Math 3013 SECOND EXAM November 3, 2020

1. Consider the vectors $\{[1, 2, 1, 1, 0], [0, 1, 2, 1, 1], [-1, -1, 1, 0, 1], [-1, 0, 3, 1, 2]\} \in \mathbb{R}^5$

- (a) (10 pts) Determine if these vectors are linearly independent.
 - Writing these vectors as the rows of a matrix **A**, we can determine if the vectors are linearly independent by checking if the R.E.F. of **A** has any non-zero row vectors. If R.E.F.(**A**) has any zero row vectors, then the original set of vectors are linearly dependent.

Since we have two zero row vectors, the original set of matrices are **not linearly indepen-dent**.

- (b) (5 pts) What is the dimension of the subspace generated by these vectors?
 - The row reduction calculation in part (a) also produces a basis for the row space of **A**, which is also a basis for the subspace generated by the original set of vectors. Since we have two basis vectors, the dimension of the subspaces is 2.
- 2. Write the definitions (as stated in class) of the following notions. (5 pts each)

(a) A subspace W of \mathbb{R}^n .

• A subspace W of \mathbb{R}^n is a subset of \mathbb{R}^n such that

$$-\lambda \in \mathbb{R}$$
, $\mathbf{w} \in W \Rightarrow (\lambda \mathbf{w}) \in W$

$$-\mathbf{w}_1, \mathbf{w}_2 \in W \quad \Rightarrow \quad (\mathbf{w}_1 + \mathbf{w}_2) \in W$$

- (b) A **basis** for a subspace W of \mathbb{R}^n .
 - A basis for a subspace W of \mathbb{R}^n is a set of vectors $\{\mathbf{b}_1, \ldots, \mathbf{b}_k\}$ such that - every vector $\mathbf{w} \in W$ can be expressed as

$$\mathbf{w} = c_1 \mathbf{b}_1 + \dots + c_k \mathbf{b}_k$$

- for each $\mathbf{w} \in W$, the coefficients c_1, \ldots, c_k in (*) are unique.

(c) A set of linearly independent vectors

• A set of vectors $\{\mathbf{v}_1, \ldots, \mathbf{v}_k\}$ are *linearly independent* if the only solution of

$$x_1\mathbf{v}_1 + x_2\mathbf{v}_2 + \dots + x_k\mathbf{v}_k = \mathbf{0}$$

is

(*)

$$x_1 = 0$$
, $x_2 = 0$, \cdots , $x_k = 0$

(d) A linear transformation

- A linear transformation is a function $T: V \to W$ between two vector spaces such that $-\lambda \in \mathbb{R}$, $\mathbf{v} \in V \implies T(\lambda \mathbf{v}) = \lambda T(\mathbf{v})$
 - $-\mathbf{v}_1, \mathbf{v}_2 \in V \quad \Rightarrow \quad T(\mathbf{v}_1 + \mathbf{v}_2) = T(\mathbf{v}_1) + T(\mathbf{v}_2)$

- 3. Given that the matrix $\mathbf{A} = \begin{bmatrix} 2 & 4 & 0 & 2 \\ -1 & -2 & 1 & -3 \\ 0 & 0 & 1 & 2 \end{bmatrix}$ row reduces to $\begin{bmatrix} 1 & 2 & 0 & 1 \\ 0 & 0 & 1 & -2 \\ 0 & 0 & 0 & 0 \end{bmatrix}$
- (a) (5 pts) Find a basis for the row space of \mathbf{A}
 - The non-zero rows of $R.E.F.(\mathbf{A})$ provide a basis for the row space of \mathbf{A} :

basis for row space = $\{[1, 2, 0, 1], [0, 0, 1, -2]\}$

- (b) (5 pts) Find a basis for the column space of \mathbf{A} .
 - The columns of \mathbf{A} that correspond to the columns of its R.E.F. that contain pivots will provide a basis for the column space of \mathbf{A} :

basis for column space =
$$\left\{ \begin{bmatrix} 2\\ -1\\ 0 \end{bmatrix}, \begin{bmatrix} 0\\ 1\\ 1 \end{bmatrix} \right\}$$

- (c) (5 pts) Find a basis for the null space of ${\bf A}.$
 - The null space of A is the solution set of the homogeneous linear system Ax = 0. We are given the R.R.E.F. of the coefficient matrix A, so we can immediately write down the solutions of Ax = 0:

$$\begin{aligned} x_1 + 2x_2 + x_4 &= 0\\ x_3 - 2x_4 &= 0\\ 0 &= 0 \end{aligned} \Rightarrow \begin{cases} x_1 = -2x_2 - x_4\\ x_2 \text{ is a free variable}\\ x_3 = 2x_4\\ x_4 \text{ is a free variable} \end{cases} \\ \mathbf{x} = \begin{bmatrix} -2x_2 - x_4\\ x_2\\ 2x_4\\ x_4 \end{bmatrix} = x_2 \begin{bmatrix} -2\\ 1\\ 0\\ 0 \end{bmatrix} + x_4 \begin{bmatrix} -1\\ 0\\ 2\\ 1 \end{bmatrix} \end{aligned}$$

and

basis for
$$NullSp(\mathbf{A}) = \{ [-2, 1, 0, 0] , [-1, 0, 2, 1] \}$$

- (d) (5 pts) What is the rank of \mathbf{A} ?
 - The rank of **A** is the common dimension of its row and column spaces. Since both the row and column spaces have two basis vectors

$$\operatorname{rank}(\mathbf{A}) = 2$$

4. Consider the following linear transformation:

$$T: \mathbb{R}^3 \to \mathbb{R}^3: T([x_1, x_2, x_3) = [x_1 + 2x_2 + x_3, x_1 + x_2, x_1 - x_3].$$

- (a) (10 pts) Find a matrix that represents T.
 - We have

$$\mathbf{A}_{T} = \begin{bmatrix} \uparrow & \uparrow & \uparrow \\ T([1,0,0]) & T([0,1,0]) & T([0,0,1]) \\ \downarrow & \downarrow & \downarrow \end{bmatrix} = \begin{bmatrix} 1 & 2 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & -1 \end{bmatrix}$$

- (b) (5 pts) Find a basis for the range of T.
 - We have $Range(T) = ColSp(\mathbf{A}_T)$. Thus, we find a basis for Range(T) by finding a basis for the column space of \mathbf{A}_T

$$\mathbf{A}_{T} = \begin{bmatrix} 1 & 2 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & -1 \end{bmatrix} \xrightarrow{\text{row reduction}} \begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix} = R.R.E.F.(\mathbf{A}_{T})$$

Grabbing the columns of \mathbf{A}_T corresponding to the columns of its R.R.E.F. that have pivots we find

basis for Range
$$(T) = \{ [1, 1, 1], [2, 1, 0] \}$$

- (c) (5 pts) Find a basis for the kernel of T.
 - $\ker(T) = NullSp(\mathbf{A}_T) =$ solution set of $\mathbf{A}_T \mathbf{x} = \mathbf{0}$. Using the R.R.E.F. of \mathbf{A}_T that we just calculated we find the solutions of $\mathbf{A}_T \mathbf{x} = \mathbf{0}$ must be vectors of the form

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} x_3 \\ -x_3 \\ x_3 \end{bmatrix} = x_3 \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}$$

and so

basis for $\ker(T) = \{[1, -1, 1]\}$

- 5. (15 pts) Use cofactor expansions to compute the determinant of $\mathbf{A} = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 2 & 1 & 1 \\ 1 & 0 & 0 & 2 \end{bmatrix}$ The second column has only one net

 - The second column has only one non-zero entry. So we'll carry out a cofactor expansion along the second column of **A**

$$\det (\mathbf{A}) = 0 + 0 + (2) (-1)^{3+2} \det \begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 1 \\ 1 & 0 & 2 \end{pmatrix}$$
$$= (2) (-1) \left(0 + (1) (-1)^{2+2} \det \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix} + 0 \right)$$
$$= (2) (-1) (1) (1) (2-1)$$
$$= -2$$

6. (15 pts) Use the row reduction method to determine the determinant of $\mathbf{A} = \begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 2 & 2 & 2 \\ 0 & 2 & 1 & -1 \\ 1 & 1 & 1 & 1 \end{bmatrix}$

• The following sequence of elementary row operations converts A to row echelon form

$$\mathbf{A} = \begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 2 & 2 & 2 \\ 0 & 2 & 1 & -1 \\ 1 & 1 & 1 & 1 \end{bmatrix} \xrightarrow{R_1 \longleftrightarrow R_4} \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 2 & 2 & 2 \\ 0 & 2 & 1 & -1 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
$$\begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 2 & 2 & 2 \\ 0 & 2 & 1 & -1 \\ 0 & 0 & 0 & 1 \end{bmatrix} \xrightarrow{R_3 \to R_3 - R_2} \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 2 & 2 & 2 \\ 0 & 0 & -1 & -3 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

We have

$$\det (\mathbf{A}) = (-1)^r \frac{1}{\lambda_1 \dots \lambda_k} \det (R.E.F.(\mathbf{A}))$$

Here r is the number of row interchanges used in the row reduction, and $\lambda_1, \ldots, \lambda_k$ are the row rescalings used. In our case, r = 1 and we didn't use any row rescalings. Hence,

$$\det (\mathbf{A}) = (-1) \det \left(\begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 2 & 2 & 2 \\ 0 & 0 & -1 & -3 \\ 0 & 0 & 0 & 1 \end{bmatrix} \right) = (-1) (1) (2) (-1) (1)$$
$$= 2$$