Math 2233 - Lecture 18
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Solutions via Taylor Series

Using Power Series as Trial Solutions
Manipulating Power Series

Shifts of Summation Indices

Example: Solving an ODE via Power Series

Summary of the Power Series Method
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y(0) = »
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one can directly compute the Taylor expansion
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of the solution using only the initial conditions and the differential
equation. For

y(0) = »
y'(0) = w
Y'(0) = (=p(x)y' (x)—a(x)y ()] o

~

= —p(0)yo —q(0)yo
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To get values of the higher derivatives, y(0), y(")(0),... we
differentiate the differential equation and then evaluate at x = 0:

Y0 = gy () - atay (]
= —p'(0)y'(0) = p(0)y” (0) — ¢'(0) ¥ (0) — g (0) ¥ (0)
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To get values of the higher derivatives, y(0), y(")(0),... we
differentiate the differential equation and then evaluate at x = 0:

y"(0) = [ (x) = q(x) y (x)] .
0y 00y - Oy - 10O
= P (0%~ p(O) (P ()%~ 70 )
q’(O)yo— (0) yo
2
Y0 = o WY ) - gty (]|

= something computable in terms of yo, y{ and
the derivatives of p(x) and g (x) evaluated at 0.

and so on.
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Solutions via Power Series

The direct calculation of the Taylor series of a solution gets very
strenuous very quickly.

So this direct calculation is really only practical for finding
approximate solutions (where you simply ignore the higher
derivative terms, figuring that their contribution is small when x is
close to 0).

So rather than calculate the numbers y(") (0) directly by taking
derivatives of the differential equation, we'll instead look of
solutions that have the same functional form as a Taylor expansion

y(x) =) anx" (*)
n=0

i.e., a power series function and then figure out what the numbers
ap have to be in order for such a power series function, (*), to be a
solution of the differential equation.
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The basic idea here is just a generalization of what we did for
constant coeffient and Euler-type equations

ay’ +by+cy = 0 = look for solutions of the form e**

axzy” +bxy'+cy = 0 = look for solution of the form x"

except that now for differential equations of the very general form
o0
Y'4p()y +q(x)y=0 = tryy(x)=) apx"
n=0

If we can find numbers ag, a1, ao, ... such that the power series

function
o0
E apx"
n=0

automatically satisfies the differential equation, then we will have
calculated the complete Taylor expansion of the solution. (Because
the Taylor series for a power series function is just the power series
itself.)
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1st Order Example, Cont'd

Plugging the power series expressions for y and y’ into the
differential equation (*) yields

o o
D (n+1)apax" =) anx"
n=0 n=0

Equating the coefficients of like powers of x, we find

(n+1)apt1 = an forn=0,1,2,...

dn

forn=0,1,2,...
n+1

= apt1 =

This infinite set of equations are called the Recursion Relations
for the problem. Using these recursion relations we can express
each of the coefficients a1, as, a3, ... in terms of ag.
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Thus, after posing the trial solution

(e 9]
y(x)= Z apx"
n=0

we were able to construct the general solution (in terms of its
Taylor series about x = 0):

[e.9]

y() =3

n=0
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Manipulating Power Series

Our strategy for solving 2nd Order linear ODEs

Y'+p(x)y +q(x)y=0 (1)

will be to similarly look for solutions of the form

y() =) anx" . (2)
n=0

To carry out this plan, we are going to need to know
(i) How to differentiate power series expressions

(i) How to multiple power series by (typically polynomial)
functions p(x) and g(x)

(iii) How to add power series expressions

(iv) How to extract conditions on the coefficients a, from power
series equations
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Shifts of Summation Indices

The one difficulty one faces when manipulating power series
expressions is that the simple rule for adding power series

i anx" + i byx" = i (an + bp) X" (iii)
n=0 n=0 n=0

only works exactly as written.
Thus, if y (x) = Y725 anx", then

o [o.¢] oo
y +y= Z napx" !+ Z anx" # z (nap + ap) x"
n=0 n=0 n=0

because one cannot group together the coefficients na, and a,
that correspond to different powers of x (respectively, x"~! and
x™). The Rule (iii) requires that we combine the coefficients of the
same power of x to get the sum of two power series.



Shifts of Summation Indices, Cont'd
However, there is a simple operation that allows us to add power
series where the summation indexes n don't necessarily have to be
the same as the power of x in the corresponding series.



Shifts of Summation Indices, Cont'd

However, there is a simple operation that allows us to add power
series where the summation indexes n don't necessarily have to be
the same as the power of x in the corresponding series.

Theorem (Shift of Summation Index)

E apx"Tk = E an—ix"
n=0 n=k



Shifts of Summation Indices, Cont'd

However, there is a simple operation that allows us to add power
series where the summation indexes n don't necessarily have to be
the same as the power of x in the corresponding series.

Theorem (Shift of Summation Index)

E apx"Tk = E an—ix"
n=0 n=k



Shifts of Summation Indices, Cont'd

However, there is a simple operation that allows us to add power
series where the summation indexes n don't necessarily have to be
the same as the power of x in the corresponding series.

Theorem (Shift of Summation Index)
Z apx"tk = E an_kx"
n=0 n=k

Proof. Expanding the left hand side of the above identity, we get



Shifts of Summation Indices, Cont'd

However, there is a simple operation that allows us to add power
series where the summation indexes n don't necessarily have to be
the same as the power of x in the corresponding series.

Theorem (Shift of Summation Index)
Z apx"tk = E an_kx"
n=0 n=k

Proof. Expanding the left hand side of the above identity, we get

E apx"TK = agxX + apx* T 4 apxk 2 4
n=0



Shifts of Summation Indices, Cont'd

However, there is a simple operation that allows us to add power
series where the summation indexes n don't necessarily have to be
the same as the power of x in the corresponding series.

Theorem (Shift of Summation Index)
n=0 n=k
Proof. Expanding the left hand side of the above identity, we get
Z apx"TK = agxX + apx* T 4 apxk 2 4
n=0

Doing the same thing on the right we get

k k+1 k42
Zan—kX" = Ak—kX" + A(k+1)—kX * + a(k+2)—kX AREEE
n=k



Shifts of Summation Indices, Cont'd

However, there is a simple operation that allows us to add power
series where the summation indexes n don't necessarily have to be
the same as the power of x in the corresponding series.

Theorem (Shift of Summation Index)
n=0 n=k
Proof. Expanding the left hand side of the above identity, we get
Z apx"TK = agxX + apx* T 4 apxk 2 4
n=0

Doing the same thing on the right we get

k k+1 k42
Zan—kX" = Ak—kX" + A(k+1)—kX * + a(k+2)—kX AREEE
n=k

= apx* + apxFT 4 axk 2 4



Shifts of Summation Indices, Cont'd

However, there is a simple operation that allows us to add power
series where the summation indexes n don't necessarily have to be
the same as the power of x in the corresponding series.

Theorem (Shift of Summation Index)
Z apx"tk = E an_kx"
n=0 n=k

Proof. Expanding the left hand side of the above identity, we get

E apx"TK = agxX + apx* T 4 apxk 2 4
n=0

Doing the same thing on the right we get

k k+1 k42
Zan—kX" = Ak—kX" + A(k+1)—kX * + a(k+2)—kX AREEE
n=k

= apx* + apxFT 4 axk 2 4

Thus, the two expansions agree with one another.



Shift of Summation Indices, Cont'd
Here is a restatement (and slight generalization) of this basic rule:



Shift of Summation Indices, Cont'd
Here is a restatement (and slight generalization) of this basic rule:
Definition
A power series is in standard form whenever the powers of x that
occur coincide with the summation index n.



Shift of Summation Indices, Cont'd
Here is a restatement (and slight generalization) of this basic rule:
Definition
A power series is in standard form whenever the powers of x that

occur coincide with the summation index n. That is to say, the
power series is exactly of the simple form

[ee}
E anpx"
n=0



Shift of Summation Indices, Cont'd
Here is a restatement (and slight generalization) of this basic rule:
Definition
A power series is in standard form whenever the powers of x that

occur coincide with the summation index n. That is to say, the
power series is exactly of the simple form

[ee}
E anpx"
n=0



Shift of Summation Indices, Cont'd

Here is a restatement (and slight generalization) of this basic rule:

Definition

A power series is in standard form whenever the powers of x that
occur coincide with the summation index n. That is to say, the
power series is exactly of the simple form

[ee}
E anpx"
n=0

A power series that is not in standard form, say,



Shift of Summation Indices, Cont'd
Here is a restatement (and slight generalization) of this basic rule:
Definition
A power series is in standard form whenever the powers of x that

occur coincide with the summation index n. That is to say, the
power series is exactly of the simple form



Shift of Summation Indices, Cont'd
Here is a restatement (and slight generalization) of this basic rule:
Definition
A power series is in standard form whenever the powers of x that

occur coincide with the summation index n. That is to say, the
power series is exactly of the simple form

A power series that is not in standard form, say,

oo
§ : aanik

n=ng

can be rewritten in standard form by replacing the initital value ng
of n by ng &+ k and then replacing n by n= k everywhere else in the
original power series
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oo

3 Xnik
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Shift of Summation Indices: Summary

Thus,
(o) oo
Zaxnik ng — no * k Z 2o X"
n n—n¥k T
n=no n=ngtk
or,

> If you need to shift the n in x""* down by k (to get x")
» Replace n by n — k everywhere to the right of the summation
sign
» Also shift the starting value of n by k, but in the opposite
direction
> If you need to shift the n in x"~% up by k (to get x")
» replace n by n+ k everywhere to the right of the summation
sign
» Also shift the starting value of n by k but in the opposite
direction
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Shift of Summation Indices: Example
Put the following double derivative term in standard form

o0

v =3 (n) (n— 1) a2

n=0
We need to carry out a summation shift so that x"~2 — x". To
do this clearly, set

m=n—2 = n=m+2
then the initial value of m will be
m0:n0—2:0—2:—2

Now make these substitutions into the original power series

expression
(o.9] o

(n)(n—1)a,x"2 = Z (Mm+2)(m+2 — 1) amax™272
n=0 m=-2

= Z (m+2)(m+1)ampax™

m=-—2



Shift of Summation Indices Example, Cont'd
This not quite yet in standard form since the power series begins at
m = —2 rather than m = 0. However, we can always “peel off”
the initial terms of a power series and deal with them separately.



Shift of Summation Indices Example, Cont'd
This not quite yet in standard form since the power series begins at
m = —2 rather than m = 0. However, we can always “peel off”
the initial terms of a power series and deal with them separately. In
the case at hand, we have
S (m+2)(m+1)amx™ = (-2+2)(-2+1)a 2x
m=—2

+(=14+2)(-1+1)a_14ox*

+ Z (m+2)(m+1)am2x™

m=0



Shift of Summation Indices Example, Cont'd

This not quite yet in standard form since the power series begins at
m = —2 rather than m = 0. However, we can always “peel off”
the initial terms of a power series and deal with them separately. In
the case at hand, we have

ST (m42)(m+1)amax™ = (-2+2)(-2+1) a_pox 2

m=-2

+ (—1 + 2) (—]. + 1) a_1+2x*1
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m=0
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Application to Solving ODEs

Now consider the differential equation

Y'=xy'—y=0

We're going to find a power series solution of this differential
equation. We begin by setting y (x) = Y72 anx" and plugging
this trial solution into the differential equation. We have

y" = Z (n)(n—1)a,x"2 (by direct differentiation)
n=0
= Z (n4+2)(n+1)a,ox" (after a shift of summation index)
n=-—2

= 0+0+ Z (n+2)(n+1) apjox" (after peeling off initial terms)

n=0
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Example: Power Series Solutions of ODEs

The next term we need to deal with is xy’

xy! = xg napx""

= Z napx""1+1 (bringing the factor x through the summatic

= E napx"
n=0

We now have each term of the differential equation expressed as a
power series in standard form.
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Thus, if y(x) = > 12 anx" is a solution of

0=y"—xy/' -y

we must have

o o o
0= Z (n+2)(n+1) aptax" — Z napx" — Z anx"
n=0 n=0 n=0

Since each power series on the right is in standard form, we can
combine the terms into a single power series by collecting the total
coefficient of each x"

0= Z[(n+2)(n+1)an+2 — na, — ap] x"
n=0
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Since this last power series must equal 0 for all x, all of its
coefficients must separately vanish:

0=(n+2)(n+1)apnt2—(n+1)a, , n=20,1,2,...
or
(n+1)a, an

The equations RR,, are called the Recursion Relations for the
problem. I'll now show you how the recursion relations can be used
to write the general solution of the original differential equation.
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Example: Power Series Solutions of ODEs, Cont'd
Set

ag = @

d = 0

where ¢; and ¢, are arbitrary constants

Then
dao 1
RRo = ay = do42 = 012 = §C1
dai 1
RR = = — = —
1 = az = adiy2 112 3C2
az 1

RR> = Ay = axip = 5= @) (2)C1



Example: Power Series Solutions of ODEs, Cont'd
Set

ag = @

d = 0

where ¢; and ¢, are arbitrary constants

Then
dao 1
RRo = % =2 = 55 =54
RR = az=a SR C
1 3T A2 = 75 T30
an 1
RR = ag = ario = = c
2 4 2425 575 BIA) 1
1
RR3 = a5 = a342 = L= o
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oo
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Example: Power Series Solutions of ODEs, Cont'd

It should be clear that we can continue to compute as many of the

remaining coefficients ag, a7, ... as we want.
But let’s instead start to write down the solution to see what it
looks like

oo
y(x) = Zanx"
n=0

= ag+aix+ 32X2 + a3x3 + a4x4 + a5x5 + -

Foxtaad 4+ rox 4 et + o+
= C OX + =X — X —C1X — X
LT @XT QAN TR A TR
1 1 1 1
= C1<1+2X2+8X4+"‘>+C2<X+3X3+15X5+'~>

= ay (x) + a2 (x)
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In that last equation, we have expressed our solution as a linear
combination of the two independent solutions

1 1

yi(x) = 1+§X2—|—§X4—|—-"
1 1

v (x) = X+ -x3+ x>+

3 15
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In fact, y; and y» are the following two special solutions with
particularly simple initial conditions at x = 0.

y1 (x) = the unique solution of the ODE satisfying

y(0) =
y'(0) = 0

y2 (x) = the unique solution satisfying

y(0) =0
y(©0) =1
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Summary: The Power Series Method
Goal: Find a solution of

Y'+p(x)y +q(x)y=0
of the form

y(x) =3 anx" (*)
n=0

1. Substitute (*) into each term of the ODE and then
manipulate the resulting power series expression until it is in
standard form.

2. Power series in standard form are readily added together, and
so after Step 1. we'll see that the differential equation implies
an equation of the form

O:ZAn(n,an+2,...,ao)x” =0
n=0

which will in turn imply an infinite set of equations
An(nyapniz,...) =0
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Summary: The Power Series Method, Cont'd

3. Solve these equations for the highest coefficient that appears
in them, say its apyo:

ap+2 = some function of n and the lower coefficients a,_1, ..., ap

4. The resulting equations will be naturally organized so that you
can systematically compute the higher coefficients a, as, . . .
in terms of the first two ag and a;. Set ag =c¢; and a1 = &
and then compute as many a, as you need.

5 Collect together the terms with ¢; as a factor as ¢1y1(x) and
those with ¢, as a factor as cay2(x)/ Then you'll be able to
express the general solution of the ODE in the usual form

y(x) = cayi(x) + caya(x)
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