Lecture 23 : Review and Summary

Agenda:

I. Differential Equations: Solutions and Classification

[I. 1st Order Differential Equations - Approximate Methods
[1. 1st Order Differential Equations - Exact Methods

IV. 2nd Order Linear Ordinary Differential Equations: General
Theory

V. Laplace Transform Method
VI. Power Series Solutions of 2nd Order Linear ODEs
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lI. First Order Differential Equations - Approximate
Methods

» General Form J
y
—~— =F
dX (X7y)

» Direction Fields and the Graphical Method
» Numerical Methods

d
T=Flxy) . yo)=x
Xo = Xo
Yo = Yo
Xiy1 = X+ Ax

Yis1 = Yi+ F(xi,yi)Ax
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lI1. First Order Differential Equations - Exact Methods

» General Solution vs. Unique Solution to Initial Value Problem
» Fundamental Theorem of Calculus

%:f(x) = y(x):/f(x)dx—l-C

» Separable Equations

I\/I(X)+N(y)%:0 = /M(x)dx+/N(y)dy:C

» First Order Linear ODEs
1

p(x)
where 1 (x) is the “integrating factor”

p1(x) = exp UP(X) dX}

Y+p(x)y=g(x) = y(x)= /M(X)g(x)dX-f-

1 (x)

Remember
exp (A In (x)) = x*
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I11. First Order Differential Equations - Exact Methods,
Cont'd

» Exact Equations

d .. OM ON
M(X7y)+N(Xay)d7§:0 Wlth E:a

M (x,y) Ox + h1 (y)

ooy { M0

bo) { JN(G,y) 9y + ha (%)

Figure out correct choice for arbitrary functions hi(y), ha(x)
Solve ® (x,y) = C for y(x)
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Y'+p(x)y +a(x)y = gx) (1)
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Homogeneous 2nd Order Linear ODEs:

¥+ p(x)y" +q(x)y =0 (0)

» Superposition Principle: If y; (x) and y» (x) are solutions of
(0) , then so is y (x) = c1y1 (x) + cay2 (x)

» Form of General Solution: Every solution of (0) is of the form
y(x) = ay1 (x) + cay2 (x) , where

0 # W ly1, y2] (x) = y1 (x) y2 (x) = y1 (x) y2 (x)

» Reduction of Order Formula:

Y2 =n (X)/(yl(lx))gexp [—/p(x)dx]
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The Simple Cases of Homogeneous Linear ODEs

» Constant Coefficients Case: ay” + by’ + cy = 0.

y (x) e
= aX +br+c=0

c1eMX + creMX AL, ER
y(x) = cre™ + cpxe™

AER

c1e* cos (Bx) + e™sin(fx) A=axifeC

» Euler-type Case: ax?y” + bxy’ + cy = 0.

y(x) = x7
= am*>+ (b—a)ym+c=0

c1x™ + cpx™ my,my € R
y(x) = cax™ 4+ cx™In|x|

meR

cx®cos (BIn|x|) + cx¥sin(BIn|x|]) m=axip €
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Nonhomogeneous 2nd Order Linear ODEs:

Yy +p(x)y" + a(x)y = g(x)

» Form of the General Solution:

Y (x) = Yo (x) + an (x) + 22 (x)



Nonhomogeneous 2nd Order Linear ODEs:

Y+ p(x)y' + q(x)y = g(x) (1)
» Form of the General Solution:
Y (x) = Yp (%) + cay1 (x) + cay2 (%)
» Variation of Parameters Formula:

Vo) — oy () [ 200800

AOHON
W b, ya] ¢

dx + y2(x) W .yl
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=
<
|
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V. Laplace Transform Method

» Laplace Transforms

L[f](s)

/OOO f(x)e dx
Lly'] = sLly]-y(0)
L[y"] = $*Lly]—sy(0)—y'(0)

» Inverse Laplace Transforms

» Partial Fractions Expansions
» Completing the Square in the Denominator

» Using Laplace Transform to Solve ODEs
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V1. Power Series Solutions of 2nd Order Linear ODEs

» Trial solution: y (x) = Zan x—xp)"
» Initial Conditions

ao = y(x)
a = y(x)

» The DE determines ay, as, . .. via its Recursion Relations
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Power Series Manipulations

Z n(n—1)a,(x —x)" >

n=0

y' (x) = Zna,, (X—xo)"*1 .y (%)

1

00100 = (a60)+ 0 00) 500+ T2 (x4 )

oo
* Z a, (x — xo)"
n=0




Power Series Manipulations

y' (x) = Z nan (x —x)" ', y'(x)= Z n(n—1)a,(x —x)" >

g(x)y(x) = (q(xo)+q'(xo)(x—xo)+q2!XO)(x—x0)2+...)

oo
* Z a, (x — xo)"
n=0



Power Series Manipulations

y' (x) = Zna,, (x—x)"" . y'(x)= Zn(n— 1) an (x — x0)" 2

g(x)y(x) = (q (x0) + q (x0) (x = x0) + q”2(!x0) (x— x0)2 + - )
*Zan(x—xo)"
Zan(X_XO)n+Z X—XO Z an+b (X_Xo)n

O:ZAH(X—XO)" foralx = A,=0foralln
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Power Series Method

» Choose expansion point xg

> Substitute y(x) = > 775 an(x — xo)" into the ODE

» Manipulate the resulting equation to get it in the form
0=>"720An(n,a) (x = x0)"

> Use A, = 0 to get the Recursion Relations

» Systematically solve the Recursion Relations to find as, a3, . ..



Singular Points and Convergence of Series Solutions



Singular Points and Convergence of Series Solutions

The radius of convergence of a power series solution

y(x)= Zan (x —x0)"
n=0

to
Y'+p(x)y +q(x)y=0

will be the distance (in the complex plane) between xp and the
closest singularity of p(x) and g (x)



