Math 3013.21403

SECOND EXAM

March 28, 2022

Calculators and/or notes are not permitted for this exam.

calculators and or notes are not permitt	Name:
 Define, precisely, the following notions (wher spaces). space V). (a) (5 pts) a subspace of V is 	
(b) (5 pts) a basis for a vector space V is	
(c) (5 pts) a set of linearly independent ve	ctors in V is
(d) (5 pts) a linear transformation from a ve	ector space V to vector space W is
2. (10 pts) Prove or disprove that the points of subspace of \mathbb{R}^2 .	on the set $S = \{[x,y] \in \mathbb{R}^2 \mid y = x+1\}$ is a

3. (10 pts) Let $W = span([1,1,1,1],[1,-1,1,0],[2,0,2,1]) \subset \mathbb{R}^4$. Find a basis for W

- 4. Consider the following matrix: $\mathbf{A} = \begin{bmatrix} 2 & 0 & 0 & 2 \\ 2 & 2 & 0 & 4 \\ 0 & 2 & 0 & 2 \end{bmatrix}$ (a) (10 pts) Row reduce this matrix to reduced row echelon form

- (b) (5 pts) Find a basis for the row space of **A**.
- (c) (5 pts) Find a basis for the column space of **A**.
- (d) (5 pts) Find a basis for the null space of **A**.
- (e) (5 pts) What is the rank of **A**?

5. (10 pts) Let **A** be an $n \times m$ matrix. Show that the function $T_{\mathbf{A}} : \mathbb{R}^m \to \mathbb{R}^n : T(\mathbf{x}) = \mathbf{A}\mathbf{x}$ (via matrix multiplication on the right) is a linear transformation.

6. Consider the linear transformation $T: \mathbb{R}^3 \to \mathbb{R}^2: T([x_1, x_2, x_3]) = [x_1 - x_3, x_2 + x_3].$ (a) (10 pts) Find the matrix \mathbf{A}_T corresponding to T:

(b) (5 pts) Find a basis for $range(T) \equiv \{ \mathbf{y} \in \mathbb{R}^2 \mid \mathbf{y} = T(\mathbf{x}) \text{ for some } \mathbf{x} \in \mathbb{R}^3 \}.$

(c) (5 pts) Find a basis for $ker(T) \equiv \{\mathbf{x} \in \mathbb{R}^4 \mid T(\mathbf{x}) = \mathbf{0}\}$