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Convergence of Power Series Solutions

In Lecture 20, it was pointed out that a power series function, in
particular, a power series solution

y (x) =
∞∑
n=0

an (x − x0)n (1)

of a differential equation

y ′′ + p (x) y ′ + q (x) y = 0 (2)

may or may not define a legitimate function.

The issue here is that for some values of x it may happen that

y (x) ≡ lim
N→∞

N∑
n=0

an (x − x0)n (3)

may not exist.
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However, it turns out that the range of x for which the limit in (3)
exists, can be determined from the coefficients functions p (x) and
q (x) in the differential equation (2)

Suppose

p (x) =
A (x)

B (x)
, q (x) =

C (x)

D (x)

are rational functions (so A (x) ,B (x) ,C (x) ,D (x) are all
polynomials in x).
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Then we have the following procedure for determining the range of
x for which a solution (1) of (2) is valid.

1. Find the zeros of the denominators B (x) and D (x) in the
complex plane. Let’s label them {z1, . . . , zk}. We’ll refer to
these points as the singular points of the differential
equation.

2. Calculate the distance between the each points zi and the
expansion point x0 of your solution (3).

3. The shortest of the distances calculate in Step 2 will be the
(minimal) radius of convergence R of a solution of the form
(1).

4.

5. And so a solution of the form (3) will be a valid function for
all x ∈ (x0 − R, x0 + R).
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Example

Consider the ODE(
x2 − 2x − 3

)
y ′′ + xy ′ + (x + 1) y = 0

Find the interval (a, b) ⊂ R for which a power series solution of
the form

y (x) =
∞∑
n=0

an (x − 2)n

is defined.
The ODE in standard form we have

y ′′ +
x

x2 − 2x − 3
y ′ +

x + 1

x2 − 2x − 3
y = 0

and so

p (x) =
x

x2 − 2x − 3
=

x

(x − 3) (x + 1)

q (x) =
x + 1

x2 − 2x − 3
=

x + 1

(x − 3) (x + 1)
=

1

x − 3
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We see that p (x) is undefined when x = 3 and when x = −1
(because at those points the denominator of p (x) is 0),

and q (x)
is undefined at x = 3.

The singular points of the differential equation are thus z1 = 3 and
z2 = −1.
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Below is a picture of the situation:

Clearly, the singular point closest to the expansion point x0 = 2 is
z1 = 3. Hence, the radius of convergence of a power series solution
about x = 2 will be

R = |2− 3| = 1

Conclusion: A series solution

y (x) =
∞∑
n=0

an (x − 2)n

will therefore be valid on the interval (2− R, 2 + R) = (1, 3).
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More on Singular Points

Definition
A (in general, complex) number z is called a singular point of the
differential equation

y ′′ + p (x) y ′ + q (x) y = 0 (4)

if either

lim
x→z

p (x) does not exist, or

lim
x→z

q (x) does not exist

From the preceding discussion, we know that power series solutions
of ODEs such as (4) inevitably fail to make sense as functions of x
as we approach a singular point.

This does not necessarily mean, however, that we don’t have valid
solutions near singular points.
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Example

x2y ′′ − xy ′ − 3y = 0

This is an Euler-type equation, and so we can expect solutions of
the form y (x) = x r . Its auxiliary equation is

0 = r2 + (−1− 1) y − 3 = r2 − 2r − 3 = (r − 3) (r + 1)

and so we have the following two independent solutions

y1 (x) = x3

y2 (x) = x−1

OTOH, the differential equation in standard form is

y ′′ − 1

x
y ′ − 3

x2
y = 0

and so has it has a singular point at x = 0. Note that one solution
y1 (x) = x3 makes perfectly good sense near the singular point at
x = 0, while the other solution y2 (x) = 1

x is undefined at x = 0.
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Moral of the Example

Thus,

I Just because a differential equation has a singular point at x1,
doesn’t mean that it doesn’t have a valid solution near x1.

I On the other hand, having a singular point at x1, can still
cause problems for solutions near x1.

What I aim to show you next is that so long as the singularities of
the coefficient functions p (x) and q (x) are not too bad (in a sense
that will be made precise in a second), we will be able extend our
power series technique to find generalized power series solutions
that are valid functions right up to (but sometimes not including)
the singular point.
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Regular Singular Points

Here’s what I mean by “a singularity not being too bad”.

Definition
Consider a differential equation

y ′′ + p (x) y ′ + q (x) y = 0

with a singular point at x = z . If

I the singularity of p (x) as x approaches z is no worse than
that of 1

x−z , and

I the singularity of q (x) as x approaches z is no worse than
that of 1

(x−z)2

Then z is said to be a regular singular point. Otherwise, it is said
to be an irregular singular point.
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Alternative Definitions

We say that a function f (x) has a singular point at x = z if

lim
x→z

f (x) does not exist

The degree of a singularity of f (x) at z is the smallest number n
such that

lim
x→z

(x − z)n f (x) does exist

Note that the factor (x − z)n in (x − z)n f (x) can be used to
cancel as many as n factors of 1

x−z in the denominator of f (x). So
if f (x) is of the form

f (x) =
g(x)

(x − z)n

with g(z) 6= 0 , then
deg (f , z) = n
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Here is the reason for focusing on regular singular points.

Theorem
If x1 is a regular singular point of a differential equation

y ′′ + p (x) y ′ + q (x) y = 0

then the differential equation will have at least one solution of the
form

y (x) =
∞∑
n=0

an (x − x1)n+r

More over, such a generalized power series solution will be valid at
all points sufficiently close to x1; except perhaps at x = x1 itself.

I’ll show you how generalized power series work in a minute. But
first let’s get some practice in identifying regular singular points.
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Example 1

The differential equation

y ′′ +
3

(x − 1)(x + 1)2
y ′ +

2x + 1

(x − 2)2(x + 2)(x − 1)3
y = 0

has singular points at x = 1,−1, 2,−2. Now

z deg (p(x), z) ≤? 1 deg (q(x), z) ≤? 2 Type
1 1 ≤ 1 X 3 6≤ 2 ! irregular
− 1 2 6≤ 1 ! 0 ≤ 2 X irregular
2 0 ≤ 1 X 2 ≤ 2 X regular
− 2 0 ≤ 1 X 1 ≤ 2 X regular

So x = ±1 are irregular singular points and x = ±2 are regular
singular points.
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Example 2

Identify and classify the singular points of

x2(1− x2)2y ′′ + x(1 + x)2y ′ + (1− x)y ′ . (1)

In this case, when we divide by x2(1− x2)2 to put the equation in
standard form, we have

p(x) =
x(1 + x)(1 + x)

x2(1 + x)2(1− x)2
=

1

x(1− x)2
(2)

and

q(x) =
(1− x)

x2(1 + x)2(1− x)2
=

1

x2(1 + x)2(1− x)
. (3)

Thus, we have regular singular points at x = 0,−1 and an irregular
singular point at x = 1.



Solutions of Bessel’s Equation

Bessel’s equation in a 2nd order linear ODE that often arises when
solving systems coordinatized by spherical coordinates.
Bessel’s equation is actually a family of diffential equations

R ′′ +
1

r
R ′ +

(
n2 − m2

r2

)
R = 0 (5)

where n and m are integers. Note that it has a regular singular
point at r = 0.

So that the main ideas of the generalized power series technique
are presented as simply as possible, we’ll focus on the special case
where n = 1 and m = 0;

r2R ′′ + rR ′ + r2R = 0 (6)

Solutions of (6) are called Bessel functions of order 0.
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Let us rewrite (6) as

x2y ′′ + xy ′ + x2y = 0 (3)

(just changing the labels of variables to the way we usually write an
ODE in this course).

We shall look for solutions of (3) of the form

y = x r
∞∑
n=0

anx
n

= a0x
r + a1x

r+1 + a2x
r+2 + · · ·

=
∞∑
n=0

anx
n+r

We can assume (without loss of generality) that a0 6= 0; so that
a0x

r really is the leading term of this solution.
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We have

x2y ′′ = x2
∞∑
n=0

(n + r) (n + r − 1) anx
n+r−2

=
∞∑
n=0

(n + r) (n + r − 1) anx
n+r

xy ′ = x
∞∑
n=0

(n + r) anx
n+r−1 =

∞∑
n=0

(n + r) anx
n+r

x2y = x2
∞∑
n=0

anx
n+r =

∞∑
n=0

anx
n+r+2 =

∞∑
n=2

an−2x
n+r



And so when we replace x2y ′′, xy ′ and x2y with their series
expressions we get

0 =
∞∑
n=0

(n + r) (n + r − 1) anx
n+r+

∞∑
n=0

(n + r) anx
n+r+

∞∑
n=2

an−2x
n+r

The first two series begin two steps before the last series, so before
we can combine the power series we have to “peel off” the two
initial terms of the first two series:

0 = (r) (r − 1) a0x
r + (r + 1) (r) a1x

r+1

+
∞∑
n=2

(n + r) (n + r − 1) anx
n+r

+ra0x
r + (r + 1) a1x

r+1 +
∞∑
n=2

(n + r) anx
n+r

+
∞∑
n=2

an−2x
n+r

= [r (r − 1) + r ] a0x
r + (r (r + 1) + r + 1) a1x

r+1

+
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n=2

[(n + r) (n + r − 1) an + (n + r) an + an−2] xn+r
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Note that we have now stratified the right hand side as sum of
terms, each term having a distinct power of x as a factor.

We now demand that the total coefficient of each power of x
separately vanish.
The lowest order term is

[r (r − 1) + r ] a0x
r = r2a0x

r

For this to vanish for all x we need

r2a0 = 0 ⇒ r = 0

since our ansatz for y assumes that a0 6= 0.
The next higher order term is (using r = 0)

(r (r + 1) + r + 1) a1x
r+1 = (0 (0 + 1) + 0 + 1) a1x = a1x

So if this to vanish for all x we must have a1 = 0.
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Let’s now look at total coefficient of xn+r in the sum
∑∞

n=2.

This
must vanish, and so

0 = [(n + r) (n + r − 1) an + (n + r) an + an−2]

= [n (n − 1) an + nan + an−2]

= nan + an−2

and so
an =

an−2
n

, n = 2, 3, 4, . . .

These are our Recursion Relations.
And we have

r = 0

a1 = 0

coming from the two leading terms of our expression of the
differential equation as a generalized power series equation.
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Using the recursion relations

an =
−an−2

n
, n = 2, 3, 4, 5, . . .

we can now begin to write down a solution.

We have

a0 = arbitrary constant

a1 = 0

a2 =
−a0

2

a3 =
−a1

3
= −0

3
= 0

a4 =
−a2

4
=

a0
4 · 2

=
a0

222!

a5 = −a3
2

= 0

a6 = −a4
6

= − a0
6 · 4 · 2

= − a0
233!
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We thus observe the following pattern

an =

{
(−1)k a0

2kk!
if n = 2k

0 if n is odd

And so we can write

y (x) = a0

∞∑
k=0

(−1)k

2kk!
x2k

as the solution to (3).

Note that this solution continues to make sense even as we let x
approach the regular singular point at x = 0.
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