Math 3013

ANSWERS TO SECOND EXAM

November 3, 2020

1. Consider the vectors $\{[1,2,1,1,0], [0,1,2,1,1], [-1,-1,1,0,1], [-1,0,3,1,2]\} \in \mathbb{R}^5$

$$\Rightarrow$$
 not linearly independent (a)

$$\dim RowSp(\mathbf{A}) = 2 \tag{b}$$

• 2. Definitions

3. Given that the matrix $\mathbf{A} = \begin{bmatrix} 2 & 4 & 0 & 2 \\ -1 & -2 & 1 & -3 \\ 0 & 0 & 1 & 2 \end{bmatrix}$ row reduces to $\begin{bmatrix} 1 & 2 & 0 & 1 \\ 0 & 0 & 1 & -2 \\ 0 & 0 & 0 & 0 \end{bmatrix}$

basis for row space = $\{[1, 2, 0, 1], [0, 0, 1, -2]\}$ (a)

basis for column space
$$= \left\{ \begin{bmatrix} 2 \\ -1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} \right\}$$
 (b)

basis for
$$NullSp(\mathbf{A}) = \{[-2, 1, 0, 0], [-1, 0, 2, 1]\}$$
 (c)

$$rank = 2$$
 (d)

4.

 $\mathbf{A}_T = \begin{bmatrix} 1 & 2 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & -1 \end{bmatrix}$ (a)

basis for Range
$$(T) = \{[1, 1, 1], [2, 1, 0]\}$$
 (b)

basis for
$$\ker(T) = \{[1, -1, 1]\}$$
 (c)

5. (15 pts) cofactor expansions \Rightarrow det $(\mathbf{A}) = -2$

6. (15 pts) row reduction method \Rightarrow det (**A**) = 2