(0), y (iv)(0), . . . we
differentiate the differential equation and then evaluate at x = 0:

y ′′′ (0) =
d

dx

[
− [p (x)] y ′ (x)− q (x) y (x)

]∣∣∣∣
x=0

= −p′ (0) y ′ (0)− p (0) y ′′ (0)− q′ (0) y (0)− q (0) y ′ (0)

= −p′ (0) y ′0 − p (0)
(
−p (0) y ′0 − q (0) y0

)
−q′ (0) y0 − q (0) y ′0

y (iv) (0) =
d2

dx2
[
− [p (x)] y ′ (x)− q (x) y (x)

]∣∣∣∣
x=0

= something computable in terms of y0, y
′
0 and

the derivatives of p (x) and q (x) evaluated at 0.

and so on.



Solutions via Power Series

The direct calculation of the Taylor series of a solution gets very
strenuous very quickly.
So this direct calculation is really only practical for finding
approximate solutions (where you simply ignore the higher
derivative terms, figuring that their contribution is small when x is
close to 0).
So rather than calculate the numbers y (n) (0) directly by taking
derivatives of the differential equation, we’ll instead look of
solutions that have the same functional form as a Taylor expansion

y (x) =
∞∑
n=0

anx
n (*)

i.e., a power series function and then figure out what the numbers
an have to be in order for such a power series function, (*), to be a
solution of the differential equation.



The basic idea here is just a generalization of what we did for
constant coeffient and Euler-type equations

ay ′′ + by ′ + cy = 0 ⇒ look for solutions of the form eλx

ax2y ′′ + bxy ′ + cy = 0 ⇒ look for solution of the form x r

except that now for differential equations of the very general form

y ′′ + p (x) y ′ + q (x) y = 0 ⇒ try y (x) =
∞∑
n=0

anx
n

If we can find numbers a0, a1, a2, . . . such that the power series
function

∞∑
n=0

anx
n

automatically satisfies the differential equation, then we will have
calculated the complete Taylor expansion of the solution. (Because
the Taylor series for a power series function is just the power series
itself.)



1st Order Example
Here’s a simple example of this idea (applied to a first order ODE
to keep things really simple)
Consider the differential equation of the exponential function ex :

y ′ = y (*)

Write

y (x) =
∞∑
n=0

anx
n (**)

as a trial solution and plug into the differential equation. We’ll
treat the right hand side of (*) as an “infinite polynomial”. Thus

y ′ (x) =
∞∑
n=0

nanx
n−1 (differentiating term-by-term)

= (0) a0x
−1 + (1) a1x

0 + (2) a2x
1 + · · ·

=
∞∑
n=0

(n + 1) an+1x
n



1st Order Example, Cont’d

Plugging the power series expressions for y and y ′ into the
differential equation (*) yields

∞∑
n=0

(n + 1) an+1x
n =

∞∑
n=0

anx
n

Equating the coefficients of like powers of x , we find

(n + 1) an+1 = an for n = 0, 1, 2, . . .

⇒ an+1 =
an

n + 1
for n = 0, 1, 2, . . .

This infinite set of equations are called the Recursion Relations
for the problem. Using these recursion relations we can express
each of the coefficients a1, a2, a3, . . . in terms of a0.



Applying the Recursion Relations an+1 = an
n+1

a1 = a0+1 =
a0
1

= a0

a2 = a1+1 =
a1
2

=
a0

2 · 1
a3 = a2+1 =

a2
3

=
a0

3 · 2 · 1
...

and, continuing the following pattern emerges

an =
a0
n!

and so our solution will be

y (x) =
∞∑
n=0

a0
n!
xn

= a0

∞∑
n=0

1

n!
xn



1st Order Example, Cont’d

Thus, after posing the trial solution

y (x) =
∞∑
n=0

anx
n

we were able to construct the general solution (in terms of its
Taylor series about x = 0):

y(x) =
∞∑
n=0

a0
n!
xn



Manipulating Power Series

Our strategy for solving 2nd Order linear ODEs

y ′′ + p (x) y ′ + q (x) y = 0 (1)

will be to similarly look for solutions of the form

y (x) =
∞∑
n=0

anx
n . (2)

To carry out this plan, we are going to need to know

(i) How to differentiate power series expressions

(ii) How to multiple power series by (typically polynomial)
functions p(x) and q(x)

(iii) How to add power series expressions

(iv) How to extract conditions on the coefficients an from power
series equations



Manipulating Power Series, Cont’d

These questions are answered quite simply by the following theorem

Theorem
So long as the power series converge, they behave like infinite
polynomials:

d

dx

∞∑
n=0

anx
n =

∞∑
n=0

nanx
n−1 (i)

(c0 + c1x + · · · )
∞∑
n=0

anx
n =

∞∑
n=0

c0anx
n +

∞∑
n=0

c1anx
n+1 + · · · (ii)

∞∑
n=0

anx
n +

∞∑
n=0

bnx
n =

∞∑
n=0

(an + bn) xn (iii)

0 =
∞∑
n=0

anx
n for all x ⇒ an = 0 for all n (iv)



Shifts of Summation Indices

The one difficulty one faces when manipulating power series
expressions is that the simple rule for adding power series

∞∑
n=0

anx
n +

∞∑
n=0

bnx
n =

∞∑
n=0

(an + bn) xn (iii)

only works exactly as written.
Thus, if y (x) =

∑∞
n=0 anx

n, then

y ′ + y =
∞∑
n=0

nanx
n−1 +

∞∑
n=0

anx
n 6=

∞∑
n=0

(nan + an) xn

because one cannot group together the coefficients nan and an
that correspond to different powers of x (respectively, xn−1 and
xn). The Rule (iii) requires that we combine the coefficients of the
same power of x to get the sum of two power series.



Shifts of Summation Indices, Cont’d
However, there is a simple operation that allows us to add power
series where the summation indexes n don’t necessarily have to be
the same as the power of x in the corresponding series.

Theorem (Shift of Summation Index)∑
n=0

anx
n+k =

∑
n=k

an−kx
n

Proof. Expanding the left hand side of the above identity, we get∑
n=0

anx
n+k = a0x

k + a1x
k+1 + a2x

k+2 + · · ·

Doing the same thing on the right we get∑
n=k

an−kx
n = ak−kx

k + a(k+1)−kx
k+1 + a(k+2)−kx

k+2 · · ·

= a0x
k + a1x

k+1 + a2x
k+2 + · · ·

Thus, the two expansions agree with one another.



Shift of Summation Indices, Cont’d
Here is a restatement (and slight generalization) of this basic rule:

Definition
A power series is in standard form whenever the powers of x that
occur coincide with the summation index n. That is to say, the
power series is exactly of the simple form

∞∑
n=0

anx
n

A power series that is not in standard form, say,

∞∑
n=n0

anx
n±k

can be rewritten in standard form by replacing the initital value n0
of n by n0± k and then replacing n by n∓ k everywhere else in the
original power series



Shift of Summation Indices: Summary

Thus,

∞∑
n=n0

anx
n±k n0 → n0 ± k

n→ n ∓ k
−−−−−−−−−−−−−−→

∞∑
n=n0±k

an∓kx
n

or,
I If you need to shift the n in xn+k down by k (to get xn)

I Replace n by n − k everywhere to the right of the summation
sign

I Also shift the starting value of n by k , but in the opposite
direction

I If you need to shift the n in xn−k up by k (to get xn)
I replace n by n + k everywhere to the right of the summation

sign
I Also shift the starting value of n by k but in the opposite

direction



Shift of Summation Indices: Example
Put the following double derivative term in standard form

y ′′ =
∞∑
n=0

(n) (n − 1) anx
n−2

We need to carry out a summation shift so that xn−2 → xn. To
do this clearly, set

m = n − 2 ⇒ n = m + 2

then the initial value of m will be

m0 = n0 − 2 = 0− 2 = −2

Now make these substitutions into the original power series
expression
∞∑
n=0

(n) (n − 1) anx
n−2 =

∞∑
m=−2

(m + 2) (m + 2− 1) am+2x
m+2−2

=
∑

m=−2
(m + 2) (m + 1) am+2x

m



Shift of Summation Indices Example, Cont’d
This not quite yet in standard form since the power series begins at
m = −2 rather than m = 0. However, we can always “peel off”
the initial terms of a power series and deal with them separately. In
the case at hand, we have∑
m=−2

(m + 2) (m + 1) am+2x
m = (−2 + 2) (−2 + 1) a−2+2x

−2

+ (−1 + 2) (−1 + 1) a−1+2x
−1

+
∞∑

m=0

(m + 2) (m + 1) am+2x
m

= 0 + 0 +
∞∑

m=0

(m + 2) (m + 1) am+2x
m

=
∞∑

m=0

(m + 2) (m + 1) am+2x
m

N.B. This last series is in the standard form
∑∞

n=0 Anx
n with

An ≡ (n + 2) (n + 1) an



Application to Solving ODEs

Now consider the differential equation

y ′′ − xy ′ − y = 0

We’re going to find a power series solution of this differential
equation. We begin by setting y (x) =

∑∞
n=0 anx

n and plugging
this trial solution into the differential equation. We have

y ′′ =
∞∑
n=0

(n) (n − 1) anx
n−2 (by direct differentiation)

=
∞∑

n=−2
(n + 2) (n + 1) an+2x

n (after a shift of summation index)

= 0 + 0 +
∞∑
n=0

(n + 2) (n + 1) an+2x
n (after peeling off initial terms)



Example: Power Series Solutions of ODEs

The next term we need to deal with is xy ′

xy ′ = x
∞∑
n=0

nanx
n−1

=
∑
n=0

nanx
n−1+1 (bringing the factor x through the summation)

=
∞∑
n=0

nanx
n

We now have each term of the differential equation expressed as a
power series in standard form.



Example: Power Series Solutions of ODEs

Thus, if y(x) =
∑∞

n=0 anx
n is a solution of

0 = y ′′ − xy ′ − y

we must have

0 =
∞∑
n=0

(n + 2) (n + 1) an+2x
n −

∞∑
n=0

nanx
n −

∞∑
n=0

anx
n

Since each power series on the right is in standard form, we can
combine the terms into a single power series by collecting the total
coefficient of each xn

0 =
∞∑
n=0

[(n + 2) (n + 1) an+2 − nan − an] xn



Example: Power Series Solutions of ODEs, Cont’d

Since this last power series must equal 0 for all x , all of its
coefficients must separately vanish:

0 = (n + 2) (n + 1) an+2 − (n + 1) an , n = 0, 1, 2, . . .

or

an+2 =
(n + 1) an

(n + 2) (n + 1)
=

an
n + 2

, n = 0, 1, 2, . . . (RRn)

The equations RRn are called the Recursion Relations for the
problem. I’ll now show you how the recursion relations can be used
to write the general solution of the original differential equation.



Example: Power Series Solutions of ODEs, Cont’d
Set

a0 = c1

a1 = c2

where c1 and c2 are arbitrary constants
Then

RR0 ⇒ a2 = a0+2 =
a0

0 + 2
=

1

2
c1

RR1 ⇒ a3 = a1+2 =
a1

1 + 2
=

1

3
c2

RR2 ⇒ a4 = a2+2 =
a2

2 + 2
=

1

(4) (2)
c1

RR3 ⇒ a5 = a3+2 =
a3

3 + 2
=

1

(5) (3)
c2

...



Example: Power Series Solutions of ODEs, Cont’d

It should be clear that we can continue to compute as many of the
remaining coefficients a6, a7, . . . as we want.
But let’s instead start to write down the solution to see what it
looks like

y (x) =
∞∑
n=0

anx
n

= a0 + a1x + a2x
2 + a3x

3 + a4x
4 + a5x

5 + · · ·

= c1 + c2x +
1

2
c1x

2 +
1

3
c2x

3 +
1

8
c1x

4 +
1

15
c2x

5 + · · ·

= c1

(
1 +

1

2
x2 +

1

8
x4 + · · ·

)
+ c2

(
x +

1

3
x3 +

1

15
x5 + · · ·

)
= c1y1 (x) + c2y2 (x)



Example: Power Series Solutions of ODEs, Cont’d

In that last equation, we have expressed our solution as a linear
combination of the two independent solutions

y1 (x) = 1 +
1

2
x2 +

1

8
x4 + · · ·

y2 (x) = x +
1

3
x3 +

1

15
x5 + · · ·



In fact, y1 and y2 are the following two special solutions with
particularly simple initial conditions at x = 0.

y1 (x) = the unique solution of the ODE satisfying

y (0) = 1

y ′ (0) = 0

y2 (x) = the unique solution satisfying

y (0) = 0

y ′ (0) = 1



Summary: The Power Series Method
Goal: Find a solution of

y ′′ + p (x) y ′ + q (x) y = 0

of the form

y (x) =
∞∑
n=0

anx
n (*)

1. Substitute (*) into each term of the ODE and then
manipulate the resulting power series expression until it is in
standard form.

2. Power series in standard form are readily added together, and
so after Step 1. we’ll see that the differential equation implies
an equation of the form

0 =
∞∑
n=0

An (n, an+2, . . . , a0) xn = 0

which will in turn imply an infinite set of equations
An (n, an+2, . . .) = 0



Summary: The Power Series Method, Cont’d

3. Solve these equations for the highest coefficient that appears
in them, say its an+2:

an+2 = some function of n and the lower coefficients an−1, . . . , a0

4. The resulting equations will be naturally organized so that you
can systematically compute the higher coefficients a2, a3, . . .
in terms of the first two a0 and a1. Set a0 = c1 and a1 = c2
and then compute as many an as you need.

5 Collect together the terms with c1 as a factor as c1y1(x) and
those with c2 as a factor as c2y2(x)/ Then you’ll be able to
express the general solution of the ODE in the usual form

y(x) = c1y1(x) + c2y2(x)
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