Lecture 23: Review and Summary

Agenda:

- I. Differential Equations: Solutions and Classification
- II. 1st Order Differential Equations Approximate Methods
- III. 1st Order Differential Equations Exact Methods
- IV. 2nd Order Linear Ordinary Differential Equations: General Theory
- V. Laplace Transform Method
- VI. Power Series Solutions of 2nd Order Linear ODEs

 Ordinary Differential Equations (ODEs) vs. Partial Differential Equations (PDEs)

- Ordinary Differential Equations (ODEs) vs. Partial Differential Equations (PDEs)
- ► The Order of a Differential Equation

- Ordinary Differential Equations (ODEs) vs. Partial Differential Equations (PDEs)
- ► The Order of a Differential Equation
- Linear vs. Nonlinear ODEs

$$\frac{dy}{dx} = F(x, y)$$

► General Form

$$\frac{dy}{dx} = F(x, y)$$

Direction Fields and the Graphical Method

$$\frac{dy}{dx} = F(x, y)$$

- Direction Fields and the Graphical Method
- Numerical Methods

$$\frac{dy}{dx} = F(x, y)$$

- Direction Fields and the Graphical Method
- Numerical Methods

$$\frac{dy}{dx} = F(x, y) \quad , \quad y(x_0) = y_0$$

$$\frac{dy}{dx} = F(x, y)$$

- Direction Fields and the Graphical Method
- Numerical Methods

$$\frac{dy}{dx} = F(x, y) \quad , \quad y(x_0) = y_0$$

$$x_0 = x_0$$

$$y_0 = y_0$$

$$\frac{dy}{dx} = F(x, y)$$

- Direction Fields and the Graphical Method
- Numerical Methods

$$\frac{dy}{dx} = F(x, y) \quad , \quad y(x_0) = y_0$$

$$x_0 = x_0$$

$$x_{i+1} = x_i + \Delta x$$

$$y_{i+1} = y_i + F(x_i, y_i) \Delta x$$

▶ General Solution vs. Unique Solution to Initial Value Problem

- ▶ General Solution vs. Unique Solution to Initial Value Problem
- ► Fundamental Theorem of Calculus

- General Solution vs. Unique Solution to Initial Value Problem
- ► Fundamental Theorem of Calculus

$$\frac{dy}{dx} = f(x)$$

- ► General Solution vs. Unique Solution to Initial Value Problem
- ► Fundamental Theorem of Calculus

$$\frac{dy}{dx} = f(x)$$
 \Rightarrow $y(x) = \int f(x) dx + C$

- ▶ General Solution vs. Unique Solution to Initial Value Problem
- ► Fundamental Theorem of Calculus

$$\frac{dy}{dx} = f(x)$$
 \Rightarrow $y(x) = \int f(x) dx + C$

Separable Equations

- General Solution vs. Unique Solution to Initial Value Problem
- ► Fundamental Theorem of Calculus

$$\frac{dy}{dx} = f(x)$$
 \Rightarrow $y(x) = \int f(x) dx + C$

► Separable Equations

$$M(x) + N(y)\frac{dy}{dx} = 0$$

- General Solution vs. Unique Solution to Initial Value Problem
- ► Fundamental Theorem of Calculus

$$\frac{dy}{dx} = f(x)$$
 \Rightarrow $y(x) = \int f(x) dx + C$

► Separable Equations

$$M(x) + N(y) \frac{dy}{dx} = 0 \quad \Rightarrow \quad \int M(x) dx + \int N(y) dy = C$$

- General Solution vs. Unique Solution to Initial Value Problem
- ► Fundamental Theorem of Calculus

$$\frac{dy}{dx} = f(x)$$
 \Rightarrow $y(x) = \int f(x) dx + C$

► Separable Equations

$$M(x) + N(y) \frac{dy}{dx} = 0 \quad \Rightarrow \quad \int M(x) dx + \int N(y) dy = C$$

► First Order Linear ODEs

- ► General Solution vs. Unique Solution to Initial Value Problem
- ► Fundamental Theorem of Calculus

$$\frac{dy}{dx} = f(x)$$
 \Rightarrow $y(x) = \int f(x) dx + C$

► Separable Equations

$$M(x) + N(y) \frac{dy}{dx} = 0 \quad \Rightarrow \quad \int M(x) dx + \int N(y) dy = C$$

First Order Linear ODEs

$$y' + p(x)y = g(x)$$

- ► General Solution vs. Unique Solution to Initial Value Problem
- ► Fundamental Theorem of Calculus

$$\frac{dy}{dx} = f(x)$$
 \Rightarrow $y(x) = \int f(x) dx + C$

► Separable Equations

$$M(x) + N(y) \frac{dy}{dx} = 0 \quad \Rightarrow \quad \int M(x) dx + \int N(y) dy = C$$

First Order Linear ODEs

$$y'+p(x)y=g(x)$$
 \Rightarrow $y(x)=\frac{1}{\mu(x)}\int \mu(x)g(x)dx+\frac{C}{\mu(x)}$

- ► General Solution vs. Unique Solution to Initial Value Problem
- ► Fundamental Theorem of Calculus

$$\frac{dy}{dx} = f(x)$$
 \Rightarrow $y(x) = \int f(x) dx + C$

► Separable Equations

$$M(x) + N(y) \frac{dy}{dx} = 0 \quad \Rightarrow \quad \int M(x) dx + \int N(y) dy = C$$

First Order Linear ODEs

$$y'+p(x)y=g(x)$$
 \Rightarrow $y(x)=\frac{1}{\mu(x)}\int \mu(x)g(x)dx+\frac{C}{\mu(x)}$

where $\mu(x)$ is the "integrating factor"

$$\mu(x) = \exp\left[\int p(x) dx\right]$$

- ► General Solution vs. Unique Solution to Initial Value Problem
- ► Fundamental Theorem of Calculus

$$\frac{dy}{dx} = f(x)$$
 \Rightarrow $y(x) = \int f(x) dx + C$

► Separable Equations

$$M(x) + N(y)\frac{dy}{dx} = 0 \quad \Rightarrow \quad \int M(x) dx + \int N(y) dy = C$$

► First Order Linear ODEs

$$y'+p(x)y=g(x)$$
 \Rightarrow $y(x)=\frac{1}{\mu(x)}\int \mu(x)g(x)dx+\frac{C}{\mu(x)}$

where $\mu(x)$ is the "integrating factor"

$$\mu(x) = \exp\left[\int p(x) dx\right]$$

Remember

Exact Equations

Exact Equations

$$M(x,y) + N(x,y) \frac{dy}{dx} = 0$$
 with $\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$

Exact Equations

$$M(x,y) + N(x,y)\frac{dy}{dx} = 0 \quad \text{with} \quad \frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$$
$$\Phi(x,y) = \begin{cases} \int M(x,y) \, \partial x + h_1(y) \\ \int N(x,y) \, \partial y + h_2(x) \end{cases}$$

Exact Equations

$$M(x,y) + N(x,y) \frac{dy}{dx} = 0$$
 with $\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$

$$\Phi(x,y) = \begin{cases} \int M(x,y) \, \partial x + h_1(y) \\ \int N(x,y) \, \partial y + h_2(x) \end{cases}$$

Figure out correct choice for arbitrary functions $h_1(y)$, $h_2(x)$ Solve $\Phi(x,y) = C$ for y(x)

IV. 2nd Order Linear ODEs:

Standard Forms; Homogeneous vs. Nonhomogeneous Cases

$$y'' + p(x)y' + q(x)y = 0$$

$$y'' + p(x)y' + q(x)y = g(x)$$
(0)
(1)

$$y'' + p(x)y' + q(x)y = 0 (0)$$

Superposition Principle: If $y_1(x)$ and $y_2(x)$ are solutions of (0), then so is $y(x) = c_1y_1(x) + c_2y_2(x)$

$$y'' + p(x)y' + q(x)y = 0 (0)$$

- Superposition Principle: If $y_1(x)$ and $y_2(x)$ are solutions of (0), then so is $y(x) = c_1y_1(x) + c_2y_2(x)$
- Form of General Solution:

$$y'' + p(x)y' + q(x)y = 0 (0)$$

- Superposition Principle: If $y_1(x)$ and $y_2(x)$ are solutions of (0), then so is $y(x) = c_1y_1(x) + c_2y_2(x)$
- Form of General Solution: Every solution of (0) is of the form $y(x) = c_1 y_1(x) + c_2 y_2(x)$

$$y'' + p(x)y' + q(x)y = 0 (0)$$

- Superposition Principle: If $y_1(x)$ and $y_2(x)$ are solutions of (0), then so is $y(x) = c_1y_1(x) + c_2y_2(x)$
- Form of General Solution: Every solution of (0) is of the form $y(x) = c_1 y_1(x) + c_2 y_2(x)$, where

$$0 \neq W[y_1, y_2](x) = y_1(x) y_2'(x) - y_1'(x) y_2(x)$$

$$y'' + p(x)y' + q(x)y = 0 (0)$$

- Superposition Principle: If $y_1(x)$ and $y_2(x)$ are solutions of (0), then so is $y(x) = c_1y_1(x) + c_2y_2(x)$
- Form of General Solution: Every solution of (0) is of the form $y(x) = c_1y_1(x) + c_2y_2(x)$, where

$$0 \neq W[y_1, y_2](x) = y_1(x) y_2'(x) - y_1'(x) y_2(x)$$

Reduction of Order Formula:

$$y'' + p(x)y' + q(x)y = 0 (0)$$

- Superposition Principle: If $y_1(x)$ and $y_2(x)$ are solutions of (0), then so is $y(x) = c_1y_1(x) + c_2y_2(x)$
- Form of General Solution: Every solution of (0) is of the form $y(x) = c_1y_1(x) + c_2y_2(x)$, where

$$0 \neq W[y_1, y_2](x) = y_1(x) y_2'(x) - y_1'(x) y_2(x)$$

Reduction of Order Formula:

$$y_2 = y_1(x) \int \frac{1}{(y_1(x))^2} \exp \left[-\int p(x) dx\right]$$

The Simple Cases of Homogeneous Linear ODEs

Constant Coefficients Case:

$$y(x) = e^{\lambda x}$$

$$y(x) = e^{\lambda x}$$

 $\Rightarrow a\lambda^2 + b\lambda + c = 0$

$$y(x) = e^{\lambda x}$$

$$\Rightarrow a\lambda^{2} + b\lambda + c = 0$$

$$y(x) = \begin{cases} c_{1}e^{\lambda_{1}x} + c_{2}e^{\lambda_{1}x} & \lambda_{1}, \lambda_{2} \in \mathbb{R} \\ c_{1}e^{\lambda x} + c_{2}xe^{\lambda x} & \lambda \in \mathbb{R} \\ c_{1}e^{\alpha x}\cos(\beta x) + c_{2}e^{\alpha x}\sin(\beta x) & \lambda = \alpha \pm i\beta \in \mathbb{C} \end{cases}$$

► Constant Coefficients Case: ay'' + by' + cy = 0.

$$y(x) = e^{\lambda x}$$

$$\Rightarrow a\lambda^{2} + b\lambda + c = 0$$

$$y(x) = \begin{cases} c_{1}e^{\lambda_{1}x} + c_{2}e^{\lambda_{1}x} & \lambda_{1}, \lambda_{2} \in \mathbb{R} \\ c_{1}e^{\lambda x} + c_{2}xe^{\lambda x} & \lambda \in \mathbb{R} \\ c_{1}e^{\alpha x}\cos(\beta x) + c_{2}e^{\alpha x}\sin(\beta x) & \lambda = \alpha \pm i\beta \in \mathbb{C} \end{cases}$$

► Euler-type Case:

► Constant Coefficients Case: ay'' + by' + cy = 0.

$$y(x) = e^{\lambda x}$$

$$\Rightarrow a\lambda^{2} + b\lambda + c = 0$$

$$y(x) = \begin{cases} c_{1}e^{\lambda_{1}x} + c_{2}e^{\lambda_{1}x} & \lambda_{1}, \lambda_{2} \in \mathbb{R} \\ c_{1}e^{\lambda x} + c_{2}xe^{\lambda x} & \lambda \in \mathbb{R} \\ c_{1}e^{\alpha x}\cos(\beta x) + c_{2}e^{\alpha x}\sin(\beta x) & \lambda = \alpha \pm i\beta \in \mathbb{C} \end{cases}$$

► Constant Coefficients Case: ay'' + by' + cy = 0.

$$y(x) = e^{\lambda x}$$

$$\Rightarrow a\lambda^{2} + b\lambda + c = 0$$

$$y(x) = \begin{cases} c_{1}e^{\lambda_{1}x} + c_{2}e^{\lambda_{1}x} & \lambda_{1}, \lambda_{2} \in \mathbb{R} \\ c_{1}e^{\lambda x} + c_{2}xe^{\lambda x} & \lambda \in \mathbb{R} \\ c_{1}e^{\alpha x}\cos(\beta x) + c_{2}e^{\alpha x}\sin(\beta x) & \lambda = \alpha \pm i\beta \in \mathbb{C} \end{cases}$$

$$y(x) = x^m$$

► Constant Coefficients Case: ay'' + by' + cy = 0.

$$y(x) = e^{\lambda x}$$

$$\Rightarrow a\lambda^{2} + b\lambda + c = 0$$

$$y(x) = \begin{cases} c_{1}e^{\lambda_{1}x} + c_{2}e^{\lambda_{1}x} & \lambda_{1}, \lambda_{2} \in \mathbb{R} \\ c_{1}e^{\lambda x} + c_{2}xe^{\lambda x} & \lambda \in \mathbb{R} \\ c_{1}e^{\alpha x}\cos(\beta x) + c_{2}e^{\alpha x}\sin(\beta x) & \lambda = \alpha \pm i\beta \in \mathbb{C} \end{cases}$$

$$y(x) = x^m$$

 $\Rightarrow am^2 + (b-a)m + c = 0$

► Constant Coefficients Case: ay'' + by' + cy = 0.

$$\begin{array}{lll} y\left(x\right) & = & e^{\lambda x} \\ \Rightarrow & & a\lambda^2 + b\lambda + c = 0 \\ \\ y\left(x\right) & = & \left\{ \begin{array}{lll} c_1 e^{\lambda_1 x} + c_2 e^{\lambda_1 x} & \lambda_1, \lambda_2 \in \mathbb{R} \\ c_1 e^{\lambda x} + c_2 x e^{\lambda x} & \lambda \in \mathbb{R} \\ c_1 e^{\alpha x} \cos\left(\beta x\right) + c_2 e^{\alpha x} \sin\left(\beta x\right) & \lambda = \alpha \pm i\beta \in \mathbb{C} \end{array} \right. \end{array}$$

$$y(x) = x^{m}$$

$$\Rightarrow am^{2} + (b - a)m + c = 0$$

$$y(x) = \begin{cases} c_{1}x^{m_{1}} + c_{2}x^{m_{2}} & m_{1}, m_{2} \in \mathbb{R} \\ c_{1}x^{m} + c_{2}x^{m} \ln|x| & m \in \mathbb{R} \\ c_{1}x^{\alpha} \cos(\beta \ln|x|) + c_{2}x^{\alpha} \sin(\beta \ln|x|) & m = \alpha \pm i\beta \in \end{cases}$$

$$y'' + p(x)y' + q(x)y = g(x)$$
 (1)

$$y'' + p(x)y' + q(x)y = g(x)$$
 (1)

► Form of the General Solution:

$$y'' + p(x)y' + q(x)y = g(x)$$
 (1)

► Form of the General Solution:

$$Y(x) = Y_p(x) + c_1y_1(x) + c_2y_2(x)$$

$$y'' + p(x)y' + q(x)y = g(x)$$
 (1)

► Form of the General Solution:

$$Y(x) = Y_p(x) + c_1y_1(x) + c_2y_2(x)$$

Variation of Parameters Formula:

$$Y_{p}(x) = -y_{1}(x) \int \frac{y_{2}(x) g(x)}{W[y_{1}, y_{2}]} dx + y_{2}(x) \int \frac{y_{1}(x) g(x)}{W[y_{1}, y_{2}]} dx$$

$$\mathcal{L}[f](s) \equiv \int_0^\infty f(x) e^{-sx} dx$$

$$\mathcal{L}[f](s) \equiv \int_{0}^{\infty} f(x) e^{-sx} dx$$

$$\mathcal{L}[y'] = s\mathcal{L}[y] - y(0)$$

$$\mathcal{L}[f](s) \equiv \int_{0}^{\infty} f(x) e^{-sx} dx$$

$$\mathcal{L}[y'] = s\mathcal{L}[y] - y(0)$$

$$\mathcal{L}[y''] = s^{2}\mathcal{L}[y] - sy(0) - y'(0)$$

► Laplace Transforms

$$\mathcal{L}[f](s) \equiv \int_{0}^{\infty} f(x) e^{-sx} dx$$

$$\mathcal{L}[y'] = s\mathcal{L}[y] - y(0)$$

$$\mathcal{L}[y''] = s^{2}\mathcal{L}[y] - sy(0) - y'(0)$$

Inverse Laplace Transforms

$$\mathcal{L}[f](s) \equiv \int_{0}^{\infty} f(x) e^{-sx} dx$$

$$\mathcal{L}[y'] = s\mathcal{L}[y] - y(0)$$

$$\mathcal{L}[y''] = s^{2}\mathcal{L}[y] - sy(0) - y'(0)$$

- ► Inverse Laplace Transforms
 - Partial Fractions Expansions

$$\mathcal{L}[f](s) \equiv \int_{0}^{\infty} f(x) e^{-sx} dx$$

$$\mathcal{L}[y'] = s\mathcal{L}[y] - y(0)$$

$$\mathcal{L}[y''] = s^{2}\mathcal{L}[y] - sy(0) - y'(0)$$

- ► Inverse Laplace Transforms
 - Partial Fractions Expansions
 - Completing the Square in the Denominator

$$\mathcal{L}[f](s) \equiv \int_{0}^{\infty} f(x) e^{-sx} dx$$

$$\mathcal{L}[y'] = s\mathcal{L}[y] - y(0)$$

$$\mathcal{L}[y''] = s^{2}\mathcal{L}[y] - sy(0) - y'(0)$$

- ► Inverse Laplace Transforms
 - Partial Fractions Expansions
 - Completing the Square in the Denominator
- ▶ Using Laplace Transform to Solve ODEs

 $Trial solution: y(x) = \sum_{n=0}^{\infty} a_n (x - x_0)^n$

- Trial solution: $y(x) = \sum_{n=0}^{\infty} a_n (x x_0)^n$
- Initial Conditions

- Trial solution: $y(x) = \sum_{n=0}^{\infty} a_n (x x_0)^n$
- Initial Conditions

$$a_0 = y(x_0)$$

$$a_1 = y'(x_0)$$

▶ The DE determines a_2, a_3, \ldots via its Recursion Relations

$$y'(x) = \sum_{n=0}^{\infty} n a_n (x - x_0)^{n-1}$$
 , $y''(x) = \sum_{n=0}^{\infty} n (n-1) a_n (x - x_0)^{n-2}$

$$y'(x) = \sum_{n=0}^{\infty} n a_n (x - x_0)^{n-1} , \quad y''(x) = \sum_{n=0}^{\infty} n (n-1) a_n (x - x_0)^{n-2}$$

$$q(x) y(x) = \left(q(x_0) + q'(x_0) (x - x_0) + \frac{q''(x_0)}{2!} (x - x_0)^2 + \cdots \right)$$

$$* \sum_{n=0}^{\infty} a_n (x - x_0)^n$$

$$y'(x) = \sum_{n=0}^{\infty} n a_n (x - x_0)^{n-1} , \quad y''(x) = \sum_{n=0}^{\infty} n (n-1) a_n (x - x_0)^{n-2}$$

$$q(x) y(x) = \left(q(x_0) + q'(x_0) (x - x_0) + \frac{q''(x_0)}{2!} (x - x_0)^2 + \cdots \right)$$

$$* \sum_{n=0}^{\infty} a_n (x - x_0)^n$$

$$\sum_{n=0}^{\infty} a_n (x - x_0)^n + \sum_{n=0}^{\infty} b_n (x - x_0)^n = \sum_{n=0}^{\infty} (a_n + b_n) (x - x_0)^n$$

$$y'(x) = \sum_{n=0}^{\infty} n a_n (x - x_0)^{n-1} , \quad y''(x) = \sum_{n=0}^{\infty} n (n-1) a_n (x - x_0)^{n-2}$$

$$q(x) y(x) = \left(q(x_0) + q'(x_0) (x - x_0) + \frac{q''(x_0)}{2!} (x - x_0)^2 + \cdots \right)$$

$$* \sum_{n=0}^{\infty} a_n (x - x_0)^n$$

$$\sum_{n=0}^{\infty} a_n (x - x_0)^n + \sum_{n=0}^{\infty} b_n (x - x_0)^n = \sum_{n=0}^{\infty} (a_n + b_n) (x - x_0)^n$$

$$0 = \sum_{n=0}^{\infty} A_n (x - x_0)^n \quad \text{for all } x \quad \Rightarrow \quad A_n = 0 \text{ for all } n$$

ightharpoonup Choose expansion point x_0

- ightharpoonup Choose expansion point x_0
- ► Substitute $y(x) = \sum_{n=0}^{\infty} a_n (x x_0)^n$ into the ODE

- Choose expansion point x₀
- Substitute $y(x) = \sum_{n=0}^{\infty} a_n (x x_0)^n$ into the ODE
- Manipulate the resulting equation to get it in the form $0 = \sum_{n=0}^{\infty} A_n(n, a_i) (x x_0)^n$

- \triangleright Choose expansion point x_0
- ► Substitute $y(x) = \sum_{n=0}^{\infty} a_n (x x_0)^n$ into the ODE
- Manipulate the resulting equation to get it in the form $0 = \sum_{n=0}^{\infty} A_n(n, a_i) (x x_0)^n$
- ▶ Use $A_n = 0$ to get the Recursion Relations

- ightharpoonup Choose expansion point x_0
- ► Substitute $y(x) = \sum_{n=0}^{\infty} a_n (x x_0)^n$ into the ODE
- Manipulate the resulting equation to get it in the form $0 = \sum_{n=0}^{\infty} A_n(n, a_i) (x x_0)^n$
- ▶ Use $A_n = 0$ to get the Recursion Relations
- ▶ Systematically solve the Recursion Relations to find $a_2, a_3, ...$

Singular Points and Convergence of Series Solutions

Singular Points and Convergence of Series Solutions

The radius of convergence of a power series solution

$$y(x) = \sum_{n=0}^{\infty} a_n (x - x_0)^n$$

to

$$y'' + p(x)y' + q(x)y = 0$$

will be the distance (in the complex plane) between x_0 and the closest singularity of p(x) and q(x)