
Math 3013.25578
Solutions to Final Exam

May 2, 2022

1. Give the definitions of the following linear algebraic concepts:

(a) (5 pts) a subspace of a vector space V .

• A subspace of vector space V is a subset W of V such that
(i) whenever λ ∈ R, w ∈ W , (λw) ∈ W
(ii) whenever w1,w2 ∈ W , (w1 + w2) ∈ W

(b) (5 pts) a basis for a subspace W of a vector space V

• A set of vectors {v1, . . . ,vk} is a basis for a subspace W if
– W = span (v1, . . . ,vk)
– If w = c1v1 + · · ·+ ckvk, then coefficients c1, . . . , ck are unique.

(c) (5 pts) a set of linearly independent vectors

• A set of vectors {v1, . . . ,vk} is a linearly independent set if the only solution of

x1v1 + · · ·+ xkvk = 0

is
x1 = 0, . . . , xk = 0

(d) (5 pts) a linear transformation between two vector spaces V and W .

• A linear transformation between two vector space V and W is a function T : V → W
such that
(i) T (λv) = λT (v) for all λ ∈ R and all v ∈ V
(ii) T (v1 + v2) = T (v1) + T (v2) for all v1,v2 ∈ V

2. Suppose each of the following augmented matrices is a Row Echelon Form of the aug-
mented matrix of a linear system Ax = b. Describe the original system (i.e., how many
equations in how many unknowns) and describe the solution space of the corresponding
linear system. (Determine if there are solutions; and, if there are solutions, how many free
parameters are needed to describe the general solution.)

(a) (5 pts)


0 −1 0 1 2 1
0 0 2 0 1 0
0 0 0 2 1 0
0 0 0 0 0 0

 : 4 equations in 5 unknowns. Solutions with 2 free

parameters (x1 and x5).

(b) (5 pts)


1 0 4 2
0 2 0 3
0 0 0 0
0 0 0 0

∣∣∣∣∣∣∣∣
1
2
1
0

 : 4 equations in 4 unknowns. There is no solution since the

3rd row implies a contradictory equation.

(c) (5 pts)


1 0 2
0 1 0
0 0 1
0 0 0

∣∣∣∣∣∣∣∣
1
2
1
0

: 4 equations in 3 unknowns. There is a unique solution (since

each column of the coefficient part of the augmented matrix in RREF has a pivot).
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3. (10 pts) Solve the following linear system, expressing the solution set as a hyperplane.

x1 − x3 + x4 = 1

x1 + x3 + x4 = 1

x1 + x4 = 1

• We begin by writing down the augmented matrix for this linear system and row
reducing it to Reduced Row Echelon Form.

[A|b] =

 1 0 −1 1 1
1 0 1 1 1
1 0 0 1 1

 R2 → R2 −R1

R3 → R3 −R1
−−−−−−−−−−−−−−−→

 1 0 −1 1 1
0 0 2 0 0
0 0 1 0 0


R2 → 1

2
R2

R3 → R3 −R2

R1 → R1 +R2
−−−−−−−−−−−−−→

 1 0 0 1 1
0 0 1 0 0
0 0 0 0 0


Converting back to equations (and noting that x2 and x4 will be the free parameters
in the solution)

x1 + x4 = 1
x3 = 0
0 = 0

 ⇒
{
x1 = 1− x4
x3 = 0

and so a solution vector must be of the form

x =


x1
x2
x3
x4

 =


1− x4
x2
0
x4

 =


1
0
0
0

+ x2


0
1
0
0

+ x4


−1
0
0
1
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4. (10 pts) Compute the inverse of A =

 0 1 0
1 −2 0
0 2 1


•

[A | I] =

 0 1 0 1 0 0
1 −2 0 0 1 0
0 2 1 0 0 1

 R1 ←→ R2−−−−−−−→

 1 −2 0 0 1 0
0 1 0 1 0 0
0 2 1 0 0 1


R3 → R3 − 2R2−−−−−−−−−−−→

 1 −2 0 0 1 0
0 1 0 1 0 0
0 0 1 −2 0 1


R1 → R1 + 2R2−−−−−−−−−−−→

 1 0 0 2 1 0
0 1 0 1 0 0
0 0 1 −2 0 1

 =
[
I | A−1

]
and so

A−1 =

 2 1 0
1 0 0
0 −2 1


5. (10 pts) Let W = {[x, y] ∈ R2 | x+ 2y = 3}. Prove or disprove that W is a subspace of
R2.

• Consider the vector w = [1, 1]. w belongs to W since (1) + 2 (1) = 3. If we scalar
multiply w by the number 0, we get

λw = [0, 0]

which does not lie in W since (0) + 2 (0) = 0 6= 3. This means W is not closed under
scalar multiplication and so W is not a subspace.
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6. Consider the vectors {[1, 1, 1, 1], [1, 2,−1, 1], [2, 3, 0, 2], [3, 4, 1, 3]} ∈ R4

(a) (10 pts) Determine if these vectors are linearly independent.

• We form a 4× 4 matrix A using the given vectors as rows.

A =


1 1 1 1
1 2 −1 1
2 3 0 3
3 4 1 3

 R2 → R2 −R1

R3 → R3 − 2R1

R4 → R4 − 3R1
−−−−−−−−−−−−→


1 1 1 1
0 1 −2 0
0 1 −2 1
0 1 −2 0


R3 → R3 −R2

R4 → R4 −R2
−−−−−−−−−−−→


1 1 1 1
0 1 −2 0
0 0 0 1
0 0 0 0

 R1 → R1 −R4−−−−−−−−−−→


1 1 1 0
0 1 −2 0
0 0 0 1
0 0 0 0



R1 → R1 −R2−−−−−−−−−−−−→


1 0 3 1
0 1 −2 0
0 0 0 1
0 0 0 0


Since the REF of A a zero row, the original set of vectors are not linearly indepen-
dent.

(b) (5 pts) What is the dimension of the subspace generated by these vectors (i.e. the
subspace spanned by these vectors)?

• The two non-zero rows of the REF of A provide a basis forRowSp (A) = span ([1, 1, 1, 1], [1, 2,−1, 1], [2, 3, 0, 2], [3, 4, 1, 3]) .
Since we have two basis vectors, the dimension of the subspace is 2.

7. Consider the following linear transformation: T : R3 → R2 : T ([x1, x2, x3]) = [x2 − x1 , x1 − x2].
(a) (10 pts) Find a matrix that represents T .

•

AT =

 ↑ ↑ ↑
T ([1, 0, 0]) T ([0, 1, 0]) T ([0, 0, 1])

↓ ↓ ↓

 =

[
−1 1 0
1 −1 0

]
(b) (10 pts) Find a basis for the kernel of T (i.e. the set of vectors x such that T (x) = 0).

•

Ker (T ) = NullSp (AT ) = NullSp

([
−1 1 0
1 −1 0

])
= NullSp (RREF (AT )) = NullSp

([
1 −1 0
0 0 0

])
=
{
x = [x1, x2, x3] ∈ R3 | x1 − x2 = 0

}
=


 x2
x2
x3

 | x2, x3 ∈ R


= span

 1
1
0

 ,

 0
0
1

 =⇒ basis for Ker (T ) =


 1

1
0

 ,

 0
0
1
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8. (a) (15 pts) Find the eigenvalues and the eigenvectors of the following matrix : A =

 2 1 0
0 0 1
0 0 2


• We have

pA (λ) = det (A− λI) = det

 2− λ 1 0
0 0− λ 1
0 0 2− λ

 = (2− λ)2 (−λ)

So the eigenvalues of A are 2 and 0. Since we have two factors of (2− λ) in pA (λ)
the eigenvalue λ = 2 has algebraic multiplicity 2. Since we have only one factor of
(0− λ) in pA (λ), the eigenvalue λ = 0 has algebraic multiplicity 1.

2-eigenspace

E2 = NullSp (A− (2) I) = NullSp

 0 1 0
0 −2 1
0 0 0

 =

 0 1 0
0 0 1
0 0 0


= span

 1
0
0


Since the 2-eigenspace of A has only one basis vector, the geometric multiplicity of
the eigenvalue 2 is 1.

0-eigenspace

E0 = NullSp (A− (0) I) = NullSp

 2 1 0
0 0 1
0 0 2

 = NullSp

 1 1
2

0
0 0 1
0 0 0


= span

 −1
2

1
0


Since the 0-eigenspace of A has only one basis vector, the geometric multiplicity of
the eigenvalue 0 is 1.

(b) (5 pts) What are the algebraic multiplicities and geometric multiplicities of the eigen-
values of A?

• We have

eigenvalue basis for eigenspace alg. mult. geom. mult.

2


 1

0
0

 2 1

0


 −1

2
1
0

 1 1

(c) (5 pts) Is this matrix diagonalizable?

• No. We need 3 linearly independent eigenvectors in order to diagonalize a 3 × 3
matrix. But we only found two linearly independent eigenvectors; and so A is not
diagonalizable.
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9. (10 pts) Let A be the matrix

[
3 1
1 3

]
. Find a 2 × 2 matrix C and a diagonal matrix

D such that C−1AC = D.

• First, we need to find the eigenvalues and eigenvectors of A.

pA (λ) = det

([
3− λ 1

1 3− λ

])
= (3− λ)2 − 1 = λ2 − 6λ+ 8 = (λ− 2) (λ− 4)

So the eigenvalues of A are 2 and 4. Next, we look for the corresponding eigenvec-
tors:

2-eigenspace

E2 = NullSp

([
3− 2 1

1 3− 2

])
= NullSp

([
1 1
0 0

])
= span

([
−1
1

])
⇒ vλ=2 =

[
−1
1

]
4-eigenspace

E4 = NullSp

([
3− 4 1

1 3− 4

])
= NullSp

([
1 −1
0 0

])
= span

([
1
1

])
⇒ vλ=4 =

[
1
1

]
We use the eigenvalues of A to construct the diagonal matrix D and then use the
corresponding eigenvectors as the columns of the matrix C. Thus,

D =

[
2 0
0 4

]
, C =

[
−1 1
1 1

]
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10. Let W = span ([1 , 1, 1] , [0, 1, 1]).

(a) (7 pts) Find the orthogonal complement W⊥ = {x ∈ R3 | x ·w = 0 for all w ∈ W}.

• Note that the generators of W are clearly linearly independent, and so basis vectors
for W . To lie in W⊥, a vector x must be perpendicular to each basis vector of W .
Thus, setting b1 = [1, 1, 1], b2 = [0, 1, 1]

x ∈ W⊥ ⇒
{

b1 · x = 0
b2 · x = 0

⇒
[
← b1 →
← b2 →

]
x = 0

Thus,

W⊥ = NullSp

(
← b1 →
← b2 →

)
= NullSp

([
1 1 1
0 1 1

])
= NullSp

([
1 0 0
0 1 1

])

=
{
x ∈ R3 | x1 = 0 , x2 = −x3

}
= span

 0
−1
1


(b) (8 pts) Let v = [1,−2, 0]. Find the orthogonal decomposition v = vW + v⊥; vW ∈ W ,
v⊥ ∈ W⊥, of v with respect to W .

• B = {[1, 1, 1] , [0, 1, 1]} ∪ {[0,−1, 1]} will be a basis for the entire vector space R3.
Let us find the coordinates of v with respect to the basis B

c1

 1
1
1

+ c2

 0
1
1

+ c3

 0
−1
1

 =

 1
−2
0


This linear system has the augmented matrix

[A|b] =

 1 0 0 1
1 1 −1 −2
1 1 1 0


which in turn row reduces to 1 0 0 1

0 1 0 −2
0 0 1 1

 = R.R.E.F. ([A|b]) ⇒

 c1 = 1
c2 = −2
c3 = 1

and so

v =

 1
1
1

− 2

 0
1
1

+

 0
−1
1


=

 1
1
1

− 2

 0
1
1

+

 0
−1
1


= vW + v⊥
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where

vW =

 1
1
1

− 2

 0
1
1

 =

 1
−1
−1

 ∈ W
v⊥ =

 0
−1
1

 ∈ W⊥


