Math 3013.62663 Final Exam

December 10, 2021: 10:00am - 11:50am

NT		
Name:		

1.	Complete	the	following	definitions
т.	Compicic	ULIC	TOHOWING	delilitutotik

- (a) (5 pts) A subspace of a vector space V is ...
- (b) (5 pts) A basis for a subspace W of a vector space V is ...
- (c) (5 pts) A set of vectors $\{\mathbf{v}_1, \dots, \mathbf{v}_k\}$ is a **linearly independent** set of vectors if ...
- (d) (5 pts) A linear transformation between two vector spaces V and W is ...
- 2. For each of the following augmented matrices, describe the solution space of the corresponding linear system. (Determine if there are solutions; and, if there are solutions, how many free parameters are needed to describe the general solution.)

(a) (5 pts)
$$\begin{bmatrix} 0 & -1 & 0 & 1 & 2 & 1 \\ 0 & 0 & 2 & 0 & 1 & 0 \\ 0 & 0 & 0 & 2 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

(b) (5 pts)
$$\begin{bmatrix} 1 & 0 & 4 & 2 & 1 \\ 0 & 2 & 0 & 3 & 2 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$
(c) (5 pts)
$$\begin{bmatrix} 1 & 0 & 2 & 1 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

(c) (5 pts)
$$\begin{bmatrix} 1 & 0 & 2 & 1 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

3. (10 pts) Compute the inverse of $\mathbf{A} = \begin{bmatrix} 0 & 1 & 0 \\ 1 & -2 & 0 \\ 0 & 2 & 1 \end{bmatrix}$

4. (10 pts) Let $W = \{[x,y] \in \mathbb{R}^2 \mid x+2y=3\}$. Prove or disprove that W is a subspace of \mathbb{R}^2 .

- 5. Consider the vectors $\{[1, 1, 1, 1], [1, 2, -1, 1], [2, 3, 0, 2], [3, 4, 1, 3]\} \in \mathbb{R}^4$
- (a) (10 pts) Determine if these vectors are linearly independent.

- (b) (5 pts) What is the dimension of the subspace generated by these vectors (i.e. the subspace spanned by these vectors)?
- 6. Consider the following linear transformation: $T: \mathbb{R}^3 \to \mathbb{R}^2: T([x_1, x_2.x_3]) = [x_2 x_1, x_1 x_2].$
- (a) (10 pts) Find a matrix that represents T.

(b) (10 pts) Find a basis for the kernel of T (i.e. the set of vectors \mathbf{x} such that $T(\mathbf{x}) = \mathbf{0}$).

- 7. (a) (10 pts) Find the eigenvalues and the eigenvectors of the following matrix: $\mathbf{A} = \begin{bmatrix} 2 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 2 \end{bmatrix}$ (b) (5 pts) What are the algebraic and geometric and secondariant in the following matrix:
- (b) (5 pts) What are the algebraic and geometric multiplicities of each eigenvalue?
- (c) (5 pts) Is this matrix diagonalizable?

8. (15 pts) Let $\bf A$ be the matrix $\begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix}$. Find a 2×2 matrix $\bf C$ and a diagonal matrix $\bf D$ such that $\bf C^{-1}\bf AC = \bf D$.

- 9. Let $W = span\left(\left[1\ , 1, 1\right],\ \left[0, 1, 1\right]\right) \subset \mathbb{R}^3.$
- (a) (7 pts) Find the orthogonal complement $W_{\perp} = \{ \mathbf{x} \in \mathbb{R}^3 \mid \mathbf{x} \cdot \mathbf{w} = 0 \text{ for all } \mathbf{x} \in W \}$ of W in \mathbb{R}^3 .
- (b) (8 pts) Let $\mathbf{v} = [1, -2, 0]$, find the orthogonal decomposition $\mathbf{v} = \mathbf{v}_W + \mathbf{v}_{\perp}$; $\mathbf{v}_W \in W$, $\mathbf{v}_{\perp} \in W_{\perp}$, of \mathbf{v} with respect to W.

10. (10 pts) Find an orthonormal basis for the subspace W generated by the vectors $\mathbf{v}_1 = [1, -1, 1]$ and $\mathbf{v}_2 = [1, 0, 2]$.