
Math 2233 - Lecture 19

Agenda:

1. Solutions via Power Series

2. Power Series Manipulations

3. Example: Putting a Power Series in Standard Form

4. Example: The Power Series Method without Initial Conditions

5. Example: The Power Series Method with Initial Conditions

6. Power Series about x0 6= 0

7. Example: A Power Series Solution with Initial Conditions at
x = 1

8. Multiplying
∑∞

n=0 an (x − x0)n by a function



Power Series

A function of the form

y(x) =
∞∑
n=0

anx
n = a0 + a1x + a2x

2 + · · ·

is called a power series.
Such functions behave like infinite polynomials.
In fact, polynomial functions are just a special case of power series
functions

x2 + 2x + 3 = 3 + 2x + x2 + 0 + 0 + · · ·

=
∞∑
n=0

anx
n when an =


3 if n = 0;
2 if n = 1
1 if n = 2
0 if n ≥ 3



The idea we have been pursuing is that power series can be used
as “trial solutions” to differential equations of the form

y ′′ + p(x)y ′ + q (x) y = 0 (1)

That is, we propose that there are solutions of (1) of the form

y (x) =
∞∑
n=0

anx
n (2)

and we then try to use the differential equation to figure out the
exactly what choice of coefficients a0, a1, . . . , will ensure that (2)
is actually a solution of (1).



Power Series Manipulations

(i) Differentiating power series

d

dx

∞∑
n=0

anx
n =

∞∑
n=0

nanx
n−1 (i)

(ii) Multiplying power series by polynomial functions

(c0 + c1x + · · · )
∞∑
n=0

anx
n =

∞∑
n=0

c0anx
n +

∞∑
n=0

c1anx
n+1 + · · · (ii)

(iii) Adding power series expressions

∞∑
n=0

anx
n +

∞∑
n=0

bnx
n =

∞∑
n=0

(an + bn) xn (iii)

(iv) Extracting conditions on the coefficients an from power series
equations

0 =
∞∑
n=0

anx
n for all x ⇒ an = 0 for all n (iv)



However, as we saw in Lecture 18, there are multiple ways of
presenting the same power series using summation notation:

Definition
A power series is in standard form is a power series expression
where the power of x coincides with the summation index.

E.g.,
∞∑
n=0

n(n − 1)anx
n−2 =

∞∑
n=0

(n + 2)(n + 1)an+2x
n

In the equality above, the power series on the right is not in
standard form, but the power series on the right is in standard
form.
This distinction is important, because the rule for adding power
series

∞∑
n=0

anx
n +

∞∑
n=0

bnx
n =

∞∑
n=0

(an + bn) xn (iii)

only works when both power series are in standard form.



Meanwhile operations like differentiation

d

dx

∞∑
n=0

anx
n =

∞∑
n=0

nanx
n−1 (i)

or multiplying a power series by a function

(c0 + c1x + · · · )
∞∑
n=0

anx
n =

∞∑
n=0

c0anx
n +

∞∑
n=0

c1anx
n+1 + · · · (ii)

tend to produce power series functions that are not in standard
form.



Shifts of Summation Indices

Therefore we often have to rewrite power series in standard form
prior to adding it to other power series. This manipulation is called
a shift of summation index. Here are the rules

∞∑
n=n0

Anx
n+k =

∞∑
n=n0+k

An−kx
n

∞∑
n=n0

Anx
n−k =

∞∑
n=n0−k

An+kx
n

Note how the starting value of n always get shifted in the opposite
direction.



Shift of Summation Index Example

Suppose
∞∑
n=0

n (n − 1) anx
n−2 −

∑
n=0

anx
n+1 = 0

What does this tell us about the coefficients an?
Let’s first put each power series expression on the right in standard
form

∞∑
n=0

n (n − 1) anx
n−2 n→ n + 2−−−−−−−−→

∞∑
n=−2

(n + 2) (n + 1) an+2x
n

∑
n=0

anx
n+1 n→ n − 1−−−−−−−−−−→

∞∑
n=1

an−1x
n



So

0 =
∞∑

n=−2
(n + 2) (n + 1) an+2x

n +
∞∑
n=1

an−1x
n

= (0) (−1) a0x
−2 + (1) (0) a1x

−1 + (2) (1) a2x
0

+
∞∑
n=1

(n + 2) (n + 1) an+2x
n

−
∞∑
n=1

an−1x
n

or

0 = 0 + 0 + 2a2 +
∞∑
n=1

[(n + 2) (n + 1) an+2 − an−1] xn



We thus have

0 = 2a2 +
∞∑
n=1

[(n + 2) (n + 1) an+2 − an−1] xn

If a power series equals 0 for all x , then all of its coefficients have
to equal 0. Thus, from the expression above, we see on the right

0 = coefficient of x0 = 2a2 ⇒ a2 = 0

and, for n = 1, 2, 3, . . . (i.e., for each n in the summation)

0 = (n + 2) (n + 1) an+2 − an−1 ⇒ an+2 =
an−1

(n + 2) (n + 1)

So we have

a2 = 0

an+2 =
an−1

(n + 2) (n + 1)
, n = 1, 2, 3, . . .



Example: Solving an IVP via Power Series

Consider the following initial value problem:

(1− x)y ′′ − y = 0

y(0) = 2

y ′(0) = 1

We look for solutions of the form y(x) =
∑∞

n=0 anx
n.

The initial conditions tell us that

a0 = 2

a1 = 1

We now need to figure out values for a2, a3, . . .



Let’s look at the first term of the differential equation

(1− x) y ′′ = (1− x)
∞∑
n=0

n (n − 1) anx
n−2

=
∞∑
n=0

n (n − 1) anx
n−2 −

∞∑
n=0

n (n − 1) anx
n−1

=
∞∑

n=−2
(n + 2) (n + 1) an+2x

n −
∞∑

n=−1
(n + 1) (n) an+1x

n

= 0 + 0 +
∞∑
n=0

(n + 2) (n + 1) an+2x
n

−0 +
∞∑
n=0

(n + 1) nan+1x
n

=
∞∑
n=0

[(n + 2) (n + 1) an+2 − (n + 1) nan+1] xn



Good, we have (x − 1)y ′′ expressed as a power series in standard
form. We can now add it to the term −y =

∑∞
n=0−anxn (which is

already in standard form)

0 = (1− x) y ′′ − y

=
∞∑
n=0

[(n + 2) (n + 1) an+2 − (n + 1) nan+1] xn +
∞∑
n=0

−anxn

=
∞∑
n=0

[(n + 2) (n + 1) an+2 − (n + 1) an+1 − an] xn

and so we must have

[(n + 2) (n + 1) an+2 − (n + 1) nan+1 − an] = 0 , n = 0, 1, 2, . . .

or

an+2 =
n (n + 1) an+1 + an

(n + 2) (n + 1)
, n = 0, 1, 2, . . .



We can now begin calculating the higher coefficients using the
above recursion relations and the initial values a0 = 2 and a1 = 1

a2 = a0+2 =
(0) (1) a1 + a0

(2) (1)
=

a0
2

= 1

a3 = a1+2 =
(1) (2) a2 + a1

(3) (2)
=

2a2 + a1
6

=
2

6
+

1

6
=

1

2

We can continue computing a4, a5, . . . in the same way. But let’s
instead write down at least the beginning of the power series
solution

y (x) = a0 + a1x + a2x
2 + a3x

3 + · · ·

= 2 + x + x2 +
1

2
x3 + · · ·



Initial Values at a Point x0 6= 0
Consider the following initial value problem

xy ′′ − y = 0

y (1) = 1

y ′ (1) = 2

If we pose a solution of the form

y (x) =
∞∑
n=0

anx
n

In this case, the initial value conditions say

1 =
∞∑
n=0

an (1)n = a0 + a1 + · · ·

2 =
∞∑
n=0

nan (1)n = a1 + 2a2 + · · ·

and so we can no longer use the initial conditions to get values for
a0 and a1.



Power Series about x0 6= 0
Rather, one has to instead use a power series of the form

y (x) =
∞∑
n=0

an (x − 1)n (3)

This is still a power series, but now is a power series about
x = 1. It corresponds to taking a Taylor expansion about x = 1
rather than about x = 0.
So let us adopt (3) as our trial solution. The initial conditions
applied to (3) say

1 = y (1) =
∞∑
n=0

an (1− 1)n ⇒ a0 = 1

2 = y ′ (1) =
∞∑
n=0

nan (1− 1)n−1 ⇒ a1 = 2

So, after the change in the expansion point, the initial conditions
again give us the first two coefficients a0 and a1.



Let’s now compute xy ′′ using the power series (3) about x = 1

xy ′′ = x
∞∑
n=0

n (n − 1) an (x − a)n−2

Here we have another issue, we can’t just bring the factor of x
through the sum and adjust the power of (x − a)n

x (x − a)n−2 6= (x − a)n−1

What you have to do is replace the factor x in front by its Taylor
expansion about x = 1.

f (x) = x ⇒ f (1) = 1 , f ′ (1) = 1 , f (n) (1) = 0 for n = 2, 3, . . .

Thus,

x = f (1) + f ′ (1) (x − 1) +
f ′′ (1)

2
(x − 1)2 + · · ·

= 1 + (x − 1)



And so

xy ′′ = (1 + (x − 1))
∞∑
n=0

n (n − 1) an (x − 1)n−2

=
∞∑
n=0

n (n − 1) an (x − 1)n−2 + (x − 1)
∞∑
n=0

n (n − 1) an (x − 1)n−2

=
∞∑
n=0

n (n − 1) an (x − 1)n−2 +
∞∑
n=0

n (n − 1) an (x − 1)n−1

=
∞∑

n=−2
(n + 2) (n + 1) an+2 (x − 1)n +

∞∑
n=−1

(n + 1) (n) an+1 (x − 1)n

= 0 + 0 +
∞∑
n=0

(n + 2) (n + 1) an+2 (x − 1)n

+0 +
∞∑
n=0

n (n + 1) an+1 (x − 1)n

=
∞∑
n=0

[(n + 2) (n + 1) an+2 + n (n + 1) an+1] (x − 1)n



Our expression for xy ′′ is now in standard form and so we can
combine it with the other term in the differential equation (which
is already in standard form)

0 = xy ′′ − y

=
∞∑
n=0

[(n + 2) (n + 1) an+2 + n (n + 1) an+1] (x − 1)n

−
∞∑
n=0

an (x − 1)n

=
∞∑
n=0

[(n + 2) (n + 1) an+2 + n (n + 1) an+1 − an] (x − 1)n

Thus,

an+2 =
−n (n + 1) an+1 + an

(n + 2) (n + 1)



These recursion relations imply

a2 = a0+2 =
− (0) (1) a1 + a0

(2) (1)
=

a0
2

=
1

2

a3 = a1+2 =
− (1) (2) a2 + a1

(3) (2)
= −1

3
a2 +

1

6
a1 = −1

6
+

2

6
=

1

6

and so to O
(

(x − 1)3
)

y (x) =
∞∑
n=0

an (x − 1)n

= a0 + a1 (x − 1) + a2 (x − 1)2 + a3 (x − 1)3 + · · ·

= 1 + 2 (x − 1) +
1

2
(x − 1)2 +

1

6
(x − 1)3 + · · ·



Summary: Power Series solutions about x = x0

Use the trial solution

y(x) =
∞∑
n=0

an (x − x0)n (4)

whenever

I you have initial conditions defined at a point x = x0; or

I you want to find approximate solutions that are accurate near
x = x0

For power series of the form (4):

a0 = y (x0)

a1 = y ′ (x0)

One thing to be careful of:
If you a function p(x) is multiplying a power series like (4), you
need to replace p(x) by its Taylor series about x0, before bringing
it through the summation.



Rule for Multiplying
∑∞

n=0 an (x − x0)n by a function f (x)

Compute the Taylor expansion of f (x) about x = x0:

f (x) = f (x0) + f ′ (x0) (x − x0) +
f ′′ (x0)

n!
(x − x0)2 + · · ·

Then

f (x)
∞∑
n=0

an (x − x0)n = f (x0)
∞∑
n=0

an (x − x0)n

+f ′ (x0) (x − x0)
∞∑
n=0

an (x − x0)n

+
1

2
f ′′ (x0) (x − x0)2

∞∑
n=0

an (x − x0)n

+ · · ·



Rule for Multiplying
∑∞

n=0 an (x − x0)n by a function f (x),
Cont’d

or

f (x)
∞∑
n=0

an (x − x0)n =
∞∑
n=0

f (x0) an (x − x0)n

+
∞∑
n=0

f ′ (x0) an (x − x0)n+1

+
∞∑
n=0

1

2
f ′′ (x0) an (x − x0)n+2

+ · · ·



Example: Multiplication by a function
Write

x2
∞∑
n=0

an (x − 1)n

as a power series about x = 1.
If

f (x) = x2

then

f (1) = 1

f ′ (1) = 2x |x=1 = 2

f ′′ (1) = 2|x=1 = 2

f (n) (1) = 0 if n > 2

and so

x2 = f (x) = f (0) + f ′ (1) (x − 1) +
f ′′(1)

2!
(x − 1)2 + · · ·

= 1 + 2 (x − 1) +
2

2
(x − 1)2



and so

x2
∞∑
n=0

an (x − 1)n =
(

1 + 2 (x − 1) + (x − 1)2
) ∞∑

n=0

an (x − 1)n

=
∞∑
n=0

an (x − 1)n + 2 (x − 1)
∞∑
n=0

an (x − 1)n

+ (x − 1)2
∞∑
n=0

an (x − 1)n

=
∞∑
n=0

an (x − 1)n +
∞∑
n=0

2an (x − 1)n+1

+
∞∑
n=0

an (x − 1)n+2



Now we’ll have to shift some summation indices and write some of
initial terms separately

=
∞∑
n=0

an (x − 1)n +
∞∑
n=0

2an (x − 1)n+1 +
∞∑
n=0

an (x − 1)n+2

=
∞∑
n=0

an (x − 1)n +
∞∑
n=1

2an−1 (x − 1)n +
∞∑
n=2

an−2 (x − 1)n

= a0 + a1 (x − 1) +
∞∑
n=2

an (x − 1)n

+2a0 (x − 1)
∞∑
n=2

an−1 (x − 1)n

+
∞∑
n=2

an (x − 1)n

= a0 + (a1 + 2a0) (x − 1) +
∞∑
n=2

[an + 2an−1 + an−2] (x − 1)n



Example
Example:

y ′′ − xy ′ − y = 0

y (1) = 1

y ′ (1) = 2

Since the initial conditions are defined at x = 1, our trial solution
will be of the form

y (x) =
∞∑
n=0

an (x − 1)n

For this y (x)

y (1) = 1 ⇒ a0 = 1

y ′ (1) = 2 ⇒ a1 = 2



Example, Cont’d
Next, we compute power series expressions in standard form
representing each term in the differential equation:

y ′′ =
∞∑
n=0

n (n − 1) an (x − 1)n−2

= 0 + 0 +
∞∑
n=0

(n + 2) (n + 1) an+2 (x − 1)n

−xy ′ = (−1− (x − 1))
∞∑
n=0

nan (x − 1)n−1

=
∞∑
n=0

−nan (x − 1)n−1 +
∞∑
n=0

−nan (x − 1)n

= 0 +
∞∑
n=0

− (n + 1) an+1 (x − 1)n + +
∞∑
n=0

−nan (x − 1)n



Example, Cont’d

qq − xy ′ =
∞∑
n=0

[− (n + 1) an+1 − nan] (x − 1)n

and, of course,

−y =
∞∑
n=0

−an (x − 1)n



Example, Cont’d
Thus,

0 = y ′′ − xy ′ − y

=
∞∑
n=0

(n + 2) (n + 1) an+2 (x − 1)n

+
∞∑
n=0

[− (n + 1) an+1 − nan] (x − 1)n

+
∞∑
n=0

an (x − 1)n

=
∞∑
n=0

[(n + 2) (n + 1) an+2 − (n + 1) an+1 − nan + an] (x − 1)n

and so

an+2 =
(n + 1) an+1 + nan − an

(n + 2) (n + 1)
=

(n + 1) an+1 + (n − 1) an
(n + 2) (n + 1)



Example, Cont’d

Thus,

a0 = 1

a1 = 2

a2 = a0+2 =
(1) a1 − a0

(2) (1)
=

1

2
a1 −

1

2
a0 = 1− 1

2
=

1

2

a3 = a1+2 =
(2) a2 + (0) a1

(2) (2)
=

a2
2

=
1

4

and so

y (x) = a0 + a1 (x − 1) + a2 (x − 1)2 + a3 (x − 1)3 + · · ·

= 1 + 2 (x − 1) +
1

2
(x − 1)2 +

1

4
(x − 1)3 + · · ·


