Math 3013.21403 SOLUTIONS TO SECOND EXAM March 28, 2022

1. Define, precisely, the following notions (where V, W are to be regarded as general vector spaces). space V).

- (a) (5 pts) a **subspace** of V is
 - a subset W of V that is closed under both scalar multiplication and vector addition; i.e.,
 - For all $\lambda \in \mathbb{R}$ and all $\mathbf{v} \in W$, $\lambda \mathbf{v} \in W$

- For all $\mathbf{v}_1, \mathbf{v}_2 \in W, \mathbf{v}_1 + \mathbf{v}_2 \in W$

(b) (5 pts) a **basis** for a vector space V is

• a set of vectors $\{\mathbf{b}_1, \ldots, \mathbf{b}_k\}$ such that every vector $\mathbf{v} \in V$ can be uniquely expressed as

$$\mathbf{v} = c_1 \mathbf{b}_1 + c_2 \mathbf{b}_2 + \dots + c_k \mathbf{b}_k$$

- (c) (5 pts) a set of linearly independent vectors in V is
 - a set of vectors $\{\mathbf{v}_1, \ldots, \mathbf{v}_k\} \subset V$ such that the only solution of

$$c_1\mathbf{v}_1+c_2\mathbf{v}_2+\cdots+c_k\mathbf{v}_k=\mathbf{0}$$

is
$$c_1 = 0, c_2 = 0, \ldots, c_k = 0$$

- (d) (5 pts) a linear transformation from a vector space V to vector space W is
 - a function $T: V \to W$ such that
 - $-T(\lambda \mathbf{x}) = \lambda T(\mathbf{x}) \text{ for all } \mathbf{x} \in V$
 - $-T(\mathbf{x}_{1} + \mathbf{x}_{2}) = T(\mathbf{x}_{1}) + T(\mathbf{x}_{2}) \text{ for all } \mathbf{x}_{1}, \mathbf{x}_{2} \in V$

2. (10 pts) Prove or disprove that the points on the set $S = \{[x, y] \in \mathbb{R}^2 \mid y = x + 1\}$ is a subspace of \mathbb{R}^2 .

- A subspace has to be closed under both scalar multiplication and vector addition.
 - closure under scalar multiplication. Consider $\mathbf{v} = [0, 1] \in S$ and let $\lambda = 0$. Then

 $\lambda \mathbf{v} = [0 \cdot 0, 0 \cdot 1] = [0, 0]$ but $[0, 0] \notin S$ since $0 \neq 0 + 1$

So S is not closed under scalar multiplication and so S is not a subspace.

- closure under vector addition. Consider $\mathbf{v}_1 = [0, 1]$, $\mathbf{v}_2 = [1, 2] \in S$. Then

 $\mathbf{v}_1 + \mathbf{v}_2 = [0, 1] + [1, 2] = [1, 3] \notin S$ since $3 \neq 1 + 1$

So S is not closed under vector addition and so S is not a subspace (Either one of these two arguments is a satisfactory solution.)

3. (10 pts) Let $W = span([1, 1, 1, 1], [1, -1, 1, 0], [2, 0, 2, 1]) \subset \mathbb{R}^4$. Find a basis for W.

$$span(W) = RowSp\left(\left[\begin{array}{rrrr} 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 \\ 2 & 1 & 2 & 1 \end{array}\right]\right) \quad \underbrace{\text{row reduction}}_{\text{RowSp}} RowSp\left(\left[\begin{array}{rrrr} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{array}\right]\right)$$

Since the non-zero rows of the matrix in R.E.F. form a basis for the row space of a matrix

basis for
$$W = \text{basis for } RowSp = \{[1, 0, 1, 0], [0, 1, 0, 1]\}$$

Consider the following matrix:
$$\mathbf{A} = \begin{bmatrix} 2 & 0 & 0 & 2 \\ 2 & 2 & 0 & 4 \\ 0 & 2 & 0 & 2 \end{bmatrix}$$

(a) (10 pts) Row reduce this matrix to reduced row echelon form

2	0	0	2			[- 1	0	0	1	1
2	2	0	4		\rightarrow		0	1	0	1	
$\begin{bmatrix} 2\\2\\0 \end{bmatrix}$	2	0	2				1 0 0	0	0	0	
			_	•			-			-	-

(b) (5 pts) Find a basis for the row space of **A**.

4.

• A basis for the row space of the matrix **A** is formed by the non-zero rows of any row echelon form of **A**. Thus

basis for
$$RowSp(\mathbf{A}) = \{[1, 0, 0, 1], [0, 1, 0, 1]\}$$

- (c) (5 pts) Find a basis for the column space of **A**.
 - A basis for the column space of **A** is formed by the columns of **A** corresponding to the columns of a row echelon form of **A** which contain pivots. Since the first and second columns of the RREF of **A** are where the pivots of the RREF reside, the first and second columns of **A** will be a basis for the column space of **A** :

basis for
$$ColSp(\mathbf{A}) = \left\{ \begin{bmatrix} 2\\2\\0 \end{bmatrix}, \begin{bmatrix} 0\\2\\2 \end{bmatrix} \right\}$$

- (d) (5 pts) Find a basis for the null space of \mathbf{A} .
 - To find a basis for the null space of \mathbf{A} , we must solve $\mathbf{A}\mathbf{x} = \mathbf{0}$. From the reduced row echelon form of \mathbf{A} , we conclude that if $\mathbf{x} = [x_1, x_2, x_3, x_4]$ is a solution of $\mathbf{A}\mathbf{x} = \mathbf{0}$, then

$$\begin{cases} x_1 + 0 + 0 + x_4 = 0\\ 0 + x_2 + 0 + x_4 = 0\\ 0 + 0 + 0 + 0 = 0 \end{cases} \Rightarrow \begin{cases} x_1 = -x_4\\ x_2 = -x_4 \end{cases}$$

and x_3 and x_4 are free parameters: Thus,

$$\mathbf{x} = \begin{bmatrix} -x_4 \\ -x_4 \\ x_3 \\ x_4 \end{bmatrix} = x_3 \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix} + x_4 \begin{bmatrix} -1 \\ -1 \\ 0 \\ 1 \end{bmatrix}$$

basis for $NullSp(\mathbf{A}) = \begin{cases} \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} -1 \\ -1 \\ 0 \\ 1 \end{bmatrix}$

and

• $rank(A) = \dim(RowSp(\mathbf{A})) = \dim(ColSp(\mathbf{A})) = 2$

5. (10 pts) Let **A** be an $n \times m$ matrix. Show that the function $T : \mathbb{R}^m \to \mathbb{R}^n : T(\mathbf{x}) = \mathbf{A}\mathbf{x}$ (via matrix multiplication on the right) is a linear transformation.

(i) compatibility with scalar multiplication. Let $\mathbf{x} \in \mathbb{R}^m$. Then

$$T\left(\lambda\mathbf{x}\right) = \mathbf{A}\left(\lambda\mathbf{x}\right) = \lambda\mathbf{A}\mathbf{x} = \lambda T\mathbf{x}$$

and $\lambda \mathbf{y}$ is also a solution

(ii) compatibility with vector addition. Let $\mathbf{x}_1, \mathbf{x}_2 \in \mathbb{R}^m$. Then

$$T\left(\mathbf{x}_{1}+\mathbf{x}_{2}\right) = \mathbf{A}\left(\mathbf{x}_{1}+\mathbf{x}_{2}\right) = \mathbf{A}\mathbf{x}_{1} + \mathbf{A}\mathbf{x}_{2} = T\left(\mathbf{x}_{1}\right) + T\left(\mathbf{x}_{2}\right)$$

Since T is function between two vector spaces that is compatible with both scalar multiplication and vector addition, T is a linear transformation.

6. Consider the linear transformation $T : \mathbb{R}^3 \to \mathbb{R}^2 : T([x_1, x_2, x_3]) = [x_1 - x_3, x_2 + x_3].$ (a) (10 pts) Find the matrix \mathbf{A}_T corresponding to T:

$$\mathbf{A}_{T} = \begin{bmatrix} \uparrow & \uparrow & \uparrow \\ T\left([1,0,0]\right) & T\left([0,1,0]\right) & T\left([0,0,1]\right) \\ \downarrow & \downarrow & \downarrow \end{bmatrix} = \begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & 1 \end{bmatrix}$$

Note that \mathbf{A}_T is already in R.R.E.F.

(b) (5 pts) Find a basis for $Range(T) \equiv \{ \mathbf{y} \in \mathbb{R}^2 \mid \mathbf{y} = T(\mathbf{x}) \text{ for some } \mathbf{x} \in \mathbb{R}^4 \}.$

basis for Range(T) = basis for $ColSp(\mathbf{A}_T)$

= columns of \mathbf{A}_T that contain pivots (since \mathbf{A}_T is already in R.R.E.F.)

$$= \left\{ \left[\begin{array}{c} 1\\0 \end{array} \right], \left[\begin{array}{c} 0\\1 \end{array} \right] \right\}$$

(c) (5 pts) Find a basis for $ker(T) \equiv {\mathbf{x} \in \mathbb{R}^3 | T(\mathbf{x}) = \mathbf{0}}$

• We have ker $(T) = NullSp(\mathbf{A}_T)$. From the R.R.E.F. of \mathbf{A}_T we see that the solutions $\begin{bmatrix} x_1 \end{bmatrix}$

$$\mathbf{x} = \begin{bmatrix} x_2 \\ x_3 \end{bmatrix} \text{ of } \mathbf{A}_T \mathbf{x} = \mathbf{0} \text{ must be satisfy}$$

$$\begin{cases} x_1 + 0 - x_3 = 0 \\ x_2 + x_3 = 0 \end{cases} \Rightarrow \begin{cases} x_1 = x_3 \\ x_2 = -x_3 \end{cases} \Rightarrow \mathbf{x} = \begin{bmatrix} x_3 \\ -x_3 \\ x_3 \end{bmatrix} = x_3 \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}$$

Therefore,

basis for ker
$$(T)$$
 = basis for $NullSp(\mathbf{A}_T) = \left\{ \begin{bmatrix} 1\\ -1\\ 1 \end{bmatrix} \right\}$