
Math 2233 - Lecture 20

Agenda:

1. Announcement: Homework 9 is a Canvas Assignment (rather
than a MyLab Math assignment)

2. Solutions via Power Series

3. Example

4. Convergence of Power Series

5. Singular Points

6. A Simple Criterion for Convergence of Power Series Solutions



Summary: The Power Series Method

Goal: Find a solution of

y ′′ + p (x) y ′ + q (x) y = 0

of the form

y (x) =
∞∑
n=0

an (x − x0)n (*)

1. If initial conditions are given, choose the expansion point x0 to
coincide with the value of x where the initial conditions are
defined. E.g.,

y (2) = 1
y ′ (2) = 3

}
⇒


x0 = 2
a0 = 1
a1 = 3
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2. Express each term of the differential equation as a power
series in standard form
I Differentiate power series term-by-term

I The functions p(x) and q(x) must be replaced by their Taylor
expansions about x0 before multiplying power series.

I Use shifts of summation indices to put power series expressions
back in standard form.

I Sometimes you have to write the initial terms of a power series
separately from the infinite summation.

3. Power series in standard form are readily added together, so
you can combine the power series expressions calculated in
Step 2 to see that the differential equation implies a power
series equation of the form

0 =
∞∑
n=0

An (n, an+2, . . . , a0) (x − x0)n = 0

which will in turn imply an infinite set of equations
An (n, an+2, . . .) = 0
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4. Solve these equations for the highest coefficient that appears
in them, say its an+2:

an+2 = some function of n and the lower coefficients an−1, . . . , a0

5. The resulting equations will be naturally organized so that you
can systematically compute the higher coefficients a2, a3, . . .
in terms of the first two; a0 and a1. Set a0 = c1 and a1 = c2
and then compute as many an as you need.

6. Collect together the terms with c1 as a factor as c1y1(x) and
those with c2 as a factor as c2y2(x)/ Then you’ll be able to
express the general solution of the ODE in the usual form

y(x) = c1y1(x) + c2y2(x)
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Example 1

Find the general solution of

xy ′′ − y = 0

and then find the solution satisfying

y (1) = 1

y ′ (1) = 2

Since we are to eventually impose initial conditions at x = 1, we
shall look for power series solutions about x = 1.

y (x) =
∞∑
n=0

an (x − 1)n
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Example 1, Cont’d

We have

xy ′′ = (1 + (x − 1))
∞∑
n=0

n (n − 1) an (x − 1)n−2

=
∞∑
n=0

n (n − 1) an (x − 1)n−2 +
∞∑
n=0

n (n − 1) an (x − 1)n−1

=
∞∑

n=−2
(n + 2) (n + 1) an+2 (x − 1)n +

∞∑
n=−1

(n + 1) (n) an+1 (x − 1)n

= 0 + 0 +
∞∑
n=0

(n + 2) (n + 1) an+2 (x − 1)n

+0 +
∞∑
n=0

(n + 1) (n) an+1 (x − 1)n

=
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n=0

[(n + 2) (n + 1) an+2 + n (n + 1) an+1] (x − 1)n
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Example 1, Cont’d
Having obtained a power series expresssion in standard form for
xy ′′ we can now combine it with the −y term in the differential
equation:

0 = xy ′′ − y

=
∞∑
n=0

[(n + 2) (n + 1) an+2 + n (n + 1) an+1] (x − 1)n

+
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n=0

(−1) an (x − 1)n

=
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n=0

[(n + 2) (n + 1) an+2 + n (n + 1) an+1 − an] (x − 1)n

Since a power series
∑∞

n=0 An (x − 1)n can equal 0 only when all of its
coefficients An equal 0, we must have

(n + 2) (n + 1) an+2 + n (n + 1) an+1 − an = 0 , n = 0, 1, 2, . . .
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Example 1, Cont’d

or

an+2 =
an − n (n + 1) an+1

(n + 2) (n + 1)
(RR[n])

These are the Recursion Relations for the problem.

To get the general solution, we do not assume any initital
conditions that determine a0 and a1. Instead we set

a0 = c1

a1 = c2

where c1, c2 are arbitrary constants.
We can now employ the recursion relations RR [n] to determine the
remaining coefficients.
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Example 1, Cont’d

Let’s start applying the Recursion Relations

an+2 =
an − n (n + 1) an+1

(n + 2) (n + 1)
(RR[n])

a0 = c1

a1 = c2

RR [0] ⇒ a2 = a0+2 =
a0 − (0) (0 + 1) a0+1

(0 + 2) (0 + 1)
=

c1
2

RR [1] ⇒ a3 = a1+2 =
a1 − (1) (1 + 1) a1+1

(1 + 2) (1 + 1)
=

a1
6
− a2

3
=

c2
6
− c1

6

RR [2] ⇒ a4 = a2+2 =
a2 − (2) (2 + 1) a2+1

(2 + 2) (2 + 1)
=

a2
12
− a3

2

=
c1
24
− 1

2

(c2
6
− c1

6

)
=

1

8
c1 −

1

12
c2
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Example 1, Cont’d
We’ll now begin to write down the general solution

y (x) =
∞∑
n=0

an (x − 1)n

= a0 + a1 (x − 1) + a2 (x − 1)2 + a3 (x − 1)3 + a4 (x − 1)4 + · · ·

= c1 + c2 (x − 1) +
c1
6

(x − 1)2 +
(c2

6
− c1

6

)
(x − 1)3

+

(
1

8
c1 −

1

12
c2

)
(x − 1)4 + · · ·

= c1y1 (x) + c2y2 (x)

where

y1 (x) = 1 + (x − 1)2 − 1

6
(x − 1)3 +

1

8
(x − 1)4 + · · ·

y2 (x) = (x − 1) +
1

6
(x − 1)3 − 1

12
(x − 1)4 + · · ·

are two linearly independent solutions.
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Example 1, Cont’d

Let’s now impose the initial conditions given at the start of the
problem:

1 = y (1) = a0 = c1

2 = y ′ (1) = a1 = c2

and so the solution satisfying the initial conditions is

y (x) = (1) y1 (x) + (2) y2 (x)

= 1 + (x − 1)2 − 1

6
(x − 1)3 +

1

8
(x − 1)4 + · · ·

+2

(
(x − 1) +

1

6
(x − 1)3 − 1

12
(x − 1)4 + · · ·

)
= 1 + 2 (x − 1) + (x − 1)2 +

1

6
(x − 1)3 +

1

24
(x − 1)4 + · · ·
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Convergence of Power Series
It is now time to discuss an important technical question:

Question: Given a function of the form

y(x) =
∞∑
n=0

an (x − x0)n

for what values of x is this a legitimate function?

To see the issue here, consider

y(x) =
∞∑
n=0

xn (an = 1 for all n)

If we substitute x = 1 into this function we get

y(1) =
∞∑
n=0

(1)n ≡ lim
N→∞

N∑
n=0

1 = lim
N→∞

N =∞

and so it does not make sense to evaluate this function at x = 1.
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Convergent Power Series

Thus, when when we find a power series solution to a differential
equation

y(x) =
∞∑
n=0

an (x − x0)n (*)

we need to make sure that

lim
N→∞

N∑
n=0

an (x − x0)n (**)

actually exists before using (*) as a solution.

Definition
A power series (*) for which the limit on the right hand side of
(**) exists for all x in a neighborhood of x0 is called a convergent
power series.
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Facts about Convergent Power Series

Theorem

(i) Suppose the limit on the right hand side of

f (x) = lim
N→∞

N∑
n=0

an (x − x0) (**)

exists when x = x1. Then the limit continues to exist for any
x such that

|x − x0| < |x1 − x0|

(ii) Conversely, suppose the limit on the right hand side of (**)
does not exist for x = x2. Then the limit also fails to exist for
any x such that

|x − x0| > |x2 − x0|



Definition
The radius of convergence of a power series

∞∑
n=0

an (x − x0)n (*)

is the distance R from the expansion point x0 at which the power
series transitions from a convergent power series to a divergent
power series.



In other words, if R is the radius of convergence of

y(x) =
∞∑
n=0

an (x − x0)n (*)

then (*) defines a legitimate function of all x such that
|x − x0| < R. Thus,

y(x) =
∞∑
n=0

an (x − x0)n (*)

does not makes sense as a function unless x ∈ (x0 − R, x0 + R).

What I’ll describe next is a simple way of figuring out the radius of
convergence of a power series solution to

y ′′ + p(x)y ′ + q(x)y = 0
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Singular Points and the Convergence of Series Solutions

As it stands our method of finding power series solutions to
differential equations of the form

y ′′ + p(x)y ′ + q(x)y = 0

is purely formal.

For a series solution

∞∑
n=0

an(x − xo)n

might not converge for any x (and we need the series to converge
if we are to use it to define a legitimate function of x).
To discuss this situation with the care it deserves, we must first
introduce a little more formal development.
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Analytic Functions

Definition
A function f is said to be analytic about the point xo if f (x) can
be expressed as a convergent power series (e.g. by computing its
Taylor expansion) near that point;

i.e.,

f (x) =
∞∑
n=0

f n (x0)

n!
(x − xo)n

with some non-zero radius of convergence.
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Theorem
If the functions p(x) and q(x) are analytic at the point xo , then
one can find (linear) functions an of ao and a1 so that the general
solution of

y ′′ + p(x)y ′ + q(x)y = 0 (1)

can be expressed as a power series solution

y(x) =
∞∑
n=0

an(ao , a1)(x − xo)n = aoy1(x) + a1y2(x) ,

where y1 and y2 are two linearly independent solutions of (1) which
are analytic at xo . Moreover, the radius of convergence of the
power series expansions of y1 and y2 is at least as large as the
minimum of the radii of convergence of the power series
expressions (about x0) for p(x) and q(x)
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Thus, if we know the radii of convergence p(x) and q(x) we
needn’t do anything as laborious as compute the radius of
convergence of our solution using things like the ratio test.

We
just need to figure out the radii of convergence of the power series
expansions of p(x) and q(x) about x0.

Theorem
If f (x) is the ratio of two polynomial functions;

f (x) =
P(x)

Q(x)

and Q(xo) 6= 0, then

(i) f (x) has a power series expansion about x = xo .

(ii) The radius of convergence of this power series about xo is
equal to the distance in the complex plane between xo and
the nearest zero of Q(x).
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Example

What is the radius of convergence of the Taylor expansion of

f (x) =
1

1 + x2

about x = 2?

The denominator vanishes when x = ±i . To determine the radius
of convergence we need only compute the distance in the complex
plane between x = ±i and the expansion point.
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Here is a picture of the situation:



In terms of the Cartesian coordinates of the complex plane
(z ∈ C→ z = x + iy)) the points z = ±i are given by,
respectively, (0,1) and (0,-1), while the coordinates of the real
number z = 2 = 2 + (0)i are given by (2,0).

The distance between 2 and ±i is then√
(2− 0)2 + (0∓ 1)2 =

√
5 ,

so the radius of convergence of the Taylor series expansion of 1
1+x2

about x = 2 is
√

5.
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Example

Find the radius of convergence of the Taylor series expansion of

f (x) =
1

(x + 2)(x − 3)
(l26-05)

about xo = 4.

The zeros of the denominator are x = −2, 3. The distance (in the
complex plane from xo = 4 = (4, 0) to the closest zero
x = 3 = (3, 0) is √

(4− 3)2 − (0− 0)2 = 1 ,

so the radius convergence of the Taylor series expansion of f (x)
about xo = 4 is 1.
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Let us now combine the two theorems to determine the minimal
radius of convergence of the power series solution of

(x2 − 2x − 3)y ′′ + xy ′ + 4(x − 3)y = 0 (l26-06)

about xo = 4.

This differential equation is equivalent to

y ′′ +
x

x2 − 2x − 3
y ′ +

4

x + 2
y = 0 .

The zeros of x2 − 2x − 3 = (x − 3)(x + 2) are x = 3,−2, and -2 is
the only zero x + 2. So the singular points are x = −2 and x = 3.
Below is a picture of the situation:
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The singular point that’s closest to the expansion point x = 4 is
obviously the one at x = 3.

Since |4− 3| = 1, the radius of convergence of a power series
solution about xo = 4 is 1.
Thus, if

y(x) =
∞∑
n=0

an (x − 4)n

is a power series solution of(
x2 − 2x − 3

)
y ′′ + xy ′ + 4 (x − 3) y = 0

then y(x) will be a well-defined function of x only when 3 < x < 5.
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Summary: Determining the Radius of Convergence of
Power Series Solutions

Suppose

y (x) =
∞∑
n=0

an (x − x0)n

is a power series solution of

y ′′ + p (x) y ′ + q (x) y = 0

where

p (x) =
A (x)

B (x)
, q (x) =

C (x)

D (x)

1. Determine the zeros of the denominators B (x) and D (x) in
the complex plane C. Let’s say they are {z1, . . . , zk}

2. Pick the zj that’s closest to x0 in the complex plane (using
Cartesian coordinates (x , y) for zj = xj + iyj to compute
distances in C).

3. R = ‖zj − x0‖ =
√

(xj − x0)2 + (yj − 0)2
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